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Abstract

The Sandwich Theorems proved in this paper give a new method to show that
the partition function a(n) of a partition identity

A(x) :=
∞∑

n=0

a(n)xn =
∞∏

n=1

(1 − xn)−p(n)

satisfies the condition RT1

lim
n→∞

a(n− 1)
a(n)

= 1 .

This leads to numerous examples of naturally occuring classes of relational struc-
tures whose finite members enjoy a logical 0–1 law.

1 Introduction

Partition identities

A(x) :=
∞∑

n=0

a(n)xn =
∞∏

n=1

(1 − xn)−p(n) (1)

have been a staple in combinatorics and additive number theory since the pioneering work
of Hardy and Ramanujan into the number of partitions of a positive integer n , that is,
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the number of ways to write n as a sum of positive integers. Unless explicitly stated
otherwise, it is assumed that the p(n) , and hence the a(n) , are nonnegative integers.
When a partition identity is mentioned without a specific reference then the reader can
assume (1) above is meant, using the two counting functions p(n) and a(n) .

The nomenclature for the anatomy of a partition identity used here is:1

symbol name abbreviation

a(n) partition (count) function

p(n) component (count) function

A(x) :=
∑
a(n)xn partition generating function pgf

P(x) :=
∑
p(n)xn component generating function

rank(p) :=
∑
p(n) rank of the partition identity.

We adopt the following convention throughout this paper:

(???) A(x), P(x), a(n) and p(n), possibly with subscripts or other modifiers, will
exclusively refer to the partition identity functions described in the previous table.

In the study of the multiplicative theory of the natural numbers, or of the integers
of an algebraic number field, the total count function is readily accessible whereas the
prime count function is quite difficult to pin down. Just the opposite tends to be the
case in additive number theory, combinatorics and algebra. For example in the partition
problems considered by Bateman and Erdős one starts with a set M of natural numbers
and asks how many ways one can partition a natural number n into summands from M .
In this case p(n) = χM(n), the characteristic function of M ; the investigative effort goes
into understanding properties of a(n). To enumerate a class of finite functional digraphs
one starts with an enumeration of the components. In algebra, to enumerate the finite
Abelian groups one starts with the fact that the indecomposables are the cyclic p-groups,
one of size pk for each prime number p and each positive integer k. The reader should
therefore not be surprised that we start with hypotheses on p(n) and deduce information
about a(n).

1We adopt the convention of [7] that upper case bold letters name (formal) power series whose coef-
ficients are given by the corresponding lower case italic letters, for example F(x) =

∑
f(n)xn . By this

convention F1(x) is the power series
∑
f1(n)xn , etc. It will be convenient to define coefficients f(n) of

a power series F(x) to be 0 for negative values of n .
Our choice of the letters A(x),P(x), a(n), p(n) for working with partition identities follows [7] where

the goal is to develop, in parallel, results for additive number systems and multiplicative number systems.
These two subject areas had developed somewhat independently and consequently there is no commonly
accepted uniform notation scheme. p(n) traditionally refers to the partition count function (which is
our a(n)) in additive systems, and to the prime count function in multiplicative systems. The uniform
notation adopted in [7] uses p(n) to count indecomposable objects (the components/primes) and a(n)
to count aggregrate objects (sums of components/products of primes).
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2 The Property RT1

The property
f(n− 1)

f(n)
→ 1 ,

where f(n) is eventually positive, is called RT1 because it is the condition used in the well
known limit form of the Ratio Test for convergence of the power series

∑
f(n)xn ; if RT1

holds then the radius of convergence of
∑
f(n)xn is 1 .

When dealing with partition functions a(n) it is convenient to use interchangeably any
of the phrases:

(i) a(n) satisfies RT1,

(ii) A(x) satisfies RT1, or

(iii) the partition identity satisfies RT1.

The true significance of knowing that f(n) satisfies RT1 is not merely that it yields a
radius of 1, but it has much more to do with the fact that the values of f(n) vary slowly
as n increases, as expressed by

(1 − ε) · f(n− 1) < f(n) < (1 + ε) · f(n− 1)

for n sufficiently large. The property RT1 plays a significant role in the results of Bateman
and Erdős and is essential to Compton’s approach to proving logical 0–1 laws.2

There are three main results concerning when a partition function a(n) satisfies RT1 ,
that is, when a(n − 1)/a(n) → 1 as n → ∞ . But first some definitions. A partition
identity is reduced if

gcd
{
n : p(n) > 0

}
= 1 .

It is well known that a(n) is eventually positive iff the partition identity is reduced—see,
for example, p. 43 of [7]. Given a partition identity let

d := gcd
{
n : p(n) > 0

}
p?(n) := p(nd)

a?(n) := a(nd) .

Then

A?(x) :=
∞∑

n=0

a?(n)xn =
∞∏

n=1

(1 − xn)−p?(n) . (2)

This is the reduced form of the partition identity (1). The reduced form of a partition
identity is reduced; and a reduced partition identity is the same as its reduced form.

Here are the three principal theorems concerning conditions on a partition identity
that guarantee a(n) satisfies RT1:

2The property RTρ , meaning a(n− 1)/a(n) → ρ , is called smoothly growing by Compton [10]; RTρ is
the additive number theory analog of the property RVα , regular variation of index α , in multiplicative
number theory. RT1 is the analog of RV0 , slowly varying at infinity.
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• Theorem A. (Bell [3]) Given a reduced partition identity (1), if p(n) is polynomially
bounded, that is, p(n) = O

(
nγ

)
for some γ ∈ R , then a(n) satisfies RT1 . This

generalizes a result of Bateman and Erdős [2] that says if p(n) ∈ {0, 1} then RT1

holds.

• Theorem B. (Bell and Burris [5]) Suppose
p(n− 1)

p(n)
→ 1 as n → ∞. Then the

partition function a(n) satisfies RT1 .

• Theorem C. (Stewart’s Sum Theorem: see [7], p. 85) If

∞∑
n=0

aj(n)xn =

∞∏
n=1

(1 − xn)−pj(n) (j = 1, 2)

and each a?
j (n) satisfies RT1 then a?(n) also satisfies RT1 , where

∞∑
n=0

a(n)xn =
∞∏

n=1

(1 − xn)−p(n)

with p(n) = p1(n) + p2(n) .

The goals of this paper are:

• To considerably extend the collection of partition identities for which it is known
that a(n) satisfies RT1 ; and to show that this extension is, in a natural sense, best
possible.

• To give a new proof of Bell’s Theorem A: if p(n) is polynomially bounded then a(n)
satisfies RT1 .

• To show that the new techniques for proving a(n) satisfies RT1 lead to new examples
of natural classes of finite structures which have a logical 0–1 law.

3 Background requirements

In addition to the results on RT1 already mentioned we need the following two well known
results (see [7]):

• Theorem D. Finite rank implies polynomial growth for a(n) : if (1) is reduced and
r := rank(p) < ∞ then a(n) ∼ C · nr−1 for some positive C.

• Theorem E. Infinite rank implies superpolynomial growth for a(n) : if (1) is re-
duced and rank(p) = ∞ then for all k we have a(n)/nk → ∞ as n→ ∞ .

Also a Tauberian theorem is needed:
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Theorem 3.1 (Schur). With 0 ≤ ρ <∞ suppose that

(i) f(n) satisfies RTρ ,

(ii) G(x) has radius of convergence greater than ρ , and

(iii) G(ρ) > 0 .

Let H(x) = F(x) · G(x) . Then h(n) ∼ G(ρ) · f(n) .

Proof. (See [7], p. 62.)

The notation f(n) � g(n) means that f(n) is eventually less or equal to g(n) .

4 The Sandwich Theorem

There has long been interest in studying the partial sums
∑

j≤n f(j) of the coefficients of
a power series F(x), but here the fixed length tails of these partial sums are of particular
interest. For L a nonnegative integer let

fL(n) := f(n) + · · · + f(n− L) .

For a pgf A(x) whose coefficients are eventually positive, the least nonnegative integer
L such that a(n) > 0 for n ≥ L is called the conductor 3 of A(x); designate it by LA. As the
following lemma shows, the coefficients of such a pgf enjoy a weak form of monotonicity
that leads to monotonicity for aL(n) for L ≥ LA. Furthermore, the study of aL(n) leads
to powerful methods for showing that a(n) satisfies RT1.

Lemma 4.1. Let A(x) be a pgf whose coefficients are eventually positive. Then for any
L ≥ LA,

(a) a(n) ≥ a(m) if n−m ≥ L ;

(b) aL(n) is nondecreasing for all n ;

(c) aL(n) is positive for n ≥ LA ;

(d) amL(n) ≤ m · aL(n) for m = 1, 2, · · · and n ≥ 0 .

Proof. A(x) satisfies (1), so let `1, `2, . . . be the (possibly finite) nondecreasing sequence
of positive integers consisting of exactly p(n) occurrences of each n ≥ 1. For m ≥ 1 let
Vm be the set of nonnegative integer solutions of the equation

∑
`ixi = m. Then (1)

gives a(m) = |Vm| for m ≥ 1.

3Wilf [14], p. 97, uses this name in the case that p(n) ∈ {0, 1}. He mentions that given such a p(n)
that is eventually 0, the Frobenius Problem of computing LA seems to be a difficult problem.
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Suppose a(j) > 0. This means Vj 6= Ø, so choose a ~d ∈ Vj. Then for any m ≥ 1 and

~c ∈ Vm one has ~c + ~d ∈ Vm+j . This shows that |Vm| ≤ |Vm+j| since ~c 7→ ~c + ~d is an
injection from Vm to Vm+j . Consequently we have proved:

a(j) > 0 implies a(m) ≤ a(m+ j) for m ≥ 1 . (3)

For n−m ≥ LA one has a(n−m) > 0 from the definition of LA; then (3) gives a(m) ≤
a
(
m+ (n−m)

)
= a(n). This proves (a). For (b) note that

aL(n + 1) − aL(n) = a(n+ 1) − a(n− L) ≥ 0

by part (a). For n ≥ LA clearly aL(n) ≥ a(n) > 0; this is (c). Finally for (d) one has

amL(n) ≤
m−1∑
j=0

L∑
i=0

a(n− jL− i) =
m−1∑
j=0

aL(n− jL)

≤
m−1∑
j=0

aL(n) = m · aL(mL) .

Lemma 4.2. Let A(x) be a pgf with a(n) eventually positive, and suppose L ≥ LA is
an integer such that ∣∣a(n) − a(n− 1)

∣∣ = o
(
aL(n)

)
.

Then
a(n− 1)

a(n)
→ 1 as n→ ∞ .

Proof. Let ε > 0 be given and choose a positive integer M such that for n ≥M∣∣a(n) − a(n− 1)
∣∣ ≤ ε

L(L+ 1)
aL(n).

For n ≥M + L choose ñ and n̂ from {n− L, . . . , n} such that

a(ñ) ≤ a(j) ≤ a(n̂) for n− L ≤ j ≤ n .

Then for n ≥M + L

0 ≤ a(n̂) − a(ñ) ≤
n∑

j=n−L+1

∣∣a(j) − a(j − 1)
∣∣

≤ ε

L(L+ 1)

n∑
j=n−L+1

aL(j)

≤ ε

L+ 1
aL(n)
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≤ εa(n̂) ,

and thus, as 0 < a(ñ) ≤ a(n) ≤ a(n̂) for n ≥M + L,

1 − ε ≤ a(ñ)

a(n̂)
≤ a(n− 1)

a(n)
≤ a(n̂)

a(ñ)
≤ (1 − ε)−1 .

From this it follows that a(n− 1)/a(n) → 1 as n→ ∞ .

Lemma 4.3. Suppose A1(x) and A2(x) are two pgfs and L ≥ LA a positive integer such
that, with A(x) = A1(x) ·A2(x),

(i)
a1(n− 1)

a1(n)
→ 1 ;

(ii) aL
2 (n) = o

(
aL(n)

)
.

Then as n→ ∞ ,
a(n− 1)

a(n)
→ 1 .

Proof. Given ε > 0 choose a positive integer M that is a multiple of L and such that for
n ≥M , ∣∣a1(n) − a1(n− 1)

∣∣ ≤ ε

2
a1(n) .

Then there are positive constants C1, C2 such that for n ≥M ,

∣∣a(n) − a(n− 1)
∣∣ =

∣∣∣ n∑
j=0

(
a1(j) − a1(j − 1)

)
a2(n− j)

∣∣∣
≤

n∑
j=M

∣∣a1(j) − a1(j − 1)
∣∣a2(n− j)

+
∑
j<M

∣∣a1(j) − a1(j − 1)
∣∣ · a2(n− j)

≤ ε

2

n∑
j=M

a1(j)a2(n− j) + C1

∑
j<M

a2(n− j)

≤ ε

2

n∑
j=0

a1(j)a2(n− j) + C2

∑
j≤M

a2(n− j)

=
ε

2
a(n) + C2a

M
2 (n)

≤ ε

2
a(n) + C2

M

L
aL

2 (n) .
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Now choose N ≥M such that for n ≥ N

C2
M

L
aL

2 (n) ≤ ε

2
aL(n) .

Then for n ≥ N , ∣∣a(n) − a(n− 1)
∣∣ ≤ εaL(n) .

Thus
∣∣a(n)−a(n−1)

∣∣ = o
(
aL(n)

)
, so by Lemma 4.2 it follows that a(n) satisfies RT1.

Theorem 4.4 (Sandwich Theorem). Suppose

Ȧ(x) :=

∞∑
n=0

ȧ(n)xn =

∞∏
n=1

(1 − xn)−ṗ(n)

is a reduced partition identity with

ȧ(n− 1)

ȧ(n)
→ 1 as n→ ∞ .

Then any partition identity

A(x) :=

∞∑
n=0

a(n)xn =

∞∏
n=1

(1 − xn)−p(n) (4)

satisfying
ṗ(n) ≤ p(n) = O

(
ȧ(n)

)
(5)

will be such that
a(n− 1)

a(n)
→ 1 as n→ ∞ .

Proof. Clearly
A(x) = Ȧ(x) · Ä(x)

where

p̈(n) := p(n) − ṗ(n)

Ä(x) =

∞∏
n=1

(1 − xn)−p̈(n) .

If p̈(n) is eventually 0 then Theorem C gives the conclusion, for in this case the reduced
form of Ä(x) satisfies RT1 by Theorem D.

So assume p̈(n) is not eventually 0. Choose positive integers d1 > d2 > 1 such that
p̈(d1) and p̈(d2) are positive. Let

A1(x) := (1 − xd1)−1(1 − xd2)−1Ȧ(x) (6)
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A2(x) :=
(
1 − xd1

)(
1 − xd2

)
Ä(x)

P2(x) := −xd1 − xd2 +

∞∑
n=1

p̈(n)xn

H2(x) := P2(x) + P2(x
2)/2 + · · ·

Bj(x) := (1 − x)−jȦ(x) for j = 1, 2 . (7)

Then

A(x) = A1(x)A2(x) (8)

A2(x) = exp
(
H2(x)

)
. (9)

Our goal is to show that A1(x) and A2(x) satisfy the conditions of Lemma 4.3. Applying
Theorem C to (6) one has

a1(n− 1)

a1(n)
→ 1 ;

so Schur’s Tauberian Theorem applied to (6) gives

d1d2 · a1(n) ∼ [xn](1 − x)−2Ȧ(x) = b2(n) . (10)

From (7) one readily sees that

b2(n) = b1(0) + · · · + b1(n)

b1(n− 1)

b1(n)
→ 1 as n→ ∞ ;

so
b1(n)

b2(n)
→ 0 as n→ ∞ .

This, with (10), shows b1(n) = o
(
a1(n)

)
, that is

n∑
j=0

ȧ(j) = o
(
a1(n)

)
. (11)

Differentiating both sides of (9) with respect to x and equating coefficients gives

na2(n) =
n∑

j=1

jh2(j) · a2(n− j) . (12)

By (5), since p2(n) ≤ p(n) one has

p2(n) = O
(
ȧ(n)

)
.

From this and the fact that ȧ(0) = 1 it follows that there is a C > 0 such that for n ≥ 1 ,

n∑
j=1

p2(j) ≤ C

n∑
j=0

ȧ(j) . (13)
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The definition of h2(n) and items (11), (13) yield

nh2(n) =
∑
j|n

jp2(j) ≤ n
n∑

j=1

p2(j)

≤ Cn
n∑

j=0

ȧ(j) = o
(
na1(n)

)
.

Let L = LA. Given ε > 0 choose M to be a multiple of L such that

nh2(n) <
ε

2
· na1(n) for n ≥M . (14)

By (8) one has, for all n ,
a2(n) ≤ a(n) . (15)

There is a positive constant K such that, for n ≥M ,

na2(n) =

n∑
j=M

jh2(j)a2(n− j) +
∑
j<M

jh2(j)a2(n− j) by (12)

≤
n∑

j=M

ε

2
na1(j)a2(n− j) +

∑
j<M

a2(n− j)jh2(j) by (14)

≤ n
ε

2
a(n) + KaM

2 (n) by (8)

≤ n
ε

2
a(n) + KaM(n) by (15) ;

so

a2(n) ≤ ε

2
a(n) +

KM

L

aL(n)

n
.

Thus for n ≥M , using Lemma 4.1 (b), (d),

aL
2 (n) ≤ ε

2
aL(n) +

KM

L

L∑
j=0

aL(n− j)

n− j

≤ ε

2
aL(n) +

KM

L(n− L)

L∑
j=0

aL(n)

=
ε

2
aL(n) +

KM(L+ 1)

L(n− L)
aL(n) ;

so by choosing N ≥M such that for n ≥ N ,

KM(L+ 1)

L(n− L)
≤ ε

2
,

one has, for n ≥ N ,

aL
2 (n) ≤ εaL(n) .

Thus aL
2 (n) = o

(
aL(n)

)
, so a(n− 1)/a(n) → 1 as n→ ∞, by Lemma 4.3.
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4.1 A New Proof of Bell’s Polynomial Bound Theorem

The following theorem is one of our favorites for proving the RT1 property; it is at the
very heart of our considerable generalization of the Bateman and Erdős results in [6].

Theorem 4.5 (Bell [3]). For a reduced partition identity

A(x) :=
∞∑

n=0

a(n)xn =
∞∏

n=1

(1 − xn)−p(n)

with p(n) = O
(
nγ

)
one has

a(n− 1)

a(n)
→ 1 as n→ ∞ .

Proof. For the case that rank(p) < ∞ simply apply Theorem D. Now suppose that
rank(p) = ∞. Since the partition identity is reduced we have gcd

(
n : p(n) > 0

)
= 1.

Choose a positive integer M such that gcd
(
n ≤ M : p(n) > 0

)
= 1 and such that there

are at least γ + 2 positive integers n ≤M with p(n) > 0. Let

ṗ(n) :=

{
p(n) if n ≤M

0 if n > M.

Then 0 ≤ ṗ(n) ≤ p(n) holds for n ≥ 1 ; also

(i) ṗ(n) is eventually 0,

(ii) ṗ(n) is equal to p(n) on at least γ+ 2 values of n for which p(n) does not vanish, so
the rank of ṗ(n) is at least γ + 1; and

(iii) the gcd of the n for which ṗ(n) does not vanish is 1.

Condition (iii) says that the partition identity determined by ṗ(n) , namely

∞∑
n=0

ȧ(n)xn =
∞∏

n=1

(1 − xn)−ṗ(n)

is reduced. Clearly ṗ(n) ≤ p(n). By Theorem D there is a positive constant C such that
ȧ(n) ∼ C · nr−1 where r := rank(ṗ(n)) ≥ γ + 2. This shows that ȧ(n) satisfies RT1 and,
in view of the polynomial bound O(nγ) on the growth of p(n), p(n) = O

(
ȧ(n)

)
. Now

that we have ȧ(n) satisfying RT1 and

ṗ(n) ≤ p(n) = O
(
ȧ(n)

)
,

the Sandwich Theorem gives the conclusion.
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4.2 Showing p(n) = O
(
ȧ(n)

)
is best possible

An example is given to show that the upper bound condition on the Sandwich Theorem
does not allow for any obvious improvement such as p(n) = O

(
nk · ȧ(n)

)
.

Let f(n) ≥ 1 be a positive nondecreasing unbounded function. An example is con-
structed of a pgf Ȧ(x) satisfying RT1 for which one can find a p(n) satisfying

ṗ(n) ≤ p(n) = O
(
f(n)ȧ(n)

)
but a(n) fails to satisfy RT1. This shows that Theorem 4.4 is, in an important sense, the
best possible. f(n) can be replaced by a function which is unbounded (but not necessarily
nondecreasing) and the result will still be true, but it requires a little more detail.

The construction of Ȧ(x) proceeds by recursion, essentially by defining ṗ(n) on longer
and longer initial segments of the natural numbers. Let

m1 := 1

αj := 1 +
1

1 + j
for j ≥ 0

ṗ0(n) := 1 for n ≥ 1

ṗ1(n) := 2n−1 for n ≥ 1 .

Given a ṗk(n), of define ȧk(n) by

Ȧk(x) :=
∑
n≥0

ȧk(n)xn =
∏
n≥1

(
1 − xn

)−ṗk(n)
.

Let Φ(k) be the conjunction of the following three assertions:

(a) ṗk−1(mk) > mk

(b) [xn](1 − x)−k · Ȧk−1(x) < αk−1 · f(n) for n > mk

(c) ṗk(n) =

{
ṗk−1(n) if 1 ≤ n ≤ mk

bαn−mk
k−1 · ṗk−1(mk)c if n > mk .

It is easy to check that Φ(1) holds. We claim:

Given mj , ṗj(n), and ȧj(n) for 1 ≤ j ≤ k, such that each of the conditions

Φ(1), · · · , Φ(k)

holds, one can find mk+1, ṗk+1(n), and ȧk+1(n) such that Φ(k + 1) holds.
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To do this one only needs to find an mk+1 that satisfies (a) and (b) as one can use (c)
to define ṗk+1(n). One can find such an mk+1 because Theorem B leads to

ȧk(n− 1)

ȧk(n)
→ 1

αk
,

and this in turn allows us to invoke Schur’s Tauberian Theorem to obtain

[xn](1 − x)−kȦk(x)

ȧk(n)
→

( αk

αk − 1

)k

< ∞.

Note that for k any positive integer one has ṗk−1(n) agreeing with ṗk(n) on the interval
1 ≤ n ≤ mk. One arrives at ṗ(n) by letting

ṗ(n) := ṗk(n) for any k such that n ≤ mk+1 .

Then ṗ(n) satisfies RT1 since for n ≥ mk one has

ṗ(n) ≤ αk ·
(
1 + ṗ(n− 1)

)
ṗ(n) → ∞
αk → 1.

Thus by Theorem B, ȧ(n) satisfies RT1.
Now define a p(n) that lies between ṗ(n) and 3f(n)ȧ(n) for which a(n) does not satisfy

RT1. Put n1 = 1 and let Ψ(k) be the conjunction of the following two assertions:

(a) pk(n) =

{
2bf(nk)ȧ(nk)c + 1 if n = nk

ṗ(n) otherwise ,

(b) ak(nk) < fk(nk)ȧ(nk) .

As before, given a pk(n) define the corresponding ak(n) by

Ak(x) :=
∑
n≥0

ak(n)xn =
∏
n≥1

(
1 − xn

)−pk(n)
.

Clearly Ψ(1) holds, and we claim:

Given mj , pj(n), and aj(n) for 1 ≤ j ≤ k, such that each of the conditions

Ψ(1), · · · , Ψ(k)

holds, one can find mk+1, pk+1(n) and ak+1(n) such that Ψ(k + 1) holds.

One only needs to find an nk+1 that satisfies (b), and this is possible since

a(n) ≤ [xn](1 − x)−ṗ(n1)−···−ṗ(nk) · Ȧ(x)
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holds, by construction, for infinitely many n.
Note that for k any positive integer one has pk−1(n) agreeing with pk(n) on the interval

1 ≤ n < nk. One arrives at p(n) by letting

p(n) := pk(n) for any k such that n ≤ nk .

Now we want to show that a(n) does not satisfy RT1. Notice that a(n) is nondecreasing
(as p(1) > 0) and

a(nk) ≥ p(nk) = 2bf(nk)ȧ(nk)c + 1 .

Let n ∈ [nk, nk+1]. Then
ak−1(n) < f(n)ȧ(n) ,

so
a(nk − 1) < f(nk)ȧ(nk)

and thus
a(nk)

a(nk − 1)
≥ 2 .

One has
ṗ(n) ≤ p(n) = O(f(n)ȧ(n))

and an infinite sequence nk with

a(nk)/a(nk − 1) ≥ 2 ,

so a(n) certainly does not satisfy RT1 .

5 The Eventual Sandwich Theorem

A partition function a(n), satisfying a partition identity

A(x) :=
∞∑

n=0

a(n)xn =
∞∏

n=1

(1 − xn)−p(n) ,

can be notoriously sensitive to changes in p(n) . However if p(n) satisfies RT1 then the
situation is much more stable. The next two lemmas show that if one removes any
finite number of factors from the product expression in a partition identity and puts
back the same number of factors, but possibly with different powers of x involved, then
the resulting partition function is asymptotic to a positive constant times the original
partition function. But first some definitions.

Given a function f(n) let F (x) :=
∑

n≤x f(n), the partial sum function of the f(n).
We say that g(n) is a shuffle of f(n) if G(x) is eventually equal to F (x). This is the same
thing as saying that f(n) is eventually equal to g(n) and

∑
n f(n) − g(n) = 0.

The notation δn=k means the Kronecker function that takes the value 1 if n = k and
otherwise it is zero. Given integers c 6= d the shuffle g(n) := f(n) − δn=c + δn=d of f(n)
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is called the (c,d)-exchange of f(n). Note that any shuffle g(n) of f(n) can be obtained
as a sequence of exchanges starting with f(n).

Given f(n) as a function on the nonnegative integers one can visualize a shuffle of
f(n) by picturing f(n) as a collection of urns labelled by the positive integers with f(n)
marbles in urn n. To carry out a (c, d)-exchange you take exactly one marble from urn
c and move it to urn d. A shuffle consists of taking a finite number of marbles from the
collection of urns and putting them back in the urns in any way desired. Clearly any such
shuffle of the contents of the urns can be achieved by finitely many exchanges, moving
one marble at a time. The next two lemmas say that if we shuffle a component count
function p(n) that satisfies RT1 then the impact on the partition count function a(n) is
merely to change the asymptotics by a positive constant factor.

Lemma 5.1 (The Exchange Lemma). Let p1(n) satisfy RT1. If p1(d1) > 0 and d2 is a
positive integer distinct from d1 let p2(n) be the (d1, d2)-exchange of p1(n). Then

a1(n)

a2(n)
∼ d2

d1
.

Proof. We are given that p1(n) satisfies RT1 , and since p2(n) is eventually equal to p1(n)
it must also satisfy RT1. Thus by Theorem B the corresponding partition count functions
a1(n) and a2(n) satisfy RT1 .

Now from p2(n) := p1(n) − δn=d1 + δn=d2 we have

p1(n) + δn=d2 = p2(n) + δn=d1 ,

which means that the corresponding pgfs A1 and A2 are related by

(1 − xd1) · A1(x) = (1 − xd2) · A2(x) .

Multiplying both sides by (1 − x)−1 gives

(1 + x+ · · · + xd1−1) · A1(x) = (1 + x+ · · ·+ xd2−1) · A2(x) ,

and thus

a1(n) + a1(n− 1) + · · · + a1(n− d1 + 1) = a2(n) + a2(n− 1) + · · ·+ a2(n− d2 + 1).

As both a1(n) and a2(n) satisfy RT1 we have, for any j, ai(n− j) ∼ ai(n), so

d1 · a1(n) ∼ d2 · a2(n),

proving the lemma.

Lemma 5.2 (Shuffle Lemma). Let p1(n) satisfy RT1 and suppose p2(n) is a shuffle of
p1(n). Then for some constant c > 0

a2(n) ∼ c · a1(n) .
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Proof. One can transform p1(n) into p2(n) by a finite sequence of exchanges, so Lemma
5.1 gives the proof.

One of the difficulties in applying the Sandwich Theorem is that one needs to have
ṗ(n) ≤ p(n) for all n ≥ 1, but often one only has the ‘eventual’ result ṗ(n) � p(n). The
next theorem shows that if ṗ(n) satisfies RT1 then one has some much appreciated leeway,
namely given ṗ(n) � p(n) = O

(
ȧ(n)

)
one can often turn the ‘�’ into a ‘≤’ by applying

a suitable shuffle to ṗ(n).

Theorem 5.3 (The Eventual Sandwich Theorem). Suppose

(i) ṗ(n) satisfies RT1

(ii) ṗ(n) � p(n) = O
(
ȧ(n)

)
(iii)

∑
n

(
p(n) − ṗ(n)

) ≥ 0 .

Then
a(n− 1)

a(n)
→ 1 as n→ ∞ .

Proof. First we want to show that there is a shuffle p̂(n) of ṗ(n) with p̂(n) ≤ p(n) for
n ≥ 1. The condition ṗ(n) � p(n) from (ii) and condition (iii) are certainly necessary
for this to be possible. They are also sufficient. To see this note that they guarantee the
existence of an N such that p(n) ≥ ṗ(n) for n ≥ N and

N∑
n=1

(
p(n) − ṗ(n)

) ≥ 0. (16)

Then turning to our ‘labelled urns with marbles’ modelling of the functions p(n) and ṗ(n)
the inequality (16) says that p(n) has at least as many marbles in its first N urns as ṗ(n)
does. Consequently one can shuffle (just the contents of the first N urns of) ṗ(n) and
obtain a function p̂(n) such that p̂(n) ≤ p(n) for n ≥ 1 .

Now p(n) = O
(
â(n)

)
since p(n) = O

(
ȧ(n)

)
by (ii); and since ȧ(n) = O

(
â(n)

)
by

Lemma 5.2. This means we are in a position to apply the Sandwich Theorem since

p̂(n) ≤ p(n) = O
(
â(n)

)
,

and since p̂(n) satisfies RT1 (note that Lemma 5.2 shows that RT1 is preserved by shuffles).
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6 The Classical Partition Function Heirarchy

Thanks to Theorem B that shows RT1 is preserved in the passage from p(n) to a(n), one
can start with a favorite function satisfying RT1 and, by iterating this procedure, create
an infinite heirarchy of “intervals” [p(n),O

(
a(n)

)
] to use to prove that partition functions

satisfy RT1; and thus to prove logical 0–1 laws.
Our favorite heirarchy we call the Classical Partition Function heirarchy, and it is

defined recursively as follows:

part0(n) := 1 for n ≥ 1
∞∑

n=0

partk+1(n)xn =

∞∏
n=1

(
1 − xn

)−partk(n)
.

Clearly the original partition function part(n) is part1(n) in this heirarchy. Fortunately the
asymptotics of this heirarchy have been well-studied using the tools of analytic number
theory. One could use these results to see that each of the functions partk(n) indeed
satisfies RT1; but invoking Theorem B seems much simpler. However these asymptotics
allow us to draw other conclusions that strengthen our use of Sandwich Theorems. Thus
they are given here in detail, following Petrogradsky’s presentation.

Theorem 6.1 (See Petrogradsky [13], Theorem 2.1). In the following the ‘input’
p(n) to a partition identity is in the left column, the ‘output’ a(n) is in the right column,
where α ≥ 1 and k ≥ 1, and the constants θ and κ are defined after the table:

p(n) a(n)(
σ + o(1)

) · nα−1 exp
((
θ + o(1)

) · nα/(α+1)
)

exp
(
(σ + o(1)

) · nα/(α+1)
)

exp

((
κ + o(1)

) · n

(logn)1/α

)
exp

((
σ + o(1)

) · n

(log(k) n)1/α

)
exp

((
σ + o(1)

) · n

(log(k+1) n)1/α

)
where

θ =
(
1 + 1/α

) · (σζ(α+ 1) · Γ(α+ 1)
)1/(α+1)

κ = α ·
( σ

α + 1

)1+(1/α)

.

It is easy to verify that the p(n) discussed in Theorem 6.1 do indeed satisfy RT1 , and
the usual Hardy-Ramanujan asymptotics for part(n) fit into the above table:

part(n) ∼ exp
(
π
√

2n/3
)

4
√

3n

= exp
((
π
√

2n/3
) − (

log
(
4
√

3n
))
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= exp

((
π
√

2/3 − log
(
4
√

3n
)

√
n

)
· √n

)
= exp

((
π
√

2/3 + o(1)
) · √n)

= exp
((
σ + o(1)) · √n

)
,

where
σ = π

√
2/3 .

Starting with this one can apply Theorem 6.1 to find the asymptotics for the classical
partition heirarchy.

Corollary 6.2. Defining log(0)(n) = 1 one has

partk(n) = exp

((
Ck + o(1)

) · n

(log(k−1) n)1/2

)
,

for k ≥ 1 and for suitable positive constants Ck .

Corollary 6.3. For k, r ≥ 1 and ε > 0 one has

nn1−ε · partk(n) = o
(
partk+1(n)

)
partk(n)r = o

(
partk+1(n)

)
.

Corollary 6.4. Given ε > 0 and k, r ≥ 1, suppose p(n) is a component function that
satisfies one of the conditions:

partk(n) � p(n) = O
(
partk(n)r

)
partm(n)

nn1−ε � p(n) = O
(
partm(n)

)
.

Then a(n) satisfies RT1.

Proof. Apply the Eventual Sandwich Theorem to Corollary 6.3.

Theorem 6.1 offers further concrete examples of function intervals which we can use
to prove a(n) satisfies RT1. These will be featured in the examples in [6].

Corollary 6.5. Suppose a partition identity satisfies one of the following conditions on
p(n), where C1 > 0, ε > 0, k ≥ 1, and α ≥ 1:

(1) 1 � p(n) = O
(
eπ
√

2
3
n
/
n
)

(2) C1 � p(n) = O
(
e

(
π
√

2
3
C1 − ε

)√
n
/
n
)

(3) C1n
α−1 � p(n) = O

(
eC2nα/(α+1)

)
,

where C2 =
(
1 +

1

α

)
·
(
C1ζ(α+ 1)Γ(α+ 1)

)1/(α+1)

− ε
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(4) eC1nα/(α+1) � p(n) = O
(
eC2n/(log n)1/α

)
,

where C2 = α ·
( C1

α + 1

)1+1 /α

− ε ,

(5) eC1n/(log(k) n)1/α � p(n) = O
(
e(C1−ε)·n

/(
log(k+1) n

)1/α))
.

Then
a(n− 1)

a(n)
→ 1 as n→ ∞ .

Proof. Apply the Eventual Sandwich Theorem to Theorem 6.1.

7 Logical 0–1 Laws

If we want a really expressive logic for studying relational structures (like graphs) then
we can choose higher order logic where one can quantify over elements of the structures,
over subsets of the structures, over functions on and between the structures, etc. In other
words, the kind of logic that we use in everyday mathematics. This powerful kind of logic
was introduced by Frege in 1879 and further developed in the Principia Mathematica of
Whitehead and Russell (1910–1913). Unfortunately at this level of generality there are
no tools from the logic that we can apply to prove mathematical theorems. By accepting
the limitations of a restricted language like monadic second order logic we forfeit many
interesting topics that are beyond the expressive power of the logic; but there are also
many that we can access, and for such we have special tools (in particular the Ehrenfeucht-
Fraisse games) to give uniform proofs for results over diverse collections of structures.

7.1 MSO Logic

Monadic second order logic4 for relational structures is just the usual first order logic
augmented with variables and quantifiers for unary predicates. Thus one can “talk about”
arbitrary subsets U of a structure as well as the elements x of the structure. We will give
a precise description of MSO logic for the relational language with one binary relation
symbol as it is fairly simple to present, and it captures the essential details of MSO logic
when working with any number of relations of any number of arguments.

7.2 The Syntax of MSO Logic for One Binary Relation

One starts with

• a binary relation symbol E ;

• a symbol = for equality ;

4See Chap. 6 of [7] for a much more detailed introduction to MSO.
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• symbols for propositional connectives, say ¬ (not), ∧ (and), ∨ (or), → (implies), ↔
(iff) ;

• the quantifier symbols ∀ (for all) and ∃ (there exists) ;

• a set X of first order variables ;

• a set U of monadic second order variables.

The MSO formulas are defined as follows, by induction:

• the atomic formulas are expressions of the form

E(x, y) , x = y , and U(x) ;

• if ϕ and ψ are MSO formulas then so are

(¬ϕ) (ϕ ∨ ψ) (ϕ ∧ ψ) (ϕ→ ψ) (ϕ↔ ψ);

• if ϕ is a MSO formula then so are (∀xϕ), (∃xϕ), (∀U ϕ) and (∃U ϕ).

The MSO sentences are the MSO formulas with no free occurrences of variables.

7.3 The Semantics of MSO Logic for One Binary Relation

The sentences of MSO logic for one binary relation are used to express properties of
relational structures G = (G,E) consisting of a set G (the universe of G) equipped with
a binary relation E between the elements of G. Such a structure G is commonly called a
digraph, G its set of vertices and E the edge relation of G. If a MSO sentence ϕ is true
in a structure G we say G satisfies ϕ as well as G is a model of ϕ .5

By a MSO class (of relational structures) we will always mean the finite models of a
MSO sentence. For a basic example of an MSO class of digraphs we have:

• k-colorable digraphs where k is a fixed positive integer. To show that this is a
MSO class we need a MSO sentence that describes this class—just say that there
exist k predicates U1, . . . , Uk (the colors) such that for every vertex x of the digraph
exactly one of the assertions Ui(x) holds, that is, x satisfies exactly one of the
properties Ui (x has exactly one of the colors Ui) ; and if E(x, y) holds then x and
y satisfy distinct Ui (have distinct colors) . Here is a MSO sentence that defines

5Much of modern mathematical logic studies connections between the form of sentences and the
properties of the structures that satisfy those sentences. For example if ϕ is a universal sentence, that
is, a sentence ϕ of the form (∀x1) · · · (∀xk)ψ(x1, . . . , xk) with no quantifiers in ψ, then given any model
G of ϕ we know that every (induced) subdigraph of G is a model of ϕ.
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(axiomatizes) 3-colorable digraphs.

(∃U1)(∃U2)(∃U3)
[

(∀x)
[(
U1(x) ∨ U2(x) ∨ U3(x)

) ∧ (
U1(x) → ¬U2(x) ∧ ¬U3(x)

)
∧ (

U2(x) → ¬U1(x) ∧ ¬U3(x)
)]

∧ (∀x)(∀y)
[
E(x, y) →((

U1(x) → ¬U1(y)
) ∧ (

U2(x) → ¬U2(y)
) ∧ (

U3(x) → ¬U3(y)
))]

.

For the reader who has not worked with formal logic systems it is worth noting that it
is not so easy to give a definitive quick snapshot of the kinds of mathematical concepts
that can be expressed in MSO; one learns this by accumulating experience with examples.
But perhaps the sense that there are genuine limitations can be conveyed by saying that
classes of relational structures whose definition involves an infinite number of parameters
(for example, saying that each vertex of a graph has a prime degree) usually cannot be
defined by a sentence in MSO logic.

7.4 Adequate Classes with a MSO 0–1 Law

Given a class A of finite relational structures let P denote the subclass of connected struc-
tures. A is adequate if it is closed under disjoint union and extracting components. A being
adequate simply guarantees that the generating function A(x) is a partition generating
function (satisfying a partition identity). Well known examples include: graphs, regular
graphs, functional digraphs, permutations, forests, posets and equivalence relations.

A perfectly general way to construct an adequate class is to start with a collection P
of finite connected structures and let A be the class of finite structures with components
from P . For example if we choose chains as the components then the adequate class is
linear forests.

A class A of finite relational structures has a MSO 0–1 law 6 if for every monadic
second order sentence ϕ the probability that ϕ holds in a randomly chosen member of A
is either 0 or 1. More precisely, the proportion of structures in A of size n that satisfy ϕ
tends either to 0 or 1 as n→ ∞. A good example is the class of free trees (McColm [12]).

Define the count functions aA(n) for A and pA(n) for P as follows (counting up to
isomorphism):

• aA(n) is the number of members of A that have exactly n elements in their universe.

6The original study of logical 0–1 laws in the 1970s was for first-order logic, the main examples being
the classes Graphs and Digraphs. It turns out that these clases do not have a MSO 0–1 law. Clearly
these classes are fast growing, that is, the radius of convergence of the generating function A(x) is 0. In
the 1970s Compton introduced his RT1 test for slowly growing adequate classes to have a logical 0–1 law.
At first he proved this for first-order logic; then for MSO logic. See [10] for a comprehensive summary.
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• pA(n) is the number of members of P that have exactly n elements in their universe.

Compton ([8], [9]) showed:

if A is an adequate class and aA(n) satisfies RT1 then A has a monadic second-
order 0–1 law.

Theorem 4.4 shows us how to find a vast array of partition identities satisfying RT1 ,
and thus one has a correspondingly vast array of classes of relational structures7 with
a monadic second-order 0–1 law. Such examples are of course custom made, and may
appear artificial—it is more satisfying to prove MSO 0–1 laws for naturally occurring
classes of structures. We will conclude this section with three such examples,

• Forests of bounded height

• Varieties of MonoUnary Algebras

• Acyclic Graphs of bounded diameter,

to illustrate the power of our new results. Before discussing these examples let it be
mentioned that prior to this paper the techniques for proving a logical 0–1 law for adequate
classes A (based solely on knowledge of aA(n)) relied on (A1)–(A4).

7.5 Forests of Bounded Height

In this example one can view a forest as either a poset or as graph with rooted trees. In
the poset case, the height of a forest is one less than the maximum number of vertices in
a chain in the forest. Each of the classes is defined by finitely many universally quantified
sentences. For example in the poset case (where the tree roots are at the top) one can
use

(∀x) (
x ≤ x

)
(∀x∀y) (

x ≤ y& y ≤ z → x ≤ z
)

(∀x∀y)
((
x ≤ y& x ≤ z

) → (
y ≤ z

) ∨ (
z ≤ y)

)
.

Let Fm be the collection of forests of height at most m, and let pm(n) and am(n) be its
counting functions. For m = 0 one has p0(1) = 1, and otherwise p0(n) = 0; and a0(n) = 1
for all n. For m = 1 clearly p1(n) = 1 for all n ≥ 1, so a1(n) = part(n). For m ≥ 1 it is

7Given any partition function a(n) satisfying RT1 there is a simple way to create an adequate class
A with aA(n) = a(n) . Start with the class of graphs G. The number pG(n) of connected graphs of size n
grows exponentially, certainly faster than p(n) as the radius of convergence of

∑
pG(n)xn is 0. Of course

p(n) may exceed pG(n) for a finite number of values, so add enough coloring predicates Red(x), Blue(x)
etc., to the language of graphs so that the number of connected colored graphs of size n exceeds p(n) for
all n ≥ 1. Now let P be a subclass of this class Gc consisting of connected colored graphs with exactly
p(n) members of size n. Then let A be the class of all finite colored graphs whose components come from
P . The partition function aA(n) of A will be precisely the original a(n).
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easy to see that removing the root from a tree in Fm gives a forest in Fm−1, and indeed
this operation is a bijection between the trees of Fm and all of Fm−1. Thus for m ≥ 1

pm(n) = am−1(n− 1) .

By Theorem B and induction on m we see that am(n) satisfies RT1 ; consequently each
Fm has a monadic second-order 0–1 law.

The proof in this example did not require our new results, just Theorem B. But it is a
new result, and it is needed to establish the ground step in the next example which does
use the Sandwich Theorem.

7.6 Varieties of MonoUnary Algebras

A monounary algebra S = (S, f) is a set with a unary operation. It has long been known
that every variety of monounary algebras can be defined by a single equation, either one
of the form fm(x) = fm(y) or fm+k(x) = fm(x). Only the trivial variety defined by
x = y has unique factorization. However one can view any class of algebras as relational
structures by simply converting n-ary operations into n + 1-ary relations. (Historically
this is how logic developed, with function symbols being added later.) Although this is not
the usual practice in algebra, for the purpose of logical properties it can be considered an
equivalent formulation. If one treats the operation f of a monounary algebra as a binary
relation then one obtains a digraph with the defining characteristics of a function, namely
each vertex has a unique outdirected edge (possibly to itself). This formulation does not
help with varieties defined by an equation of the form fm(x) = fm(y) as such a variety
is not closed under disjoint union. However for the variety of monounary algebras Mm,k

defined by the equation fm+k(x) = fm(x), the relational formulation gives an adequate
class of relational structures.

The connected models of the identity fm+k(x) = fm(x) look like a directed cycle of d
trees of height at most m, where d|k . Let the count functions for Mm,k be am,k(n) and
pm,k(n).
Case k = 1: The unary functions satisfying an identity fm+1(x) = fm(x) can be identified
with the forests in Fm. By our previous analysis of Fm it follows that pm,1(n) and am,1(n)
satisfy RT1 ; thus the variety Mm,1 has a monadic second-order 0–1 law, for any m ≥ 1.
Case k > 1: Let pm,1,d(n) count the number of directed cycle arrangements of d compo-
nents from Mm,1. Then it is quite straightforward to see that

pm,1(n) ≤ pm,k(n) =
∑
d|k

pm,1,d(n)

≤
∑
d|k

d! · pm,1(n) ≤ k · k! · pm,1(n) = O
(
am,1(n)

)
.

By the Sandwich Theorem and the Case k = 1 it follows that am,k(n) satisfies RT1; so
the class Mm,k of monounary algebras has a monadic second-order 0–1 law.
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7.7 Acyclic Graphs of Bounded Diameter

Let Gd be the class of acyclic graphs of diameter at most d, meaning that the distance8

between any two vertices is at most d. Given a connected member of this class there is a
vertex v such that the distance from v to any other vertex is at most dd/2e + 1. Such a
vertex is in the center of the graph. Let

c(d) = dd/2e
f(d) = bd/2c .

We claim that for all n ≥ 1

pFf(d)
(n)

n
≤ pGd

(n) ≤ pFf(d)
(n) + n · pFf(d)−1

(n− 1) , (17)

where pFk
(n) is the component count function of forests of height k from the first example.

For the lower bound note that any connected member of Ff(d) becomes a connected
member of Gd by ignoring the root; and this map is at most n to 1. This gives the first
inequality in (17).

Given any class K of structures let K(n) denote the members of K of size n. For the
upper bound in (17) note that any connected member of Gd(n) turns into a connected
member of F(n) by simply designating a vertex to be the root. By choosing the root
vertex in the center one obtains a member of Fc(d)(n). By snipping at most one leaf (and
only if one has to) from the tree one has a member of Ff(d)−1(n)∪Ff(d)(n). This mapping
is an injection for the part that maps into Ff(d)(n), and at most n to one for the part
mapping into Ff(d)−1(n− 1). Then using Corollary 6.3 this gives

pFf(d)
(n)

n
≤ pGd

(n) = O
(
pFf(d)

(n)
)
.

From our first example the component function for each Fk satisfies RT1 , so by Corollary
6.4 every aGk

(n) satisfies RT1. Thus with the help of the Sandwich Theorem we have
proved that the class of acyclic graphs of diameter at most d has a monadic second-order
0–1 law.

8 Generalized Partition Identities

Generalized partition identities allow p(n) to take on nonnegative real values. Essentially
everything that has been presented goes through in this setting. The reason for restricting
attention to the case that the p(n) have nonnegative integer values is simply that this is
where the applications to combinatorics, additive number theory, and logical limit laws
are to be found. The modification of the previous results to apply to generalized partition
identities is quite straightforward.

8The distance between two vertices is the length of a shortest path connecting them, where the length
of a path with j vertices is j − 1.
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