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Abstract
For every real p > 0 and simple graph G, set
Fp.G) = Y @),
ueV(G)

and let ¢ (r,p,n) be the maximum of f (p,G) taken over all K,i-free graphs G of
order n. We prove that, if 0 < p < r, then

¢(T7p7n) =f (vaT (n)) )

where T, (n) is the r-partite Turan graph of order n. For every p > r + [\/ 21“] and
n large, we show that

¢ (pyn,r) > (1 +¢) f(p,Tr(n))

for some € = ¢ (r) > 0.
Our results settle two conjectures of Caro and Yuster.

1 Introduction

Our notation and terminology are standard (see, e.g. [1]).
Caro and Yuster [3] introduced and investigated the function

G = Y @),

ueV(G)

where p > 1 is integer and G is a graph. Writing ¢ (r, p,n) for the maximum value of
f (p, G) taken over all K, q-free graphs G of order n, Caro and Yuster stated that, for

every p > 1,

¢ (r,p,n) = f(p, T, (n)), (1)
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where T, (n) is the r-partite Turdn graph of order n. Although true for p = 2, r > 2,
simple examples show that (1) fails for every fixed » > 2 and all sufficiently large p and n;
this was observed by Schelp [4]. A natural problem arises: given r > 2, determine those
real values p > 0, for which equality (1) holds. Furthermore, determine the asymptotic
value of ¢ (r,p,n) for large n.

In this note we essentially answer these questions. In Section 2 we prove that (1)
holds whenever 0 < p < r and n is large. Next, in Section 3, we describe the asymptotic
structure of K,,i-free graphs G of order n such that f (p,G) = ¢ (r,p,n). We deduce
that, if p > r + (\/ﬂ} and n is large, then

¢ (r,p,n) > (1+¢) f (p, T, (n))
for some € = ¢ (r) > 0. This disproves Conjecture 6.2 in [3]. In particular,

¢(7“,p,n)> r—1

>
- qpptl (p+1)e

r
pe
holds for large n, and therefore, for any fixed r > 2,

A GV 0,
n—oo f (p, T, (n))

grows exponentially in p.

The case r = 2 is considered in detail in Section 4; we show that, if r = 2, equality
(1) holds for 0 < p < 3, and is false for every p > 3 and n large.

In Section 5 we extend the above setup. For a fixed (r 4+ 1)-chromatic graph H,
(r >2), let ¢ (H,p,n) be the maximum value of f (p, G) taken over all H-free graphs G
of order n. It turns out that, for every r and p,

¢ (H,p,n) = ¢ (r,p,n) +o (n""). (2)
This result completely settles, with the proper changes, Conjecture 6.1 of [3]. In fact,
Pikhurko [5] proved this for p > 1, although he incorrectly assumed that (1) holds for all
sufficiently large n.
2 The function ¢ (r,p,n) for p <r
In this section we shall prove the following theorem.
Theorem 1 For everyr > 2, 0 < p < r, and sufficiently large n,

¢ (r,p,n) = f(p. T, (n)).

Proof Erdds [2] proved that, for every K, i-free graph G, there exists an r-partite graph
H with V (H) = V (G) such that dg (u) < dy (u) for every u € V (G). As Caro and Yuster
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noticed, this implies that, for K, -free graphs G of order n, if f (p, G) attains a maximum
then G is a complete r-partite graph. Every complete r-partite graph is defined uniquely
by the size of its vertex classes, that is, by a vector (n;); of positive integers satisfying
niy + ... + n, = n; note that the Turdan graph T, (n) is uniquely characterized by the
condition |n; — n;| <1 for every 4,5 € [r]. Thus we have

gb(r,p,n):max{Zni(n—ni)p s ng .+ n =n, 1§n1§...§nr}. (3)
i=1

Let (n;)] be a vector on which the value of ¢ (r, p, n) is attained. Routine calculations

show that the function x (n — x)? increases for 0 < x < z%’ decreases for # <z <n,

2n J, the concavity of z (n — z)” implies that

: 2n
and is concave for 0 < z < e If n, < Lﬁ

2n

n, —ny1 < 1, and the proof is completed, so we shall assume n, > LMJ . Hence we deduce

2
nl(r—l)—l—L?nlJ< n+..+n, =n. (4)

We shall also assume

ny > {LJ : (5)

p+1

since otherwise, adding 1 to n, and subtracting 1 from ny, the value ., n; (n —n;)"
will increase, contradicting the choice of (n;)]. Notice that, as n; < n/r, inequality (5) is
enough to prove the assertion for p < r—1 and every n. From (4) and (5), we obtain that

ol

Letting n — oo, we see that p > r, contradicting the assumption and completing the
proof. O

Maximizing independently each summand in (3), we see that, for every r > 2 and
p >0,
p
¢(7’,p, TL) < L (L) anrl' (6)

T p+1\p+1

3 The asymptotics of ¢ (r,p,n)

In this section we find the asymptotic structure of K, -free graphs G of order n satisfying
f(p,G)=¢(r,p,n), and deduce asymptotic bounds on ¢ (r,p,n).

Theorem 2 For all v > 2 and p > 0, there exists ¢ = c¢(p,r) such that the following
assertion holds.

If f(p,G) = ¢ (r,p,n) for some K, 1-free graph G of order n, then G is a complete
r-partite graph having r — 1 vertex classes of size cn + o (n).
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Proof We already know that G is a complete r-partite graph; let ny < ... < n, be the
sizes of its vertex classes and, for every i € [r], set y; = n;/n. It is easy to see that

¢ (r,p,n) = (r,p)n”™ + o (nPT),

where the function v (r, p) is defined as

Qﬁ(r,p):max{in(l—xi)p ot =1, 0< 2, < .. er}

=1

We shall show that if the above maximum is attained at (z;)], then z; = ... =
z,_1. Indeed, the function z (1 — z)” is concave for 0 < x < 2/ (p+ 1), and convex for
2/(p+1) <z < 1. Hence, there is at most one x; in the interval (2/ (p+1) < z < 1],
which can only be z,. Thus zy,...,z,_; are all in the interval [0,2/ (p + 1)], and so, by
the concavity of z (1 — x)?, they are equal. We conclude that, if

0<n <. <z, ;1 +...+2,. =1,

and z; > x; for some 1 < ¢ < j <r—1, then > x; (1 — ;)" is below its maximum
value. Applying this conclusion to the numbers (y;)], we deduce the assertion of the
theorem. O

Set
g(rpzr)=Fr—-1x(l-2)’+01—-(—1)x)(rz)’.

From the previous theorem it follows that

W (r,p) = oo a9 (r,p.x).

Finding v (r, p) is not easy when p > r. In fact, for some p > r, there exist 0 <z <y < 1
such that
U (r,p)=g(rpa)=g(rpy).
In view of the original claim concerning (1), it is somewhat surprising, that for p >

2r — 1, the point © = 1/r, corresponding to the Turdn graph, not only fails to be a
maximum of ¢ (r, p, z), but, in fact, is a local minimum.

Observe that »
f(p’TT(n)):(T_l) +0(1),

nptl r

so, to find for which p the function ¢ (r, p, n) is significantly greater than f (p, T, (n)), we
shall compare v (r, p) to (T—_l)p.

r

Theorem 3 Letr > 2, p>r+ (@w . Then

s> ke ()]

r

for some e =€ (r) > 0.
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Proof We have
1 r—1(p—1\" r—1 r—1\"
¢(7“a]9)29(7°7pa—) = (—) +(1_ ) ( )
p p p p p
-1 —1\"
()
p p
To prove the theorem, it suffices to show that

ST .

p \p(r—1)

for some € = € (r) > 0. Routine calculations show that
-1 — p
S i)
p p(r—1)
increases with p. Thus, setting q = [\/ 27"} , we find that
-1 — p
5 (i)
p p(r—1)

:Icl] (1+ (TTC]) (r+q)q(r—1) " (r—;q) (7"+Q>2q?(7“_1)2>

— 2 _ —
r—1 q+q(r+q 1) >1_1+r(r+q 1)

(Y

r+q r+q 20r4+¢*r—-1)" r+q  (r+q)°r—1)
rir+q—1)—(r+q) (r—1) q

D T R s YT

Hence, (7) holds with

completing the proof.

We have, for n sufficiently large,

% =1 (r,p) +o(1) Zg<7“ap,—) +o(l)

r—1 P r—1Y\ [r—1\"
~i1 (55) +0-55) ) e
p+1\p+1 p+1 p+1
-1 P
> 2 23
p+1\p+1
Hence, in view of (6), we find that, for n large,
p+1 _ P —
sz(p) Zqﬁ(r,p,n)zr 1(29)2(7° DN
pe ~p\p+1 nptl p+1\p+1 (p+1e
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In particular, we deduce that, for any fixed r > 2,

i 2P 1)
n—oo f (p, T, (n))

grows exponentially in p.

4 'Triangle-free graphs

For triangle-free graphs, i.e., r = 2, we are able to pinpoint the value of p for which (1)
fails, as stated in the following theorem.

Theorem 4 If0 < p < 3 then
¢(3,p,n) = f(p,T2(n)). (8)
For every € > 0, there exists 6 such that if p > 3+ 6 then
¢ (3,p,n) > (1+¢) f(p, T2 (n)) (9)
for n sufficiently large.

Proof We start by proving (8). From the proof of Theorem 1 we know that

¢ (p,n,3) = nax {k(n—k)"+(n—k)k}.

Our goal is to prove that the above maximum is attained at k = [n/2].
If 0 < p <2, the function z (1 — x)? is concave, and (8) follows immediately.
Next, assume that 2 < p < 3; we claim that the function

g@)=Q0+z)(1-2)"+(1—-2)(1+z)

is concave for |z| < 1. Indeed, we have

gla)=(1-2") (1-a) "+ (142 ") =2(1-2") ) (p;i l)x%

:2+2§ ((pz—il) B (;—_12))1,2
o () ()

Since, for every 4, the coefficient of 2% is nonpositive, the function g (x) is concave, as
claimed.
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Therefore, the function h(z) = x(n — )’ + (n — z) 2 is concave for 1 < z < n.
Hence, for every integer k € [n], we have

h(m) hqu > h (k) +h(n— k) = 2h (k)
= 2(k(n— k) + (n— k) k),

proving (8).
Inequality (9) follows easily, since, in fact, for every p > 3, the function g (z) has a
local minimum at 0. O

5 H-free graphs
In this section we are going to prove the following theorem.

Theorem 5 For everyr > 2, and p > 0,
¢ (H,p,n) = ¢ (r,p,n) + o (n"*").

A few words about this theorem seem in place. As already noted, Pikhurko [5] proved
the assertion for p > 1; although he incorrectly assumed that (1) holds for all p and
sufficiently large n, his proof is valid, since it is independent of the exact value of ¢ (r, p,n) .
Our proof is close to Pikhurko’s, and is given only for the sake of completeness.

We shall need the following theorem (for a proof see, e.g., [1], Theorem 33, p. 132).

Theorem 6 Suppose H is an (r + 1)-chromatic graph. Every H-free graph G of suffi-
ciently large order n can be made K, 1-free by removing o (n?) edges.

Proof of Theorem 5 Select a K, i-free graph G of order n such that f(p,G) =
¢ (r,p,n). Since G is r-partite, it is H-free, so we have ¢ (H,p,n) > ¢ (r,p,n). Let
now GG be an H-free graph of order n such that

f(p,G)=¢(H,p,n).

Theorem 6 implies that there exists a K,,1-free graph F' that may be obtained from
G by removing at most o (n?) edges. Obviously, we have

e(G):e(F)—i-o(nQ)gr n®+o(n%).

r

For 0 < p <1, by Jensen’s inequality, we have

1/p r—
<%f(p,G)) g%f(l,G):%Qe(G)S 1n+0(n).

r

THE ELECTRONIC JOURNAL OF COMBINATORICS 11 (2004), #R42 7



Hence, we find that

r—1

fp,G) < (—

p
. ) "t 4o (nPt) = ¢ (r,p,n) + o (R,

completing the proof.
Next, assume that p > 1. Since the function zn?~! — 2? is decreasing for 0 < z < n,
we find that

dg; (u) — di; (u) < (dg (u) — dp (w)) n"™!
for every u € V (G). Summing this inequality for all u € V' (G), we obtain

F(p.G) < f(p, F) + (dg (u) — dp (w) "~ = f (p, F) + 0 (n"*)
< ¢(r,p,n) +o ("),

completing the proof. O

6 Concluding remarks

It seems interesting to find, for each r > 3, the minimum p for which the equality (1) is
essentially false for n large. Computer calculations show that this value is roughly 4.9 for
r =3, and 6.2 for r = 4, suggesting that the answer might not be easy.
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