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Abstract

For every real p > 0 and simple graph G, set

f (p,G) =
∑

u∈V (G)

dp (u) ,

and let φ (r, p, n) be the maximum of f (p,G) taken over all Kr+1-free graphs G of
order n. We prove that, if 0 < p < r, then

φ (r, p, n) = f (p, Tr (n)) ,

where Tr (n) is the r-partite Turan graph of order n. For every p ≥ r +
⌈√

2r
⌉

and
n large, we show that

φ (p, n, r) > (1 + ε) f (p, Tr (n))

for some ε = ε (r) > 0.
Our results settle two conjectures of Caro and Yuster.

1 Introduction

Our notation and terminology are standard (see, e.g. [1]).
Caro and Yuster [3] introduced and investigated the function

f (p,G) =
∑

u∈V (G)

dp (u) ,

where p ≥ 1 is integer and G is a graph. Writing φ (r, p, n) for the maximum value of
f (p,G) taken over all Kr+1-free graphs G of order n, Caro and Yuster stated that, for
every p ≥ 1,

φ (r, p, n) = f (p, Tr (n)) , (1)
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where Tr (n) is the r-partite Turán graph of order n. Although true for p = 2, r ≥ 2,
simple examples show that (1) fails for every fixed r ≥ 2 and all sufficiently large p and n;
this was observed by Schelp [4]. A natural problem arises: given r ≥ 2, determine those
real values p > 0, for which equality (1) holds. Furthermore, determine the asymptotic
value of φ (r, p, n) for large n.

In this note we essentially answer these questions. In Section 2 we prove that (1)
holds whenever 0 < p < r and n is large. Next, in Section 3, we describe the asymptotic
structure of Kr+1-free graphs G of order n such that f (p,G) = φ (r, p, n) . We deduce
that, if p ≥ r +

⌈√
2r

⌉
and n is large, then

φ (r, p, n) > (1 + ε) f (p, Tr (n))

for some ε = ε (r) > 0. This disproves Conjecture 6.2 in [3]. In particular,

r

pe
≥ φ (r, p, n)

np+1
≥ r − 1

(p+ 1) e

holds for large n, and therefore, for any fixed r ≥ 2,

lim
n→∞

φ (r, p, n)

f (p, Tr (n))

grows exponentially in p.
The case r = 2 is considered in detail in Section 4; we show that, if r = 2, equality

(1) holds for 0 < p ≤ 3, and is false for every p > 3 and n large.
In Section 5 we extend the above setup. For a fixed (r + 1)-chromatic graph H,

(r ≥ 2) , let φ (H, p, n) be the maximum value of f (p,G) taken over all H-free graphs G
of order n. It turns out that, for every r and p,

φ (H, p, n) = φ (r, p, n) + o
(
np+1

)
. (2)

This result completely settles, with the proper changes, Conjecture 6.1 of [3]. In fact,
Pikhurko [5] proved this for p ≥ 1, although he incorrectly assumed that (1) holds for all
sufficiently large n.

2 The function φ (r, p, n) for p < r

In this section we shall prove the following theorem.

Theorem 1 For every r ≥ 2, 0 < p < r, and sufficiently large n,

φ (r, p, n) = f (p, Tr (n)) .

Proof Erdős [2] proved that, for every Kr+1-free graph G, there exists an r-partite graph
H with V (H) = V (G) such that dG (u) ≤ dH (u) for every u ∈ V (G). As Caro and Yuster
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noticed, this implies that, for Kr+1-free graphs G of order n, if f (p,G) attains a maximum
then G is a complete r-partite graph. Every complete r-partite graph is defined uniquely
by the size of its vertex classes, that is, by a vector (ni)

r
1 of positive integers satisfying

n1 + ... + nr = n; note that the Turán graph Tr (n) is uniquely characterized by the
condition |ni − nj | ≤ 1 for every i, j ∈ [r] . Thus we have

φ (r, p, n) = max

{
r∑

i=1

ni (n− ni)
p : n1 + ...+ nr = n, 1 ≤ n1 ≤ ... ≤ nr

}
. (3)

Let (ni)
r
1 be a vector on which the value of φ (r, p, n) is attained. Routine calculations

show that the function x (n− x)p increases for 0 ≤ x ≤ n
p+1

, decreases for n
p+1

≤ x ≤ n,

and is concave for 0 ≤ x ≤ 2n
p+1

. If nr ≤
⌊

2n
p+1

⌋
, the concavity of x (n− x)p implies that

nr−n1 ≤ 1, and the proof is completed, so we shall assume nr >
⌊

2n
p+1

⌋
. Hence we deduce

n1 (r − 1) +

⌊
2n

p+ 1

⌋
< n1 + ... + nr = n. (4)

We shall also assume

n1 ≥
⌊

n

p + 1

⌋
, (5)

since otherwise, adding 1 to nr and subtracting 1 from n1, the value
∑r

i=1 ni (n− ni)
p

will increase, contradicting the choice of (ni)
r
1. Notice that, as n1 ≤ n/r, inequality (5) is

enough to prove the assertion for p ≤ r−1 and every n. From (4) and (5), we obtain that

(r − 1)

⌊
n

p+ 1

⌋
+

⌊
2n

p+ 1

⌋
< n.

Letting n → ∞, we see that p ≥ r, contradicting the assumption and completing the
proof. 2

Maximizing independently each summand in (3), we see that, for every r ≥ 2 and
p > 0,

φ (r, p, n) ≤ r

p+ 1

(
p

p+ 1

)p

np+1. (6)

3 The asymptotics of φ (r, p, n)

In this section we find the asymptotic structure of Kr+1-free graphs G of order n satisfying
f (p,G) = φ (r, p, n) , and deduce asymptotic bounds on φ (r, p, n) .

Theorem 2 For all r ≥ 2 and p > 0, there exists c = c (p, r) such that the following
assertion holds.

If f (p,G) = φ (r, p, n) for some Kr+1-free graph G of order n, then G is a complete
r-partite graph having r − 1 vertex classes of size cn + o (n) .
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Proof We already know that G is a complete r-partite graph; let n1 ≤ ... ≤ nr be the
sizes of its vertex classes and, for every i ∈ [r] , set yi = ni/n. It is easy to see that

φ (r, p, n) = ψ (r, p)np+1 + o
(
np+1

)
,

where the function ψ (r, p) is defined as

ψ (r, p) = max

{
r∑

i=1

xi (1 − xi)
p : x1 + ... + xr = 1, 0 ≤ x1 ≤ ... ≤ xr

}

We shall show that if the above maximum is attained at (xi)
r
1 , then x1 = ... =

xr−1. Indeed, the function x (1 − x)p is concave for 0 ≤ x ≤ 2/ (p+ 1) , and convex for
2/ (p+ 1) ≤ x ≤ 1. Hence, there is at most one xi in the interval (2/ (p+ 1) ≤ x ≤ 1],
which can only be xr. Thus x1, ..., xr−1 are all in the interval [0, 2/ (p+ 1)] , and so, by
the concavity of x (1 − x)p, they are equal. We conclude that, if

0 ≤ x1 ≤ ... ≤ xr, x1 + ... + xr = 1,

and xj > xi for some 1 ≤ i < j ≤ r − 1, then
∑r

i=1 xi (1 − xi)
p is below its maximum

value. Applying this conclusion to the numbers (yi)
r
1 , we deduce the assertion of the

theorem. 2

Set
g (r, p, x) = (r − 1) x (1 − x)p + (1 − (r − 1) x) (rx)p .

From the previous theorem it follows that

ψ (r, p) = max
0≤x≤1/(r−1)

g (r, p, x) .

Finding ψ (r, p) is not easy when p > r. In fact, for some p > r, there exist 0 < x < y < 1
such that

ψ (r, p) = g (r, p, x) = g (r, p, y) .

In view of the original claim concerning (1), it is somewhat surprising, that for p >
2r − 1, the point x = 1/r, corresponding to the Turán graph, not only fails to be a
maximum of g (r, p, x), but, in fact, is a local minimum.

Observe that
f (p, Tr (n))

np+1
=

(
r − 1

r

)p

+ o (1) ,

so, to find for which p the function φ (r, p, n) is significantly greater than f (p, Tr (n)), we
shall compare ψ (r, p) to

(
r−1

r

)p
.

Theorem 3 Let r ≥ 2, p ≥ r +
⌈√

2r
⌉
. Then

ψ (r, p) > (1 + ε)

(
r − 1

r

)p

for some ε = ε (r) > 0.
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Proof We have

ψ (r, p) ≥ g

(
r, p,

1

p

)
=
r − 1

p

(
p− 1

p

)p

+

(
1 − r − 1

p

) (
r − 1

p

)p

>
r − 1

p

(
p− 1

p

)p

.

To prove the theorem, it suffices to show that

r − 1

p

(
(p− 1) r

p (r − 1)

)p

> 1 + ε (7)

for some ε = ε (r) > 0. Routine calculations show that

r − 1

p

(
1 +

p− r

p (r − 1)

)p

increases with p. Thus, setting q =
⌈√

2r
⌉
, we find that

r − 1

p

(
1 +

p− r

p (r − 1)

)p

≥ r − 1

r + q

(
1 +

(
r + q

1

)
q

(r + q) (r − 1)
+

(
r + q

2

)
q2

(r + q)2 (r − 1)2

)

=
r − 1

r + q
+

q

r + q
+

q2 (r + q − 1)

2 (r + q)2 (r − 1)
≥ 1 − 1

r + q
+

r (r + q − 1)

(r + q)2 (r − 1)

= 1 +
r (r + q − 1) − (r + q) (r − 1)

(r + q)2 (r − 1)
= 1 +

q

(r + q)2 (r − 1)
.

Hence, (7) holds with

ε =

⌈√
2r

⌉
(
r +

⌈√
2r

⌉)2
(r − 1)

,

completing the proof. 2

We have, for n sufficiently large,

φ (r, p, n)

np+1
= ψ (r, p) + o (1) ≥ g

(
r, p,

1

p+ 1

)
+ o (1)

=
r − 1

p+ 1

(
p

p+ 1

)p

+

(
1 − r − 1

p+ 1

) (
r − 1

p+ 1

)p

+ o (1)

>
r − 1

p+ 1

(
p

p+ 1

)p

.

Hence, in view of (6), we find that, for n large,

r

pe
≥ r

p

(
p

p+ 1

)p+1

≥ φ (r, p, n)

np+1
≥ r − 1

p+ 1

(
p

p+ 1

)p

≥ (r − 1)

(p+ 1) e
.
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In particular, we deduce that, for any fixed r ≥ 2,

lim
n→∞

φ (r, p, n)

f (p, Tr (n))

grows exponentially in p.

4 Triangle-free graphs

For triangle-free graphs, i.e., r = 2, we are able to pinpoint the value of p for which (1)
fails, as stated in the following theorem.

Theorem 4 If 0 < p ≤ 3 then

φ (3, p, n) = f (p, T2 (n)) . (8)

For every ε > 0, there exists δ such that if p > 3 + δ then

φ (3, p, n) > (1 + ε) f (p, T2 (n)) (9)

for n sufficiently large.

Proof We start by proving (8). From the proof of Theorem 1 we know that

φ (p, n, 3) = max
k∈dn/2e

{k (n− k)p + (n− k) kp} .

Our goal is to prove that the above maximum is attained at k = dn/2e .
If 0 < p ≤ 2, the function x (1 − x)p is concave, and (8) follows immediately.
Next, assume that 2 < p ≤ 3; we claim that the function

g (x) = (1 + x) (1 − x)p + (1 − x) (1 + x)p

is concave for |x| ≤ 1. Indeed, we have

g (x) =
(
1 − x2

) (
(1 − x)p−1 + (1 + x)p−1) = 2

(
1 − x2

) ∞∑
i=0

(
p− 1

2i

)
x2i

= 2 + 2
∞∑
i=1

((
p− 1

2i

)
−

(
p− 1

2i− 2

))
x2i

= 2 + 2

∞∑
i=1

(
p− 1

2i− 2

) (
(p− 2i− 1) (p− 2i− 2)

(2i− 1) 2i
− 1

)
x2i.

Since, for every i, the coefficient of x2i is nonpositive, the function g (x) is concave, as
claimed.
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Therefore, the function h (x) = x (n− x)p + (n− x) xp is concave for 1 ≤ x ≤ n.
Hence, for every integer k ∈ [n] , we have

h
(⌈n

2

⌉)
+ h

(⌊n
2

⌋)
≥ h (k) + h (n− k) = 2h (k)

= 2 (k (n− k)p + (n− k) kp) ,

proving (8).
Inequality (9) follows easily, since, in fact, for every p > 3, the function g (x) has a

local minimum at 0. 2

5 H-free graphs

In this section we are going to prove the following theorem.

Theorem 5 For every r ≥ 2, and p > 0,

φ (H, p, n) = φ (r, p, n) + o
(
np+1

)
.

A few words about this theorem seem in place. As already noted, Pikhurko [5] proved
the assertion for p ≥ 1; although he incorrectly assumed that (1) holds for all p and
sufficiently large n, his proof is valid, since it is independent of the exact value of φ (r, p, n) .
Our proof is close to Pikhurko’s, and is given only for the sake of completeness.

We shall need the following theorem (for a proof see, e.g., [1], Theorem 33, p. 132).

Theorem 6 Suppose H is an (r + 1)-chromatic graph. Every H-free graph G of suffi-
ciently large order n can be made Kr+1-free by removing o (n2) edges.

Proof of Theorem 5 Select a Kr+1-free graph G of order n such that f (p,G) =
φ (r, p, n) . Since G is r-partite, it is H-free, so we have φ (H, p, n) ≥ φ (r, p, n) . Let
now G be an H-free graph of order n such that

f (p,G) = φ (H, p, n) .

Theorem 6 implies that there exists a Kr+1-free graph F that may be obtained from
G by removing at most o (n2) edges. Obviously, we have

e (G) = e (F ) + o
(
n2

) ≤ r − 1

2r
n2 + o

(
n2

)
.

For 0 < p ≤ 1, by Jensen’s inequality, we have

(
1

n
f (p,G)

)1/p

≤ 1

n
f (1, G) =

1

n
2e (G) ≤ r − 1

r
n + o (n) .
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Hence, we find that

f (p,G) ≤
(
r − 1

r

)p

np+1 + o
(
np+1

)
= φ (r, p, n) + o

(
np+1

)
,

completing the proof.
Next, assume that p > 1. Since the function xnp−1 − xp is decreasing for 0 ≤ x ≤ n,

we find that
dp

G (u) − dp
F (u) ≤ (dG (u) − dF (u))np−1

for every u ∈ V (G) . Summing this inequality for all u ∈ V (G), we obtain

f (p,G) ≤ f (p, F ) + (dG (u) − dF (u))np−1 = f (p, F ) + o
(
np+1

)
≤ φ (r, p, n) + o

(
np+1

)
,

completing the proof. 2

6 Concluding remarks

It seems interesting to find, for each r ≥ 3, the minimum p for which the equality (1) is
essentially false for n large. Computer calculations show that this value is roughly 4.9 for
r = 3, and 6.2 for r = 4, suggesting that the answer might not be easy.
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