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Abstract

We prove Borchardt’s identity

det
(

1
xi − yj

)
per
(

1
xi − yj

)
= det

(
1

(xi − yj)2

)
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1 Introduction

In this paper we present a bijective proof of Borchardt’s identity, one which relies only
on rearranging terms in a sum by means of sign-reversing involutions. The proof reveals
interesting properties of pairs of permutations. We will first give a brief history of this
identity, indicating methods of proof.

The permanent of a square matrix is the sum of its diagonal products:

per(aij)
n
i,j=1 =

∑
σ∈Sn

n∏
i=1

aiσ(i),

where Sn denotes the symmetric group on n letters. In 1855, Borchardt proved the
following identity, which expresses the product of the determinant and the permanent of
a certain matrix as a determinant [1]:

Theorem 1.1.

det
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Borchardt proved this identity algebraically, using Lagrange’s interpolation formula.
In 1859, Cayley proved a generalization of this formula for 3 × 3 matrices [4]:

Theorem 1.2. Let A = (aij) be a 3 × 3 matrix with non-zero entries, and let B and C
be 3 × 3 matrices whose (i, j) entries are a2

ij and a−1
ij , respectively. Then

det(A)per(A) = det(B) + 2

(∏
i,j

aij

)
det(C).

When the matrix A in this identity is equal to ((xi − yj)
−1), the matrix C is of rank

no greater than 2 and has determinant equal to zero. Cayley’s proof involved rearranging
the terms of the product det(A)per(A). In 1920, Muir gave a general formula for the
product of a determinant and a permanent [8]:

Theorem 1.3. Let P and Q be n× n matrices. Then

det(P )per(Q) =
∑
σ∈Sn

ε(σ)det(Pσ ∗Q),

where Pσ is the matrix whose ith row is the σ(i)th row of P , Pσ ∗ Q is the Hadamard
product, and ε(σ) denotes the sign of σ.

Muir’s proof also involved a simple rearranging of terms. In 1960, Carlitz and Levine
generalized Cayley’s identity as follows [3]:

Theorem 1.4. Let A = (aij) be an n×n matrix with non-zero entries and rank ≤ 2. Let
B and C be n× n matrices whose (i, j) entries are a−1

ij and a−2
ij , respectively. Then

det(B)per(B) = det(C).

Carlitz and Levine proved this theorem by setting P = Q = B in Muir’s identity
and showing, by means of the hypothesis regarding the rank of A, that each of the terms
det(Bσ ∗B) is equal to zero for permutations σ not equal to the identity.

As Bressoud observed in [2], Borchardt’s identity can be proved by setting a = 1
in the Izergin-Korepin formula [5][6] quoted in Theorem 1.5 below. This determinant
evaluation, expressed as a sum of weights of n × n alternating sign matrices, formed the
basis of Kuperberg’s proof of the alternating sign matrix conjecture [7] and Zeilberger’s
proof of the refined conjecture [9].

Theorem 1.5. Let An denote the set of n × n alternating sign matrices. Given A =
(aij) ∈ An, let (i, j) be the vertex in row i, column j of the corresponding six-vertex
model, let N(A) = card{(i, j) ∈ [n]× [n] : aij = −1}, let I(A) =

∑
i<k

∑
j>l aijakl, and let

H(A), V (A), SE(A), SW (A), NE(A), NW (A) be, respectively, the sets of horizontal,
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vertical, southeast, southwest, northeast, and northwest vertices of the six-vertex model of
A. Then for indeterminants a, x1, . . . , xn and y1, . . . , yn we have

det

(
1

(xi + yj)(axi + yj)

) ∏n
i,j=1 (xi + yj)(axi + yj)∏

1≤i<j≤n (xi − xj)(yi − yj)
=

∑
A∈An

(−1)N(A)(1 − a)2N(A)a
1
2
n(n−1)−I(A)×

∏
(i,j)∈V (A)

xiyj

∏
(i,j)∈NE(A)∪SW (A)

(axi + yj)
∏

(i,j)∈NW (A)∪SE(A)

(xi + yj).

This paper is organized as follows. In Section 2 we describe a simple combinatorial
model of Borchardt’s identity, and in Section 3 we prove the identity by means of sign-
reversing involutions.

2 Combinatorial Model of Borchardt’s Identity

Borchardt’s identity can be boiled down to the following statement:

Lemma 2.1. Borchardt’s identity is true if and only if, for all fixed vectors of non-negative
integers p, q ∈ Nn, ∑

(σ, τ) ∈ Sn × Sn

σ 6= τ

∑
(a, b) ∈ Nn × Nn

a + b = p
a ◦ σ−1 + b ◦ τ−1 = q

ε(σ) = 0, (2.1)

where x ◦ α is the vector whose ith entry is xα(i).

Proof. Borchardt’s identity may be regarded as a polynomial identity in the commuting
variables xi and yi, 1 ≤ i ≤ n. It is equivalent to

det

((
1 − yj

xi

)−1
)

per

((
1 − yj

xi

)−1
)

= det

((
1 − yj

xi

)−2
)
,

which is a statement about formal power series. Setting aij = (1− yj

xi
)−1, this is equivalent

to ∑
(σ,τ)∈Sn×Sn

ε(σ)
n∏

i=1

aiσ(i)aiτ(i) =
∑
σ∈Sn

ε(σ)
n∏

i=1

a2
iσ(i).
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This in turn is equivalent to

∑
(σ, τ) ∈ Sn × Sn

σ 6= τ

ε(σ)

n∏
i=1

aiσ(i)aiτ(i) = 0. (2.2)

If we expand each entry aij as a formal power series and write

aij =
∑
p≥0

yp
j

xp
i

,

then equation (2.2) becomes

∑
(σ, τ) ∈ Sn × Sn

σ 6= τ

ε(σ)
∑

(a,b)∈Nn×Nn

n∏
i=1

(
yσ(i)

xi

)ai
(
yτ(i)

xi

)bi

= 0.

Collecting powers of xi and yi and extracting the coefficient of
∏n

i=1
y

qi
i

x
pi
i

for each (p, q) ∈
Nn ×Nn, we obtain equation (2.1).

We can now use equation (2.1) as the basis for a combinatorial model of Borchardt’s
identity. For each ordered pair of vectors (p, q) ∈ Nn × Nn we define the set of configu-
rations C(p, q) by

C(p, q) =


(σ, τ, a, b) ∈ Sn × Sn ×Nn × Nn :

σ 6= τ, a+ b = p, a ◦ σ−1 + b ◦ τ−1 = q

 .

The weight of a configuration (σ, τ, a, b) is defined to be

w(σ, τ, a, b) = ε(σ).

By Lemma 2.1, Borchardt’s identity is equivalent to the statement that∑
z∈C(p,q)

w(z) = 0. (2.3)

We will prove this identity by means of sign-reversing involutions, which pair off configu-
rations having opposite weights.
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3 Proof of Borchardt’s Identity

The properties of the configuration (σ, τ, a, b) ∈ C(p, q) can be conveniently summarized
by the following diagram: imagine an n× n board with certain of its cells labelled by red
numbers and blue numbers. A cell may have no label, a red label, a blue label, or one
of each. At least one cell must have only one label. There is exactly one red label and
exactly one blue label in each row and in each column. The red label in row i and column
σ(i) is ai, and the blue label in row i and column τ(i) is bi. The ith row sum is equal to
pi and the ith column sum is equal to qi. The weight of the board is equal to ε(σ), the
sign of σ. An illustration of the board B1 corresponding to the configuration

((1)(2)(3)(4), (1)(234), (a1, a2, a3, a4), (b1, b2, b3, b4))

is contained in Figure 3.1 below. C(p, q) can be identified with the totality of such boards.

Figure 3.1: B1

a1

b1

b4

a2

a3

b2

a4

b3

If θ is a sign-reversing involution of C(p, q), then it must satisfy

θ(σ, τ, a, b) = (σ′, τ ′, a′, b′),

where ε(σ′) = −ε(σ). One way to produce σ′ is to transpose two of the rows or two of the
columns in the corresponding diagram. One must be careful, however, to preserve row
and column sums. If two of the row sums are the same, or if two of the column sums are
the same, there is no problem. We prove this formally in the next lemma.
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Lemma 3.1. If p or q has repeated entries then equation (2.3) is true.

Proof. Let α represent the transposition which exchanges the indices i and j. If pi = pj

then
(σ, τ, a, b) 7→ (σα, τα, a ◦ α, b ◦ α)

is a sign-reversing involution of C(p, q). If qi = qj then

(σ, τ, a, b) 7→ (ασ, ατ, a, b)

is a sign-reversing involution of C(p, q).

We will henceforth deal with configuration sets C(p, q) in which neither p nor q has
repeated entries. We will describe two other classes of board rearrangements both geo-
metrically and algebraically, then prove that they can be combined to show that equation
(2.3) is true.

The first class of rearrangements we will call φ. Let (σ, τ, a, b) ∈ C(p, q) be given. Let
i be any index such that ai ≥ aγ(i) and bi ≥ bγ−1(i), where γ = σ−1τ and σ(i) 6= τ(i).
Then ai and bi are both in row i, aγ(i) is in the same column as bi, and bγ−1(i) is in the
same column as ai. To produce the rearrangement φi(σ, τ, a, b) = (σ′, τ ′, a′, b′), we will
first replace the red label ai by the red label bi − bγ−1(i) + aγ(i), replace the blue label
bi by the blue label ai − aγ(i) + bγ−1(i), then switch the columns σ(i) and τ(i). For the
example, the φ2-rearrangement of the board B1 in Figure 3.1 is the board B2 depicted in
Figure 3.2 below. It is easy to verify that row and column sums are preserved and that
the sign of the original board has been reversed. The algebraic definition of φi(σ, τ, a, b)
is (σ′, τ ′, a′, b′), where

σ′ = (σ(i)τ(i))σ, (3.1)

τ ′ = (σ(i)τ(i))τ, (3.2)

a′j =


aj if j 6= i

bi − bγ−1(i) + aγ(i) if j = i

(3.3)

and

b′j =


bj if j 6= i

ai − aγ(i) + bγ−1(i) if j = i

(3.4)

The second class of rearrangements we will call ψ. Let (σ, τ, a, b) ∈ C(p, q) be given.
Let i be any index such that aσ−1(i) ≥ aτ−1(i) and bτ−1(i) ≥ bσ−1(i), where σ−1(i) 6= τ−1(i).
Then aσ−1(i) and bτ−1(i) are both in column i, bσ−1(i) is in the same row as aσ−1(i), and aτ−1(i)

is in the same column as bτ−1(i). To produce the rearrangement ψi(σ, τ, a, b) = (σ′, τ ′, a′, b′),
we will first replace the red label aσ−1(i) by the red label bτ−1(i) − bσ−1(i) + aτ−1(i), replace
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Figure 3.2: B2 = φ2(B1)

a1

b1

a3

a2 − a3 + b4

b4

b2 − b4 + a3

a4

b3

the blue label bτ−1(i) by the blue label aσ−1(i)−aτ−1(i) +bσ−1(i), then switch the rows σ−1(i)
and τ−1(i). For example, the ψ2-rearrangement of the board B1 in Figure 3.1 is the board
B3 depicted in Figure 3.3 below. The rearrangements ψ are related to the rearrangements
φ in the sense that if we start with a board, reverse the rows of row and column, apply
φi, then reverse the roles of row and column again, then we obtain ψi. Hence row and
column sums are preserved and the sign of the original board is reversed. The algebraic
definition of ψi(σ, τ, a, b) is (σ′, τ ′, a′, b′), where

σ′ = σ(σ−1(i)τ−1(i)), (3.5)

τ ′ = τ(σ−1(i)τ−1(i)), (3.6)

a′j =



aj if j 6∈ {σ−1(i), τ−1(i)}

aτ−1(i) if j = σ−1(i)

bτ−1(i) − bσ−1(i) + aτ−1(i) if j = τ−1(i)

(3.7)

the electronic journal of combinatorics 11 (2004), #R48 7



Figure 3.3: B3 = ψ2(B1)

a1

b1

b4 − b2 + a4

a2 − a4 + b2

b2

a3 b3

a4

and

b′j =



bj if j 6∈ {σ−1(i), τ−1(i)}

bσ−1(i) if j = τ−1(i)

aσ−1(i) − aτ−1(i) + bσ−1(i) if j = σ−1(i).

(3.8)

The mappings φi and ψi are not defined on all of C(p, q). We will prove, however,
that they are sign-reversing involutions when restricted to their domains of definition. Let
z = (σ, τ, a, b) ∈ C(p, q) be given. Set γ = σ−1τ . We define

A(z) =

{i ≤ n : σ(i) 6= τ(i) & ai ≥ aγ(i) & bi ≥ bγ−1(i)}
and

B(z) =

{i ≤ n : σ−1(i) 6= τ−1(i) & aσ−1(i) ≥ aτ−1(i) & bτ−1(i) ≥ bσ−1(i)}.
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Then φi(z) is defined if i ∈ A(z) and ψi(z) is defined if i ∈ B(z) for each z ∈ C(p, q). One
concern is that A(z) ∪B(z) is empty for some z, so that neither φi nor ψi can be applied
for any i. The next lemma states that this will never happen.

Lemma 3.2. For each z ∈ C(p, q), A(z) ∪B(z) 6= ∅.

Proof. Let z = (σ, τ, a, b) ∈ C(p, q) be given. Set γ = σ−1τ . Let

I = {i ≤ n : σ(i) 6= τ(i)}
and

J = {i ≤ n : σ−1(i) 6= τ−1(i)}.
Then we have

A(z) = {i ∈ I : ai ≥ aγ(i) & bi ≥ bγ−1(i)}
and

B(z) = {i ∈ J : aσ−1(i) ≥ aτ−1(i) & bτ−1(i) ≥ bσ−1(i)}.
We will also set

B′(z) = {i ∈ I : ai ≥ aγ−1(i) & bγ−1(i) ≥ bi}.
It is easy to see that

i ∈ B(z) ⇔ σ−1(i) ∈ B′(z).

Hence we need only show that A(z) ∪ B′(z) 6= ∅.
Suppose A(z) ∪B′(z) = ∅. Let

X = {i ∈ I : ai > aγ(i)}.
We claim that X must be empty. If it isn’t, let p ∈ X be given. Then ap > aγ(p). Since we
are assuming A(z) = ∅, we must have bp < bγ−1(p). Since we are also assuming B′(z) = ∅,
we must have ap < aγ−1(p). Set q = γ−1(p). Then aq > aγ(q). Since γ permutes the indices
in I, we have q ∈ X. Hence i ∈ X ⇒ γ−1(i) ∈ X for all i ∈ X. But this implies

ap < aγ−1(p) < aγ−2(p) < · · · ,
which is impossible because γ is of finite order. Hence our claim that X is empty is true.

Since X is empty, we must have ai ≤ aγ(i) for all i ∈ I. This implies

ai ≤ aγ(i) ≤ aγ2(i) ≤ · · ·
for all i ∈ I. Since γ has finite order, this implies that aγk(i) = ai for all integers k and
every index i ∈ I. In particular, ai = aγ(i) for all i ∈ I. Since we are assuming A(z) is
empty, we must have bi < bγ−1(i) for all i ∈ I. Let i0 ∈ I be any index in I, which we
know to be non-empty because σ 6= τ . Then

bi0 < bγ−1(i0) < bγ−2(i0) < · · · .
Since γ is of fine order, this is impossible. Hence assuming A(z) ∪ B′(z) = ∅ leads to a
contradiction. Therefore A(z)∪B′(z) cannot be empty. This implies A(z)∪B(z) 6= ∅.
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Given a configuration set C(p, q), we will distinguish two special subsets,

CA(p, q) = {z ∈ C(p, q) : A(z) 6= ∅}

and
CB(p, q) = {z ∈ C(p, q) : B(z) 6= ∅}.

Lemma 3.2 assures us that CA(p, q) ∪ CB(p, q) = C(p, q). The two sets CA(p, q) and
CB(p, q) are closely related to each other, in the following sense: Let T denote the oper-
ator which sends a configuration to its tranpose. The precise definition of T (σ, τ, a, b) is
(σ−1, τ−1, a ◦ σ−1, b ◦ τ−1), but it is easier to think of T (z) as the board corresponding to
z with the roles of row and column reversed. It is easy to verify that

z ∈ CA(p, q) ⇔ T (z) ∈ CB(q, p), (3.9)

i ∈ A(z) ⇔ i ∈ B(T (z)), (3.10)

and
ψi(z) = T ◦ φi ◦ T (z), (3.11)

where z = (σ, τ, a, b).

We will define a sign-reversing involution θA on CA(p, q) and a sign-reversing involution
θB on CB(p, q) for each pair of vectors p and q having no repeated entries. We will also
show that both θA and θB map CA(p, q) ∩ CB(p, q) into itself. Hence a sign-reversing
involution of C(p, q) is θ, defined by

θ(z) =


θA(z) if z ∈ CA(p, q)

θB(z) if z ∈ CB(p, q)\CA(p, q).

(3.12)

Let z ∈ CA(p, q). Let i be the least integer in A(z). Then we set

θA(z) = φi(z).

Having defined θA, we set
θB = T ◦ θA ◦ T.

The next two lemmas will be used to show that θA and θB have the desired properties.

Lemma 3.3. For each z ∈ CA(p, q) and i ∈ A(z), we have i ∈ A(φi(z)), φi(z) ∈ CA(p, q),
and φi(φi(z)) = z.
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Proof. Let z = (σ, τ, a, b) ∈ C(p, q) and i ∈ A(z) be given. Set γ = σ−1τ . If we write
φi(z) = (σ′, τ ′, a′, b′), defined as in equations (3.1) through (3.4), then by the geometric
characterization given earlier it is easy to see that φi preserves row and column sums.
Hence φi(z) ∈ C(p, q). Note that (σ′)−1τ ′ = σ−1τ = γ. Hence we also have

a′i ≥ aγ(i) = a′γ(i)

and
b′i ≥ bγ−1(i) = b′γ−1(i)

because γ(i) 6= i. Therefore i ∈ A(φi(z)) and φi(z) ∈ CA(p, q). The geometric characteri-
zation of φi implies that φi(φi(z)) = z.

Lemma 3.4. Let p and q be vectors in Nn which contain no repeated entries. For each
z ∈ CA(p, q), if i is the smallest index in A(z) then i is also the smallest index in A(φi(z)).

Proof. Let z = (σ, τ, a, b) ∈ CA(p, q) be given. Set γ = σ−1τ and φi(z) = (σ′, τ ′, a′, b′).
Let i be the smallest index in A(z). By Lemma 3.3 we can say that i ∈ A(φi(z)) and
φi(z) ∈ CA(p, q). Let j be the smallest index in A(φi(z)). We wish to show that j = i.
Suppose j < i. We know that

a′j ≥ a′γ(j) (3.13)

and
b′j ≥ b′γ−1(j). (3.14)

If γ(j) 6= i and γ−1(j) 6= i then (3.13) and (3.14) become

aj ≥ aγ(j) (3.15)

and
bj ≥ bγ−1(j), (3.16)

which contradicts the fact that i is least in A(z). So we must have γ(j) = i or γ−1(j) = i.
We will show that if γ(j) = i or γ−1(j) = i then pi = pj, contradicting our hypothesis
that p has no repeated entries.

Set ẑ = φj(φi(z)). By Lemma 3.3, ẑ ∈ CA(p, q), j ∈ A(ẑ), and φj(ẑ) = φi(z). Let

us write ẑ = (σ̂, τ̂ , â, b̂). Staying consistent with our notation up to this point, we write

φj(ẑ) = (σ̂′, τ̂ ′, â′, b̂′). Since φi(z) = φj(ẑ), we must have

(σ′, τ ′, a′, b′) = (σ̂′, τ̂ ′, â′, b̂′).

In particular, we have
a′i = â′i, (3.17)

b′i = b̂′i, (3.18)
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a′j = â′j , (3.19)

and
b′j = b̂′j . (3.20)

By definition, equations (3.17) through (3.20) are equivalent to

bi − bγ−1(i) + aγ(i) = âi, (3.21)

ai − aγ(i) + bγ−1(i) = b̂i, (3.22)

aj = b̂j − b̂γ−1(j) + âγ(j), (3.23)

and
bj = âj − âγ(j) + b̂γ−1(j). (3.24)

Suppose γ(j) = i. Adding together equations (3.21) and (3.24) we obtain

aγ(i) + bi = âj + b̂γ−1(j),

which is equivalent to qτ(i) = qσ(j). Since we are assuming that q has no repeated entries,
this implies τ(i) = σ(j), i.e. that j = γ(i). Subtracting equation (3.23) from equation
(3.21) and making the substitutions γ(j) = i and γ(i) = j we obtain

bi − bγ−1(i) = b̂γ−1(j) − b̂j .

Since i ∈ A(z) and j ∈ A(ẑ), the left hand side of this equation is ≥ 0 and the right
hand side of this equation is ≤ 0. Hence both sides are equal to zero, and this implies
bi = bγ−1(i) = bj . Subtracting equation (3.24) from equation (3.22) and making the
substitutions γ(j) = i and γ(i) = j we obtain

ai − aγ(i) = âγ(j) − âj .

Since i ∈ A(z) and j ∈ A(ẑ), the left hand side of this equation is ≥ 0 and the right
hand side of this equation is ≤ 0. Hence both sides are equal to zero, and this implies
ai = aγ(i) = aj . Putting everything together we have pi = ai + bi = aj + bj = pj , contrary
to hypothesis. Therefore γ(j) = i is not possible.

Now suppose γ−1(j) = i. Adding together equations (3.22) and (3.23) we obtain

ai + bγ−1(i) = âγ(j) + b̂j ,

which is equivalent to qσ(i) = qτ(j). Since we are assuming that q has no repeated entries,
this implies σ(i) = τ(j), i.e. that i = γ(j). But we showed above that this case is not
possible.

Therefore our original hypothesis that j < i leads to a contradiction. Hence j ≥ i. But
j is least in A(φi(z)) and i ∈ A(φi(z)), therefore j = i. Hence i is least in A(φi(z)).
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Since each φi is sign-reversing, if we combine Lemmas 3.3 and 3.4 we obtain

Proposition 3.5. Let p and q be vectors in Nn having no repeated entries. Then θA is a
sign-reversing involution of CA(p, q).

Since θB = T ◦ θA ◦ T and T is a sign-preserving involution and θA is a sign-reversing
involution, Proposition 3.5 immediately gives us the following result:

Proposition 3.6. Let p and q be vectors in Nn having no repeated entries. Then θB is a
sign-reversing involution of CB(p, q).

Our last task is to prove the following:

Proposition 3.7. Let p and q be vectors in Nn having no repeated entries. Then θA and
θB both map CA(p, q) ∩ CB(p, q) into itself.

Proof. We will prove this by contradiction. Let p and q be vectors in Nn having no
repeated entries, and suppose there exists a configuration z = (σ, τ, a, b) ∈ CA(p, q) ∩
CB(p, q) such that θA(z) 6∈ CA(p, q) ∩ CB(p, q). Since we know that θA(z) ∈ CA(p, q), it
must be true that θA(z) 6∈ CB(p, q). Let i = minA(z). We will show that A(z) = {i} and
B(z) = {σ(i)} or B(z) = {τ(i)}.

Let i0 ∈ A(z) be any index such that φi0(z) 6∈ CA(p, q) ∩ CB(p, q). This means that
φi0(z) 6∈ CB(p, q), that is B(φi0(z)) = ∅. By definition, we have φi0(z) = (σ′, τ ′, a′, b′),
where (σ′, τ ′, a′, b′) is defined as in equations (3.1) through (3.4), with i replaced by i0.
For any index j 6∈ {σ(i0), τ(i0)} we have a′(σ′)−1(j) = aσ−1(j), a

′
(τ ′)−1(j) = aτ−1(j), b

′
(σ′)−1(j) =

bσ−1(j), and b′(τ ′)−1(j) = bτ−1(j). Since we are assuming B(σ′, τ ′, a′, b′) = ∅, it must be true

that j 6∈ B(σ, τ, a, b). Hence we have established that B(z) ⊆ {σ(i0), τ(i0)}.
We will next show that B(z) contains only one element. It contains at least one

element, because we are assuming that z ∈ CB(p, q). Since i0 ∈ A(z), we know that
ai0 ≥ aγ(i0) and bi0 ≥ bγ−1(i0), where γ = σ−1τ . If σ(i0) ∈ B(z) then ai0 ≥ aγ−1(i0) and
bγ−1(i0) ≥ bi0 , forcing bi0 = bγ−1(i0). If τ(i0) ∈ B(z) then aγ(i0) ≥ ai0 and bi0 ≥ bγ(i0),
forcing ai0 = aγ(i0). So if B(z) = {σ(i0), τ(i0)}, then

qσ(i0) = ai0 + bγ−1(i0) = aγ(i0) + bi0 = qτ(i0).

However, since σ(i0) 6= τ(i0), this means that q has a repeated entry, contrary to hypoth-
esis. So B(z) = {σ(i0)} or B(z) = {τ(i0)}.

We will now show that A(z) contains only one element. Suppose the index i0 we have
been considering is different from i. By the logic above, B(z) = {σ(i)} or B(z) = {τ(i)}.
However, we also know that B(z) = {σ(i0)} or B(z) = {τ(i0)}. If i ∈ A(z) and B(z) =
{σ(i)}, then we must have B(z) = {τ(i0)} and γ−1(i) = i0 ∈ A(z). But i ∈ A(z) implies

bi ≥ bγ−1(i), (3.25)
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γ−1(i) ∈ A(z) implies
aγ−1(i) ≥ ai, (3.26)

and σ(i) ∈ B(z) implies
ai ≥ aγ−1(i) and bγ−1(i) ≥ bi. (3.27)

Inequalities (3.25) through (3.27) imply ai = aγ−1(i) and bi = bγ−1(i), which implies

pi = ai + bi = aγ−1(i) + bγ−1(i) = pγ−1(i),

which contradicts our hypothesis that p has no repeated entries. On the other hand, if
i ∈ A(z) and B(z) = {τ(i)}, then we must have B(z) = {σ(i0)} and γ(i) = i0 ∈ A(z).
But i ∈ A(z) implies

ai ≥ aγ(i), (3.28)

γ(i) ∈ A(z) implies
bγ(i) ≥ bi, (3.29)

and τ(i) ∈ B(z) implies
aγ(i) ≥ ai and bi ≥ bγ(i). (3.30)

Inequalities (3.28) through (3.30) imply ai = aγ(i) and bi = bγ(i), which implies

pi = ai + bi = aγ(i) + bγ(i) = pγ(i),

which again contradicts our hypothesis that p has no repeated entries. Hence A(z) = {i}.
We will now show that each of the cases

A(z) = {i} and B(z) = {σ(i)} (3.31)

and
A(z) = {i} and B(z) = {τ(i)} (3.32)

is impossible, given our hypothesis that θA(z) 6∈ CA(p, q) ∩ CB(p, q). We will record here
that A(z) = {i} implies

aj < aγ(j) or bj < bγ−1(j) for each j 6= i in {γk(i) : k ∈ Z} (3.33)

and B(z) = {σ(i)} implies

aj < aγ−1(j) or bγ−1(j) < bj for each j 6= i in {γk(i) : k ∈ Z}. (3.34)

We will write θA(z) = φi(z) = (σ′, τ ′, a′, b′), consistent with the notation in equations
(3.1) through (3.4).

First suppose that case (3.31) is true. Then (3.25) and (3.27) imply

bi = bγ−1(i). (3.35)
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Since
a′γ(i) = aγ(i) ≥ bi − bγ−1(i) + aγ(i) = a′i

and B(φi(z)) = ∅, we must have b′i < b′γ(i), that is

ai − aγ(i) + bγ−1(i) < bγ(i).

Since ai ≥ aγ(i), this implies bγ−1(i) < bγ(i). Hence bi < bγ(i). Let

X = {k ≥ 0 : bγk(i) < bγk+1(i)}.

Then we have just shown that 0 ∈ X. Let k0 be the largest integer in X such that
0 ≤ k ≤ k0 implies k ∈ X. The largest integer k0 must exist because the order of γ is
finite. We have

bi < bγ(i) < · · · < bγk0 (i) < bγk0+1(i), (3.36)

hence γk0+1(i) 6= i. Set j = γk0+1(i). We have bj > bγ−1(j), hence by (3.33) we must have
aj < aγ(j). By (3.35) and (3.36), it must be true that γ(j) 6= i, hence by (3.34) we also
have bj < bγ(j). This places k0 +1 in X, contradicting the definition of k0. Therefore case
(3.31) cannot be true.

The case (3.32) is also impossible. If we define ẑ by

ẑ = (τ, σ, b, a) ∈ CA(p, q) ∩ CB(p, q),

then θA(z) 6∈ CA(p, q) ∩ CB(p, q) implies θA(ẑ) 6∈ CA(p, q) ∩ CB(p, q). Hence case (3.32)
with respect to z is equivalent to case (3.31) with respect to ẑ, and we have just shown
this case to be impossible. Pictorially, ẑ is obtained from z by swapping the colors red
and blue.

Hence we have shown that θA maps CA(p, q)∩CB(p, q) into itself for all p and q having
no repeated entries. Since θB = T ◦ θA ◦ T , and clearly T maps CA(p, q) ∩ CB(p, q) into
CA(q, p) ∩ CB(q, p), θB also maps CA(p, q) ∩ CB(p, q) into itself.

Putting together Propositions 3.5 through 3.7, we have proved

Theorem 3.8. Let p and q be vectors in Nn having no repeated entries. Let θ be the map
defined in equation (3.12). Then θ is a sign-reversing involution of C(p, q).

Theorem 3.8 implies that equation (2.3) is true, hence we have a bijective proof of
Borchardt’s identity.
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