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Abstract

A graph G is well-covered if every maximal independent set has the same cardi-
nality. Let sk denote the number of independent sets of cardinality k, and define the
independence polynomial of G to be S(G, z) =

∑
skz

k. This paper develops a new
graph theoretic operation called power magnification that preserves well-coveredness
and has the effect of multiplying an independence polynomial by zc where c is a
positive integer. We will apply power magnification to the recent Roller-Coaster
Conjecture of Michael and Traves, proving in our main theorem that for sufficiently
large independence number α, it is possible to find well-covered graphs with the last
(.17)α terms of the independence sequence in any given linear order. Also, we will
give a simple proof of a result due to Alavi, Malde, Schwenk, and Erdős on pos-
sible linear orderings of the independence sequence of not-necessarily well-covered
graphs, and we will prove the Roller-Coaster Conjecture in full for independence
number α ≤ 11. Finally, we will develop two new graph operations that preserve
well-coveredness and have interesting effects on the independence polynomial.

1 Introduction

Let G = (V, E) be a graph without loops or multiple edges. A set of vertices W ⊂ V is
called independent if no two vertices in W are adjacent. The independence number of G is
the cardinality of the largest independent set, denoted α(G) or just α. The independence
sequence of G is the list s0, s1, s2, . . . , sα where si is the number of independent sets of
cardinality i, and the independence polynomial S(G, z) is the generating function of the
independence sequence, thus

S(G, z) =

α∑
i=0

siz
i.
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Note that the degree of S(G, z) is α(G). Also, by convention, we set s0 = 1.

Definition 1.1 (any-ordered). For a collection of graphs with the same independence
number, we say that the independence sequence for the collection of graphs is any-ordered
on the index set {i1, . . . , i`} if for any permutation π of the set {i1, . . . , i`}, there exists a
graph in the collection with independence sequence s0, s1, . . . , sα such that

sπ(i1) < sπ(i2) < · · · < sπ(i`).

The basic question that has motivated the work of this paper and others ([1, 6]) is:
when is part of the independence sequence for a collection of graphs any-ordered?

In 1987 Alavi, Malde, Schwenk, and Erdős [1] showed that the independence sequence
for all graphs with independence number α is any-ordered on the index set {1, 2, . . . , α}
(this is the largest index set possible, since s0 = 1 ≤ si for all i ≤ α). Theorem 2.2
provides a simple and short proof of this result using the power magnification operation.

Definition 1.2 (well-covered). A graph G is well-covered if every maximal independent
set has the same cardinality α(G). Equivalently, G is well-covered if every maximal
independent set is also a maximum independent set.

Some simple examples of well-covered graphs include complete graphs, the disjoint
union of complete graphs, and cycles on 1, 2, 3, 4, 5, or 7 vertices (all other cycles are not
well-covered).

It was conjectured in [2] that well-covered graphs have unimodal independence se-
quences. However, in [6], Michael and Traves produced counter-examples to the uni-
modality conjecture, and they posed the following new conjecture:

Conjecture 1.3 (The Roller-Coaster Conjecture). (i) For any well-covered graph
with independence number α, the terms of the independence sequence strictly increase
from s0 to sdα/2e, and
(ii) the independence sequence for well-covered graphs with independence number α is
any-ordered on {dα/2e , . . . , α}.

Michael and Traves [6] proved the first part of Conjecture 1.3 in general and the second
part for α ≤ 7; however the rest remains open. Also one should note that while the
unimodality conjecture is false in general, there do exist subclasses of well-covered graphs
where the unimodality conjecture holds true, for example on certain kinds of trees—see
[5] for details.

In Corollary 3.2, we will prove that for a given `, there exists sufficiently large α
such that for well-covered graphs with independence number α, the last ` terms of the
independence sequence are any-ordered. Our main result is Theorem 3.1, in which we
prove that as α gets large for well-covered graphs, at least the last (.1705)α terms in the
independence sequence are any-ordered.

In Section 2 we will define the power magnification operation and show that it preserves
well-coveredness (see Section 2.2), and we will then use power magnification to give a short
and simple proof of Theorem 2.2, originally due to Alavi, Malde, Schwenk, and Erdős [1].
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In Section 3 we state our main theorem (Theorem 3.1) and prove some general results
relating to the Roller-Coaster Conjecture, including Proposition 3.6 which is a proof of
the Roller-Coaster Conjecture for independence number α ≤ 11. Section 4 is dedicated to
proving the main theorem (Theorem 3.1). Note that in Sections 2, 3, and 4 we make use
of “formal” graphs; however, in Section 2.2 it is shown for any “formal” graph exhibiting
a certain linear ordering of its independence sequence, there exists a bona fide graph with
independence sequence exhibiting the same linear ordering. In Section 5, we develop two
new well-coveredness-preserving operations, the partial join (a generalization of both the
disjoint union and the join) and subgraph miniaturization. Finally, in Section 6 we give
some possible directions for future research.

2 Power Magnification

Before defining the power magnification operation, we will discuss the disjoint union and
the join, two simple well-coveredness preserving operations.

2.1 Disjoint Union and the Join

Let G1 and G2 be well-covered graphs. Then the disjoint union G1 q G2 is also well-
covered. Furthermore, we have the following formula for the independence number of the
resulting graph:

S(G1 q G2, z) = S(G1, z)S(G2, z).

For proof, see Michael and Traves [6].
Let G1 and G2 be graphs with the same independence number α. Then the join of G1

and G2 (each vertex of G1 is joined to each vertex in G2), which we denote by G1 + G2,
is also well-covered. Furthermore,

S(G1 + G2, z) = S(G1, z) + S(G2, z) − 1.

For proof, see Michael and Traves [6].

2.1.1 Scaling independence polynomials by positive rational numbers

For the purpose of determining possible linear orderings of the coefficients of a polynomial,
it is only the relative sizes, not the absolute sizes, of the coefficients that matter. Thus,
we will sometimes multiply an independence polynomial by a rational constant. The
resulting scaled graph that has such an independence polynomial is denoted and defined
as follows: p

q
G is to be interpreted as the join of p copies of G scaled down by a factor of

q; hence, S
(

p
q
G, z

)
= p

q
S(G, z). Note that at the end of this construction, we can always

clear off denominators to get a bona fide graph and a bona fide independence polynomial,
all while maintaining the linear ordering of the coefficients.
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2.2 Definition of power magnification

Let G be a well-covered graph with independence number α. Let

Hc =

n∐
i=1

Kc

be the disjoint union of n copies of Kc for some large c. Also, define the graph G power
magnified by n to be HcqG. Finally, we say that a sequence of polynomials converges to a
polynomial f if the coefficients of the sequence converge to the corresponding coefficients
of f .

Proposition 2.1. Let Gc denote the graph G power magnified by n. Then Gc is well-
covered and we have

lim
c→∞

S(Gc, z)

cn
= znS(G, z). (1)

Proof. Since both G and Hc are well-covered and disjoint unions of well-covered graphs
are well-covered, Gc is well-covered with independence number α + n.

From Section 2.1, we know that

S(Hc q G, z) = S(Hc, z)S(G, z) =

(
n∑

i=0

(
n

i

)
(cz)i

)
S(G, z).

Thus, Equation (1) is simply a consequence of the fact that 1
cn

∑n
i=0

(
n
i

)
(cz)i → zn as

c → ∞.

We will use znG to denote the limit graph of G power magnified by n, which is defined
to be the “formal” graph with independence polynomial znS(G, z) = limc→∞ S(Gc, z). It
is, of course, possible that there exists no bona fide graph with exactly this independence
polynomial; however, we can find graphs that approximate the independence polynomial
as accurately as we like. In particular, if the independence polynomial of the “formal”
graph znG is s0 + s1z + · · ·+ sα+nz

α+n, then for each ε > 0 there exists sufficiently large c
such that the bona fide graph Gc has independence polynomial b0 + b1z + · · ·+ bα+nzα+n

and ∣∣∣∣ bi

cn
− si

∣∣∣∣ < ε

for all i. Thus, if the coefficients of znG exhibit a particular linear ordering, say

sπ(0) < sπ(1) < · · · < sπ(α+n)

for some permutation π, then there exists sufficiently large c such that Gc exhibits the
same linear ordering (note that scaling by 1

cn does not change the linear ordering of the
coefficients). In this way, znG can be viewed simply as a computational place-holder for
the scaled graph 1

cn Gc with c chosen sufficiently large.
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2.3 An application of power magnification: independence se-
quences of not-necessarily well-covered graphs

The following theorem was proven by Alavi, Malde, Schwenk, and Erdős in [1]. We give a
proof that constructs the same graph as that used in [1]; however, viewing the construction
from the standpoint of power magnification results in a much shorter and cleaner proof.

Theorem 2.2 (Alavi, Malde, Schwenk, and Erdős). The independence sequence
for (not necessarily well-covered) graphs of independence number α is any-ordered on the
index set {1, . . . , α}.
Proof. Note that we may add independence polynomials of different degrees, correspond-
ing to joining graphs of different independence number (this results in a non-well-covered
graph).

Applying power magnification to E0, the empty graph with no vertices or edges, yields
a useful independence polynomial: S(E0, z) = 1, and so S(znE0, z) = zn.

Given π a permutation of {1, 2, 3, . . . , α}, we may add polynomials S(znE0, z) (via the
join operation) to get

P (z) = 1 + 1S(zπ(1)E0, z) + 2S(zπ(2)E0, z) + · · ·+ αS(zπ(α)E0, z)

= 1 + 1zπ(1) + 2zπ(2) + · · · + αzπ(α).

Note that the graph with independence polynomial P (z) (or a graph approximating P (z)
closely) has the property that sπ(i) = i for all i = 1, . . . , α, which clearly gives sπ(1) <
sπ(2) < · · · < sπ(α).

3 The Roller-Coaster Conjecture

Our main theorem is a first step towards proving an asymptotic version of the Roller-
Coaster Conjecture.

Theorem 3.1 (Main Theorem). Define kα to be the largest integer such that the last
kα terms of the independence sequence for well-covered graphs with independence number
α are any-ordered. Then for all sufficiently large α, we have

(.1705)α ≤ kα ≤ 1

2
α.

Theorem 3.1 of course gives us the following result:

Corollary 3.2. For any given `, there exists α large enough such that the last ` terms
of the independence sequence are any-ordered for well-covered graphs with independence
number α.
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We will prove Theorem 3.1 in Section 4 by a construction that does slightly better than
the given lower bound. The basic idea of the proof is to use power magnification along
with the join and disjoint union to construct a graph that has the last (.1705)α terms
very close to being equal. It is then possible to show that, by altering the proportions
in which components of the graph are joined together, that the almost-equal terms in
the independence sequence are in fact any-ordered. This is the same idea as used in [6]
to prove the Roller-Coaster Conjecture for α ≤ 7: in fact, for small α it is possible to
construct graphs in which sdα/2e = · · · = sα.

The construction in Section 4 was tested by computer up to independence number
α = 500, and it was found that roughly the last .2α terms in the sequence were any-
ordered. Thus, the lower bound given in the Theorem 3.1 seems to be close to tight for
the construction given in Section 4. Of course, it is possible that there exists another
construction with a better lower bound.

The Roller-Coaster Conjecture implies that there exist graphs in which sdα/2e = · · · =
sα, and a natural open question is whether the converse is also true. That is, does the
existence of a flat roller-coaster polynomial imply the second part of the Roller-Coaster
Conjecture? We give a partial answer in the proposition below.

Theorem 3.3. Let G be a well-covered graph with independence polynomial S(G, z) =
p0 + p1z + · · · + pαzα and let pi = pj for all i, j ∈ J , where J is some index set. For
a polynomial f , let f

∣∣
J

be the polynomial consisting of all terms in f with degree in J ,

so for example, S(G, z)
∣∣
J

=
∑

i∈J piz
i. If G is the join of a well-covered graph H to

|J | well-covered graphs {Gi} where the polynomials {S(Gi, z)
∣∣
J
} are linearly independent,

then the independence sequence for well-covered graphs with independence number α is
any-ordered on J .

Proof. Consider the |J | linearly-independent vectors formed by listing the coefficients of
the polynomials {S(Gi, z)

∣∣
J
}. Let M be the |J | × |J |-matrix having these vectors as

columns. Linear independence implies that M−1 exists, and we also know that M−1 is
continuous.

Let x = (x1, . . . , x|J |)t, where xi is the (positive) number of copies of Gi that were
joined to make G. Thus, M(x) lists the terms of the independence sequence of G \ H
with indices in J (note G \ H is subgraph of G composed of joins of the graphs {Gi}).
Letting h be the vector defined by S(H, z)

∣∣
J
, we have that M(x) + h lists of the terms

of the independence sequence of G with indices in J and thus is constant. Since xi > 0
for all i and M−1 is continuous, we know that there exists δ > 0 such that for every
vector y satisfying |y − M(x)| < δ, we have that every coordinate of M−1(y) is positive.
Hence M−1(y) lists the (positive) number of copies of each Gi we would need to join to
H in order to get a graph with the property that y + h lists the terms of the graph’s
independence sequence with indices in J . Note that we can make M−1(y) rational by
choosing y to be rational, and by Section 2.1.1 we can easily deal with fractional copies.
Since M(x) + h is constant, we can choose a vector y so that |y − M(x)| < δ and y + h
has any desired linear ordering, and hence we are done.
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We next prove some results that might be useful in trying to develop an inductive
proof of the Roller-Coaster Conjecture.

Theorem 3.4. If the last n terms of the independence sequence for well-covered graphs
are any-ordered for a given αo, then the last n terms of the independence sequence are
any-ordered for all α > αo.

Proof. Say G is a graph that exhibits a given permutation π of the last n indices in its
independence sequence. Then zG (the limit graph of G power magnified by 1) exhibits
the permutation π on its last n indices as well. By induction, this completes the proof.

Corollary 3.5. If the Roller-Coaster Conjecture is true for a given even α, then the
Roller-Coaster Conjecture is also true for α + 1.

Proof. Apply Theorem 3.4 and use the fact that
⌈

α+1
2

⌉
=
⌈

α
2

⌉
+ 1.

Proposition 3.6. The Roller-Coaster Conjecture (Conjecture 1.3) is true for α ≤ 11.

Proof. For α = 1, . . . , 7, see Michael and Traves [6].
Following the method of Michael and Traves, we will construct flat roller-coaster poly-

nomials meeting the conditions of Theorem 3.3 to prove the remaining cases. Notice that
by Corollary 3.5, it is sufficient to construct flat roller-coaster polynomials for α = 8 and
α = 10. We add (using joins) and multiply (using disjoint unions) polynomials of the
form S(znE0, z) = zn and of the form S(

∐α−n
1 K1, z) = (1 + z)α−n to get

3(1 + z)8 + 14z4(1 + z)4 + 56z6(1 + z)2 + 32z7(1 + z) + 119z8

= 3 + 24z + 84z2 + 168z3 + 224z4 + 224z5 + 224z6 + 224z7 + 224z8

and

14(1 + z)10 + 9z(1 + z)9 + 42z5(1 + z)5 + 420z6(1 + z)4+
+168z7(1 + z)3 + 306z8(1 + z)2 + 1477z9(1 + z) + 2268z10

= 14 + 149z + 711z2 + 2004z3 + 3696z4 + 4704z5+
+4704z6 + 4704z7 + 4704z8 + 4704z9 + 4704z10,

which completes the proof. Note that similar constructions with the polynomials zn(1 +
z)α−n can be used to prove the Roller-Coaster Conjecture for α = 2, 4, and 6.

One might hope to find a result similar to Corollary 3.5, showing, for example, that
the Roller-Coaster Conjecture being true for a given odd α implies that it is true for the
next even number. Of course, this would imply that the conjecture were is true for all α,
but unfortunately, such a result appears to be quite elusive.

4 Proof of the main theorem (Theorem 3.1)

The general idea of the proof is to use power magnification to create independence poly-
nomials of the form zi(1+z)α−i and to add these together in such a way that the resulting
polynomial has all coefficients of degree (.1705)α or higher almost equal. We will then
show that we can alter the construction slightly so that coefficients of degree (.1705)α or
higher are exactly equal, which then proves Theorem 3.1 by way of Theorem 3.3.
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4.1 The almost flat roller-coaster polynomial construction

Define the graphs

Hα,i = zi

(
α−i∐
1

K1

)
(2)

for i = 0, 1, 2, . . . , α. Note that all the Hα,i have independence number α, which means
that well-coveredness is preserved when taking joins of the Hα,i.

We define the almost-flat roller-coaster graph to be

Fα =
1

2α
Hα,0 +

α∑
i=1

1

2α−i+1
Hα,i.

It is clear that Fα is well-covered with independence number α. The independence poly-
nomial of Fα, which we call the almost-flat roller-coaster polynomial, is

S(Fα, z) =

(
1 + z

2

)α

+

α∑
i=1

zi(1 + z)α−i

2α−i+1
. (3)

Notice that we have the following relationship:

S(Fα+1, z) = S(Fα, z)
1 + z

2
+

zα+1

2
.

Thus, we can interpret the construction of the polynomial S(Fα, z) as an iterative
process in which each step consists of averaging all adjacent coefficients (including the
constant and highest-degree coefficients with zero) and then correcting the new highest
degree coefficient to be one.

Notation: For a polynomial p(z) = p0 + p1z + · · · + pnzn, we define the vector
[p(z)] = (pn, pn−1, . . . , p1, p0). Notice that the coefficients are listed from highest to lowest
degree. In Table 4.1 we list [S(Fα, z)] for a few small values of α.

From the definition of the graphs Hα,i (Equation (2)), we get that [S(Hα,α−i+1, z)]
consists of the ith row of Pascal’s Triangle followed by α − i + 1 zeroes. For example,
[S(Hα,α−2, z)] = (1, 2, 1, 0, 0, 0, . . . , 0) and [S(Hα,α−3, z)] = (1, 3, 3, 1, 0, 0, . . . , 0). Thus,
the vectors {[S(Hα,i, z)]}α

i=0 are linearly independent.
We will use {[S(Hα,i, z)]t} as columns to define the invertible (α+1)× (α+1) matrix

M =




1 1 1 1 1 1 1 · · ·
0 1 2 3 4 5 6 · · ·
0 0 1 3 6 10 15 · · ·
0 0 0 1 4 10 20 · · ·
0 0 0 0 1 5 15 · · ·
0 0 0 0 0 1 6 · · ·
0 0 0 0 0 0 1 · · ·
...

...
...

...
...

...
...

. . .




.
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α [S(Fα, z)]
0 (1) = 1· (1)

1 (1, 1
2
) = 1

2
· (2, 1)

2 (1, 3
4
, 1

4
) = 1

4
· (4, 3, 1)

3 (1, 7
8
, 4

8
, 1

8
) = 1

8
· (8, 7, 4, 1)

4 (1, 15
16

, 11
16

, 5
16

, 1
16

) = 1
16

· (16, 15, 11, 5, 1)

5 (1, 31
32

, 26
32

, 16
32

, 6
32

, 1
32

) = 1
32

· (32, 31, 26, 16, 6, 1)

6 (1, 63
64

, 57
64

, 42
64

, 22
64

, 7
64

, 1
64

) = 1
64

· (64, 63, 57, 42, 22, 7, 1)
...

...
...

...

Table 1: Here we list the coefficients for the almost flat roller-coaster polynomial S(Fα, z)
for small α. Note that by convention, the vector [S(Fα, z)] lists the coefficients in order
from highest degree to lowest degree.

By expanding Equation (3), we see that the vector s ∈ Qα+1 such that M(s) = f =
[Fα(z)] is

s = (2−1, 2−2, 2−3, . . . , 2−α+1, 2−α, 2−α).

4.2 Approximations that prove Theorem 3.1

Proving the upper bound in Theorem 3.1 is simply the first part of the Roller-Coaster
Conjecture, which was proven in [6].

To prove the lower bound we will show that Fα, the almost-flat roller-coaster graph,
can be perturbed slightly to create a graph with an independence polynomial that is
completely flat on slightly more than the last (.1705)α coefficients. Theorem 3.3 then
proves any-orderedness.

We need a way to calculate the nth highest degree coefficient of S(Fα, z), where Fα

is the almost-flat graph from Section 4.1. Recall that in the iterative interpretation of
constructing the polynomial S(Fα, z), we successively average adjacent coefficients. Thus,
Table 2 shows the local behavior of the coefficients of [S(Fα, z)] (which lists the coefficients
in order from highest degree to lowest degree) starting from independence number αo.
Notice that the coefficients of the ki in each numerator in Table 2 form a row of Pascal’s
Triangle.

For a given α, let wn denote the nth term in the sequence [S(Fα, z)]. Assume in
Table 2 that αo = 0 and also set ki = 1 for i ≤ 1, and ki = 0 for i > 1. Then the first
pictured column in Table 2 (headed by k1) is w1, the second column (headed by k2) is w2,
and so on. One can see that in general,

wn =
1

2α

(
k−α+n +

(
α

1

)
k−α+n+1 + · · · +

(
α

α − n + 1

)
k1 +

(
α

α − n + 2

)
k2 + · · ·+ kn

)

=
1

2α

(
1 +

(
α

1

)
+ · · · +

(
α

α − n + 1

))
.
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Table 2: Below we give the local behavior of the almost flat roller-coaster algorithm on
[S(Fα, z)] for α = αo to αo + 4. The ki are the coordinates of [S(Fαo , z)].

αo . . . , k1, k2, k3, . . .

αo + 1 . . . , k0+k1

2
, k1+k2

2
, k2+k3

2
, . . .

αo + 2 . . . , k−1+2k0+k1

4
, k0+2k1+k2

4
, k1+2k2+k3

4
, . . .

αo + 3 . . . , k−2+3k−1+3k0+k1

8
, k−1+3k0+3k1+k2

8
, k0+3k1+3k2+k3

8
, . . .

αo + 4 . . . , k−3+4k−2+6k−1+4k0+k1

16
, k−2+4k−1+6k0+4k1+k2

16
, k−1+4k0+6k1+4k2+k3

16
, . . .

...
...

...
...

Note that [S(Fα, z)] = f = (w1, w2, . . . , wα+1). Let the vector yn = (z1, z2, . . . , zα+1)
be defined by

zi =

{
1 for 1 ≤ i ≤ n;

wi for n < i ≤ α + 1.

If we satisfy the inequality

‖M−1(yn) − M−1(f)‖ ≤ 1

2n
, (4)

then we know, since M−1(f) = s = (2−1, 2−2, . . . , 2−α, 2−α) and yn and f differ only on
the first n coordinates, that all the coordinates of x = M−1(yn) are positive . This
means in turn that yn is a linear combination of the vectors {[S(Hα,i, z)]} with positive
coefficients (since M(x) = yn), which gives us a construction for the completely flat
polynomial represented by yn. Thus, proving that Inequality (4) holds for sufficiently
large α completes the proof.

There is a simple way to bound ‖M−1(yn) − M−1(f)‖, namely:

‖M−1(yn) − M−1(f)‖ = ‖M−1(yn − f)‖
= ‖M−1((1 − w1, 1 − w2, . . . , 1 − wn, 0, 0, 0, . . .))‖
< max

1≤i≤n
({1 − wi})n2 max({|mij| : mij ∈ M−1, 1 ≤ i, j ≤ n})

< max
1≤i≤n

({1 − wi})n22n

< (1 − wn)n
22n.

(Note that the wi are strictly increasing as i increases from 1 to α/2.) The n2 comes from
the fact that there are n2 entries in the upper left n×n block of M−1, each of which is less
than or equal to the maximum entry. The 2n in the last inequality comes from directly
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computing the inverse of M :

M−1 =




1 −1 1 −1 1 −1 1 · · ·
0 1 −2 3 −4 5 −6 · · ·
0 0 1 −3 6 −10 15 · · ·
0 0 0 1 −4 10 −20 · · ·
0 0 0 0 1 −5 15 · · ·
0 0 0 0 0 1 −6 · · ·
0 0 0 0 0 0 1 · · ·
...

...
...

...
...

...
. . .




.

and then noting that the largest entry in the upper left n×n block of M−1 is
(

n
dn/2e

)
< 2n

(recall that the sum of the entries in the nth row of Pascal’s Triangle is 2n).
Combining the above with Inequality (4), Theorem 3.1 is proven if we show that for

sufficiently large α,

(1 − wn)n22n <
1

2n
. (5)

Stirling’s formula states (see [4], page 54) that

√
2πmm+ 1

2 exp

(
−m +

1

12m + 1

)
< m! <

√
2π mm+ 1

2 exp

(
−m +

1

12m

)
,

where exp(x) = ex.
We will use Stirling’s formula to approximate

(
α
i

)
for various i, and thereby find an

upper bound for 1 − wn.

(
α

m

)
=

α!

m!(α − m)!

<

√
2παα+ 1

2 exp
(−α + 1

12α

)
√

2πmm+ 1
2 exp

(−m + 1
12m+1

)√
2π(α − m)α−m+ 1

2 exp
(
−α + m + 1

12(α−m)+1

)

=
αα+ 1

2 exp
(

1
12α

− 1
12m+1

− 1
12(α−m)+1

)
√

2πmm+ 1
2 (α − m)α−m+ 1

2

Thus we have

1 − wn = 2−α
α∑

i=α−n+1

(
α

i

)
< 2−αn

(
α

n − 1

)
. (6)

We want to find the largest possible n, and so we set n = α − βα where 1
2

< β < 1.
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Using the above computation we have the following bound:(
α

n − 1

)
≤

(
α

n

)

<
αα+ 1

2 exp
(

1
12α

− 1
12(α−βα)+1

− 1
12βα+1

)
√

2π(α − βα)α−βα+ 1
2 (βα)βα+ 1

2

=
α− 1

2 ce(α, β)√
2πcd(α, β)

where

ce(α, β) = exp

(
1

12α
− 1

12(α − βα) + 1
− 1

12βα + 1

)
and

cd(α, β) = (1 − β)α−βα+ 1
2 (β)βα+ 1

2 .

Thus, using Inequality (6), we have

1 − wn <
2−αnα− 1

2 ce(α, β)√
2πcd(α, β)

. (7)

Lemma 4.1. For any given α, if 1
2

< β < 1, then ce(α, β) < 1.

Proof. Since ex is an increasing function, it is sufficient to show that

f(β) =
1

12α
− 1

12(α − βα) + 1
− 1

12βα + 1
< 0

whenever 1
2

< β < 1.
Taking a derivative of f(β), we can show that there are three critical points, one of

which is 1
2
, one of which is less than 1

2
and one of which is greater than 1. Since f ′(1) < 0

this shows that f(β) is decreasing for 1
2

< β ≤ 1.
Plugging in β = 1

2
thus gives us an upper bound for f(β), namely

f(β) ≤ 1

12α
− 2

6α + 1
< 0.

Recall that it suffices to prove Theorem 3.1 to show that Inequality (5), which is
equivalent to (1−wn)n222n < 1, holds for for sufficiently large α. Using the bounds from
above and the fact that n = α − βα (by definition of β), we have that

(1 − wn)n
222n < 2−αn322n α−1/2ce(α, β)√

2πcd(α, β)
(by Inequality (7))

<
2α−2βαα

−5
2√

2πcd(α, β)
(by definition of β and Lemma 4.1).

the electronic journal of combinatorics 11 (2004), #R45 12



Substituting in the definition of cd and re-arranging the terms, it is sufficient to show that
for sufficiently large α, we have(

21−2β

(1 − β)(1−β)ββ

)α

< α
5
2

√
2πβ

1
2 (1 − β)

1
2 .

Thus, we need to choose the fixed constant β such that

21−2β

(1 − β)(1−β)ββ
< 1,

which is equivalent to

0 < (2β − 1) ln 2 + (1 − β) ln(1 − β) + β ln(β). (8)

We note that Inequality (8) is satisfied by β = .82946434. This proves that there exists
sufficiently large α such that the independence sequence for well-covered graphs with
independence number α is any-ordered on the last .17053566α terms of the independence
sequence.

5 Well-coveredness preserving operations

In this section we define two new well-coveredness preserving operations, the partial join
and subgraph miniaturization, both of which have easily computable independence poly-
nomials.

It is well-known that a graph G is well-covered of independence number α if and only
if for each vertex v, the induced G−N [v] is well-covered of independence number α − 1,
where N [v] denotes v and all of its neighbors. Thus, a well-covered graph contains many
well-covered induced subgraphs. However, it is not true that every induced subgraph of
a well-covered graph is well-covered. In fact, given an arbitrary graph G, it is possible to
construct a well-covered graph that has G as an induced subgraph.

Proposition 5.1. Given an arbitrary graph G with n vertices and a complete graph Km

where m ≥ n, the Cartesian product G×Km is well-covered with independence number n.

Proof. In Figure 1 we have arranged the vertices so that each of the m columns is a copy
of G and each of the n rows is a copy of Km. Let I be a maximal independent set; no
two vertices in I can be in the same row because each row is a complete subgraph, hence
|I| ≤ n.

If |I| < n, then there is a row with no vertices in I. Because there are at least as
many columns as rows (m ≥ n by assumption), there is also a column with no vertices in
I. The vertex at the intersection of the row and the column with no vertices in I is thus
not adjacent to any vertices in I; hence I is not maximal. This shows that every maximal
independent set I has cardinality n, which proves that G × Km is well-covered.

In general, the Cartesian product does not result in graphs whose independence poly-
nomials may be easily calculated. In the remainder of this section, we will develop a few
graph operations that lead to easily calculated independence polynomials.
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Km

G G G G G

Km

Km

Km

Km

m columns

n rows

Figure 1: In this depiction of the Cartesian product G × Km, we have compressed the
subgraphs so that all the vertices in each copy of Km and of G are colinear, with the thick
lines denoting the various edges that go between the vertices.

5.1 Partial Join

The partial join is a generalization of both the disjoint union and of the join as a single
operation. We define the partial join algorithmically as follows.

1. Let G1 and G2 be well-covered with independence numbers α1 and α2, respectively.

2. Let H1 ⊂ G2 and H2 ⊂ G2 be well-covered induced subgraphs with independence
numbers β1 and β2, respectively, such that α1 + β2 = α2 + β1.

3. Join the vertices in V (G1) \ V (H1) to those in V (G2) \ V (H2) (while keeping all
the edges originally in G1 and G2), and call the resulting graph, which we denote
G1 +(H1,H2) G2, the partial join of G1 and G2 avoiding H1 and H2.

Proposition 5.2. The partial join of G1 and G2 avoiding H1 and H2 is well-covered and
we have

S(G1 +(H1,H2) G2, z) = S(G1, z)S(H2, z) + S(G2, z)S(H1, z) − S(H2, z)S(H1, z). (9)

Proof. First we show that G1+(H1,H2)G2 is well-covered with independence number α1+β2.
Let I be a maximal independent set in G1 +(H1,H2) G2. Due to the joins of subgraphs, we
know that I is contained in either G1 qH2 or G2 qH1. In the first case |I| = α1 +β2 and
in the second case |I| = α2 + β1 (note that both disjoint unions are well-covered graphs).
Since α1 + β2 = α2 + β1 by assumption, this proves that G1 +(H1,H2) G2 is well-covered.

Derivation of Equation (9): We may count independent sets in G1 +(H1,H2) G2 by
considering two cases: any independent set is contained in either G1qH2, or contained in
G2 qH1. These two cases contribute S(G1, z)S(H2, z) and S(G2, z)S(H1, z), respectively,
to the independence polynomial S(G1+(H1,H2)G2, z). However, independent sets in H1qH2

have been counted twice, and thus we must correct by subtracting S(H1, z)S(H2, z).
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In addition to the disjoint union and the join, there are some other interesting special
cases of the partial join. One interesting case is when the avoided subgraph of G2 is
H2 = E0, the graph with no edges or vertices, which results in the formula:

S(G1 +(H1,E0) G2, z) = S(G1, z) + (S(G2, z) − 1)S(H1, z).

Here one can think of the contribution of H1 to the independence polynomial of G1 being
“magnified” by the independence polynomial of G2. Another special case of the partial
join is the well-known operation of vertex expansion (see [2]). One can think of vertex
expansion as replacing a given vertex v with a complete graph Kb and then joining Kb to
all neighbors of v. This operation is the same as taking the partial join of G and Kb−1

avoiding the induced subgraphs V (G) \ N [v] ⊂ V (G) and ∅ ⊂ V (Kb−1).

5.2 Subgraph Miniaturization

The operation of subgraph miniaturization gives a way to subtract the independence
polynomial of a subgraph from the independence polynomial of the entire graph. We
define subgraph miniaturization algorithmically below.

1. Let G be a well-covered graph with independence number α, and let H be any
induced subgraph of G (H need not be well-covered). Let G\H denote the induced
subgraph of G on V (G) \ V (H).

2. Join each of b − 1 copies of G \ H with each other and with the original induced
subgraph G \ H of G.

3. Attach each copy of G \ H to the lone copy of H exactly as the original G \ H
was attached to H . Stated precisely, we label the vertices in G \ H with j =
1, 2, . . . , |G \H|, and we label all copies of G \H with i = 0, 1, . . . , (b−1) where the
original G\H is labeled 0. Referring to a vertex j in copy i of G\H by the ordered
pair (i, j), this step may be stated as: connect (i, j) to vertex v in H if and only if v
is adjacent to (0, j). Call the resulting graph G with subgraph H miniaturized, and
denote it GH .

Proposition 5.3. The graph G with subgraph H miniaturized is well-covered and we have

S(GH , z) = bS(G, z) − (b − 1)S(H, z). (10)

Proof. Let I be a maximal independent set in GH . If I is contained in H , then I must be
a maximal independent set of the original graph G (because G is an induced subgraph of
GH) and so I has cardinality α. If I contains any vertices not in H , then I is contained
in some single copy of (G − H) ∪ H . By Step 3 above, (G − H) ∪ H is isomorphic to G;
and hence I again has cardinality α.

Derivation of Equation (10): An independence set may be contained in at most one
copy of G \ H , and since we may choose among b copies, we multiply S(G, z) by b.
However, we do not have a choice of copies for independent sets contained in H , and
so such independent sets should be counted only once, not b times. Thus we correct by
subtracting b − 1 times S(H, z).
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6 Further questions

Studying the possible linear orderings of independence sequences can be regarded as a
step towards solving the more general problem:

Question 6.1. What are necessary and sufficient conditions for a sequence to be an
independence sequence of some well-covered graph?

In this paper we attempted to characterize the constraints on independence sequences
of well-covered graphs by studying the possible linear orderings of the terms. Another
reasonable approach to take would be to study the possible relative sizes of terms in the
independence sequence. One should notice that the almost flat polynomial construction
forced all of the higher degree coefficients to have relative sizes that differed by only some
small factor, even when we perturbed the polynomial to get different orderings on the last
n terms. It would be an interesting problem to find bounds on the relative sizes of terms
of the independence sequence, especially if one were to keep the order of some or all of
the terms fixed.

Some work has already been done on this approach; for instance, Michael and Traves
proved in [6] that for well-covered graphs, the sharpest peak one could achieve at the
dα/2eth term of the independence sequence comes from the binomial expansion (1 + z)α.
Interestingly, no such constraints apply to the non-well-covered case. By modifying the
proof of Theorem 2.2 slightly, it is easy to show that the independence sequence of a not
necessarily well-covered graph is completely unconstrained with respect to relative size,
as well as with respect to linear order.

There is also, of course, the second part of the Roller Coaster Conjecture (Conjec-
ture 1.3) that remains to be proven for α > 11. One indication that the conjecture may
be true, at least for sufficiently large α, is given by the following observation:

Observation 6.2. For any 0 ≤ k ≤ 1/2, the kα coefficients of highest degree of Fα(z)
approach 1, for sufficiently large α.

This result follows directly from Inequality (6) and is interesting, for, while we have
not found a completely flat roller-coaster polynomial on the last α/2 terms (which would
prove the conjecture via Theorem 3.3), we have found a polynomial that comes arbitrarily
close to being flat on any portion less than α/2. Notice also that for a given α, the
coefficients of the almost flat polynomial strictly increase as the degree of the terms
increases. Surprisingly, we can create an almost flat polynomial that strictly decreases
on the coefficients from the dα/2e-degree term to the α-degree term. Such a polynomial
may be created by starting with the graph K1 qK1, which has independence polynomial
1 + 2z + z2, and then iteratively multiplying by 1

2
(1 + z) and adding 1

2
zα+1 (recall the

almost flat roller-coaster polynomial S(Fα, z) is constructed in the same way, except the
iteration starts with 1 instead of 1 + 2z + z2).

One possible further area for future work would be computing independence polyno-
mials that result from well-coveredness preserving graph operations. A number of graph
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operations that preserve well-coveredness under certain conditions may be found in [8], in-
cluding the corona, the conjunction, the disjunction, and the Cartesian product of graphs.
The case of the lexicographical product (also called graph composition or the wreath prod-
uct) has already been solved: it is shown in [8] that the lexicographic product preserves
well-coveredness under certain conditions, and in [3], a short proof that the independence
polynomial for the lexicographic product G[H ] may be directly computed in terms of the
independence polynomials for G and H is given.

7 Acknowledgments

This research was done at the University of Minnesota Duluth Research Experience for
Undergraduates (REU). I would like to give special thanks to Joseph A. Gallian for his
encouragement and support, and I like to thank Mike Develin and Stephen Hartke for
their insightful comments. I would also like to thank Dan Isaksen and David Moulton
for helpful conversations. Finally, I would like to thank the anonymous referee for useful
comments on the final draft. Funding for the University of Minnesota Duluth REU was
provided by grants from the NSF and NSA, grant numbers NSF/DMS 9820179 and NSA
MDA 904-00-10026.

References

[1] Y. Alavi, P.J. Malde, A.J. Schwenk, and P. Erdős, The vertex independence sequence
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