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Abstract

We determine the combinatorial discrepancy of the hypergraph H of cartesian
products of d arithmetic progressions in the [N ]d–lattice ([N ] = {0, 1, . . . ,N − 1}).
The study of such higher dimensional arithmetic progressions is motivated by a
multi-dimensional version of van der Waerden’s theorem, namely the Gallai-theorem
(1933). We solve the discrepancy problem for d–dimensional arithmetic progressions
by proving disc(H) = Θ(N

d
4 ) for every fixed integer d ≥ 1. This extends the famous

lower bound of Ω(N1/4) of Roth (1964) and the matching upper bound O(N1/4)
of Matoušek and Spencer (1996) from d = 1 to arbitrary, fixed d. To establish
the lower bound we use harmonic analysis on locally compact abelian groups. For
the upper bound a product coloring arising from the theorem of Matoušek and
Spencer is sufficient. We also regard some special cases, e.g., symmetric arithmetic
progressions and infinite arithmetic progressions.
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1 Introduction

Let H = (X, E) denote a hypergraph, i. e., X is a finite set and E is a family of subsets
of X. Let χ : X → {−1, +1} be a 2–coloring of X. For E ∈ E define χ(E) =

∑
x∈E χ(x).

The discrepancy of H is defined by

disc(H) = min
χ

max
E∈E

|χ(E)|.

We are interested in arithmetic progressions in more than one dimension, but let us briefly
review the one–dimensional case. Let X = [N ] = {0, . . . , N − 1} and let

E := {{j, j + δ, . . . , j + lδ}|j, δ, l ∈ [N ], j + lδ ∈ X}
denote the set of arithmetic progressions on X. The investigation of the discrepancy of
the hypergraph H = (X, E) is an old issue in combinatorial discrepancy theory.

In 1927, van der Waerden proved [vdW27] that if the non-negative integers are colored
with finitely many colors, then there is an arbitrarily long arithmetic progression in one
color–class.

Investigating irregularities of arithmetic progressions, K. Roth [Rot64] exhibited another
aspect of the same phenomenon: If we focus on long arithmetic progressions, then they
might not be monochromatic but have large discrepancy. More precisely, he showed
that disc(H) = Ω(N

1
4 ). Roth himself did not believe that his lower bound is optimal,

most probably due to the fact that the probabilistic method immediately gives the upper
bound O(

√
N log N). A. Sárközy [Sár74] was the first who improved the exponent of N

and showed an upper bound of O(N
1
3
+o(1)). A breakthrough was made by J. Beck in 1981

[Bec81], who showed that the lower bound is best possible up to a polylogarithmic factor

by improving the upper bound to O(N
1
4 log

5
2 N). It lasted 30 years until J. Matoušek and

J. Spencer [MS96] finally solved the problem and proved that the upper bound is O(N
1
4 ).

In this paper we focus on the discrepancy of higher dimensional arithmetic progressions,
a problem posed by H. J. Prömel in 1996.

Definition 1.1. A d–dimensional arithmetic progression A in [N ]d is the cartesian prod-
uct of d arithmetic progressions in [N ], i. e. A =

∏d
i=1 Ai with Ai ∈ E for all

i = 1, . . . , d.

The investigation of the discrepancy of such sets is motivated by Gallai’s theorem [Rad33]
(see also [GRS90]), which can be viewed as a kind of generalization of van der Waerden’s
theorem. By Gallai’s theorem the following is true: Let t be a positive integer and
V = [t]d. Then there exist integers x1, x2, . . . , xd and δ ∈ N such that

W = {(x1 + i1δ, x2 + i2δ, . . . , xd + idδ) : 0 ≤ ij < t, j = 1, . . . , d}
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is monochromatic. Note that W is a d–dimensional arithmetic progression in the sense of
Definition 1.1.

The main result of this paper is

Theorem 1.2. Let H = ([N ]d, E) where d ≥ 1 is an integer and E is the family of all
d–dimensional arithmetic progressions in [N ]d. Then

π−dN
d
4 ≤ disc(H) ≤ cdN

d
4 ,

where c is an absolute constant. Thus disc(H) = Θ(N
d
4 ) for every fixed d.

Our proof of the lower bound is a variation of the Fourier transform method (in the
literature also called circle–method). The novelty of our proof is the application of har-

monic analysis on locally compact abelian groups, in particular the duality Ẑ ' T := {z ∈
C | |z| = 1} and the direct use of the discrepancy function. This lower bound proof can
also be found in Petra Wehr’s dissertation [Weh97].

The upper bound follows easily by using the product of d optimal colorings arising from
the theorem of J. Matoušek and J. Spencer [MS96].

Some special cases are regarded as well, among them the following: A d–dimensional
symmetric arithmetic progressions is the d–fold product of just one arithmetic progression.
Here the upper bound for the discrepancy is as in the one-dimensional case O(N

1
4 ) with

a constant independent of d and N . We conjecture that this is sharp apart from constant
factors.

2 The Lower Bound

In this section, we determine the lower bound.

Theorem 2.1. Let H = ([N ]d, E), where d ≥ 1 is an integer and E is the family of all
d–dimensional arithmetic progressions in [N ]d. Then

disc(H) ≥ π−dN
d
4 .

Roth’s proof of the lower bound in the one–dimensional case [Rot64] does not invoke the
discrepancy function directly. This might be one reason why we were not able to generalize
Roth’s proof to higher dimensions. Instead we use a different approach (which in the case
d = 1 gives a new proof of Roth’s theorem). As Roth’s proof, our method is also a
variation of the Fourier transform method. The novelty of our proof is the application of
harmonic analysis on locally compact abelian groups, in particular the duality between Ẑ
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and the torus T = {z ∈ C||z| = 1}, and the representation of the discrepancy function
as a convolution. It seems that our proof in the one dimensional case is more transparent
than Roth’s approach, although we use the abstract framework of locally compact abelian
groups as described in Rudin’s book [Rud62].

For the remainder of this paper let d denote a positive integer. In this section we consider
the group G := Zd. Note that G equipped with the discrete topology is a locally compact
abelian group. A group–homomorphism γ : G → T is called a character, the set of
characters of G is denoted by Ĝ. The convolution of two functions f, g ∈ L1(G) is defined
by (f ∗ g)(y) :=

∑
x∈G f(x)g(y − x), the Fourier transform of f is

f̂ : Ĝ → C; γ 7→
∑
x∈G

f(x)γ(−x).

Note that we have f̂ ∗ g = f̂ ĝ. Let < ·, · > denote the inner product on Rn. Using the
duality Ẑ ' T (see [Rud62]), it is straightforward to show the following proposition.

Proposition 2.2. For α ∈ [0, 1[d let γα : Zd → T ; z 7→ e2πi<α,z> denote the character
associated to α and T d := {γα|α ∈ [0, 1[d}.

(i) The dual group Ẑd of Zd is T d.

(ii) The Fourier transform f̂ of a function f ∈ L1(Zd) can be written as

f̂(γα) =
∑
z∈Zd

e−2πi<α,z>f(z).

Proof of Theorem 2.1: Before going into details, let us sketch the proof idea. We express
the discrepancy of a given d–dimensional arithmetic progression and a given 2–coloring
as the convolution of the coloring function and a characteristic function of the arithmetic
progression. Then we compute the L2–norm of this function applying the Plancherel
theorem for the group G. With an average argument (taking the sum over a special set
of d–dimensional arithmetic progressions) and using an estimate for the sum of unit roots
we are done.

We need some notation. Set

• L := 1
2

√
N ,

• ∆ := {1, . . . ,√N}d,

• J := [N ]d,

• Aj0,δ0 := {j0 + δ0i|i ∈ [L]} ∩ [N ],
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• For δ ∈ ∆ , j ∈ J define Aj,δ :=
∏d

i=1 Aji,δi
.

Define the extension χF of a 2-coloring χ of [N ]d to Zd by

χF (j) =

{
χ(j) , if j ∈ J

0 , otherwise
,

and define a (quasi–)characteristic function of A0,δ by

ηδ(k) =

{
1 , if − k ∈ A0,δ

0 , otherwise
.

An easy calculation then yields

(χF ∗ ηδ)(j) = χ(Aj,δ) (1)

for all δ ∈ ∆, j ∈ J .

As χF and ηδ have finite support, we have χF ∗ ηδ ∈ L1(Zd) ∩ L2(Zd). The Plancherel
theorem for locally compact abelian groups [Rud62] gives:

∑
j∈J

χ2(Aj,δ)
(1)
= ‖χF ∗ ηδ‖2

2

= ‖χ̂F ∗ ηδ‖2
2

= ‖χ̂F · η̂δ‖2
2

=

∫
[0,1]d

|χ̂F (γα) η̂δ(γα)|2dα. (2)

Roth [Rot64] showed the following estimate for sums of unit roots.

√
N∑

δ=1

∣∣∣∣∣
L−1∑
j=0

e2πiδjα

∣∣∣∣∣
2

≥ π−2N for arbitrary α ∈ R.
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Thus we have

∑
δ∈∆

|η̂δ(γα)|2 =
∑
δ∈∆

∣∣∣∣∣∣
∑
j∈Zd

ηδ(j)e
−2πi<j,α>

∣∣∣∣∣∣
2

=
∑
δ∈∆

∣∣∣∣∣∣
∑

j1,...,jd∈[L]

e2πi(j1δ1α1+···+jdδdαd)

∣∣∣∣∣∣
2

=
∑
δ∈∆

∣∣∣∣∣
d∏

k=1

(
L−1∑
jk=0

e2πijkδkαk

)∣∣∣∣∣
2

=
d∏

k=1

 √
N∑

δk=1

∣∣∣∣∣
L−1∑
jk=0

e2πijkδkαk

∣∣∣∣∣
2


≥ (π−2N)d = π−2dNd. (3)

The Plancherel theorem yields

‖χ̂F‖2
2 = ‖χF‖2

2 =
∑
j∈J

χ2(j) = Nd. (4)

Finally ∑
δ∈∆

∑
j∈J

χ2(Aj,δ)
(2)
=

∑
δ∈∆

∫
[0,1]d

|χ̂F (γα)η̂δ(γα)|2dα

=

∫
[0,1]d

|χ̂F (γα)|2
(∑

δ∈∆

|η̂δ(γα)|2
)

dα

(3)

≥ (π−2N)d

∫
[0,1]d

|χ̂F (γα)|2dα

(4)
= (π−2N)dNd = π−2dN2d.

The sum
∑

δ∈∆

∑
j∈J χ2(Aj,δ) consists of N

3d
2 terms. The pigeon–hole principle implies

the existence of δ ∈ ∆ and j ∈ J such that

χ2(Aj,δ) ≥ π−2dN2d

N
3d
2

= π−2dN
d
2 .

So |χ(Aj,δ)| ≥ π−dN
d
4 , and this means that the discrepancy of H = ([N ]d, E) is at least

π−dN
d
4 . This establishes the lower bound.
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3 The Upper Bound

In this section we determine the upper bound for the discrepancy of d–dimensional arith-
metic progressions:

Theorem 3.1. Let H be the hypergraph of d–dimensional arithmetic progressions in [N ]d.

Then disc(H) ≤ cdN
d
4 for an absolute constant c > 0.

We give a very general argument which solves the problem also for an arbitrary number
of colors:

Let G = (X, E) and H = (Y,F) be hypergraphs. Define the direct product of G and H by

G ×H := (X × Y, {A × B|A ∈ E , B ∈ F}).

By this definition, the hypergraph of d–dimensional arithmetic progressions is the d–fold
direct product of the hypergraph of (one-dimensional) arithmetic progressions on [N ].

Let us shortly introduce the notion of multi-color discrepancy (see also [DS03]). A c–
coloring of G is a mapping χ : X → M , where M is any set of cardinality c. For
convenience, usually one has M = [c]. For a color i ∈ [c] and a hyperedge A ∈ E the
discrepancy of A in color i with respect to χ is defined by

discχ,i(A) :=

∣∣∣∣|χ−1(i) ∩ A| − |A|
c

∣∣∣∣ ,
which measures the deviation of the actual coloring from an (ideal) balanced coloring in
respect to the color i. The discrepancy of G with respect to χ is

disc(G, χ) := max
i∈[c],A∈E

discχ,i(A),

and the discrepancy of G in c colors is

disc(G, c) := min
χ:X→[c]

disc(G, χ).

Theorem 3.2. For any c ∈ N and any two hypergraphs G and H we have

disc(G ×H, c) ≤ c disc(G, c) disc(H, c).

Proof. Pick a Latin square Q = (qij) of dimension c, i. e. Q ∈ [c][c]×[c] such that every row
and column contains every number of [c] exactly once. Note that for every c ∈ N there is
a Latin square of dimension c : Let ∗ be any group multiplication on [c]. Then qij := i ∗ j
defines a Latin square. As Q is a Latin square we may define a permutation πi of [c] for
every i ∈ [c] by the following rule: πi(j) is the unique k ∈ [c] such that qjk = i.
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Choose optimal colorings χG and χH of G and H respectively, i. e., disc(G, χG) = disc(G, c)
and disc(H, χH) = disc(H, c). Define χ : X × Y → [c] by

χ(x, y) := qχG(x)χH(y)

for all x ∈ X, y ∈ Y .

Let A ∈ E , B ∈ F . Set

ai = |χ−1
G (i) ∩ A| − |A|

c
,

bi = |χ−1
H (i) ∩ B| − |B|

c

for all i ∈ [c]. Then we have
c−1∑
i=0

ai = 0 =

c−1∑
i=0

bi. (5)

This yields

|χ−1(i) ∩ (A × B)| =

c−1∑
j=0

|χ−1
G (j) ∩ A| |χ−1

H (πi(j)) ∩ B|

=

c−1∑
j=0

(
aj +

|B|
c

)(
bπi(j) +

|A|
c

)

=
c−1∑
j=0

ajbπi(j) +
|A|
c

c−1∑
j=0

aj +
|B|
c

c−1∑
j=0

bj + c
|A||B|

c2

=

c−1∑
j=0

ajbπi(j) +
|A × B|

c
by (5).

As |ai| ≤ disc(G, c) and |bi| ≤ disc(H, c), we have∣∣∣∣|χ−1(i) ∩ (A × B)| − |A × B|
c

∣∣∣∣ =

c−1∑
j=0

ajbπi(j) ≤ c disc(G, c) disc(H, c).

This proves the theorem.

For two colors, this discrepancy notion nearly coincides with the one introduced in the
beginning of this article: We have disc(G, 2) = 2 disc(G).
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Theorem 3.3. Discrepancy is sub-multiplicative, i. e.,

disc(G ×H) ≤ disc(G) disc(H).

Proof of Theorem 3.1: It follows from Definition 1.1 that the hypergraph of d–dimensional
arithmetic progressions is nothing else than the d–fold direct product of the hypergraph
of one–dimensional arithmetic progressions. Using optimal colorings for any of the factors
of the hypergraph of d–dimensional arithmetic progressions arising from the theorem of
Matoušek and Spencer [MS96], Theorem 3.3 implies Theorem 3.1.

A problem of some interest on its own is to decide if or to what extent the discrepancy of
G×H can be smaller than the product disc(G) disc(H). The case of arithmetic progressions
might suggest equality, but this is not the case, as the following examples show:

Example 1: The hypergraph of two–element subsets of a three–element set G = ([3],
(
[3]
2

)
)

has discrepancy two (one color class has at least two elements, i.e., it contains a monochro-
matic two–set). The direct product G × G can be colored in a way that there is no
monochromatic rectangle: χ(i, i) := 1 and χ(i, j) := −1 for i, j ∈ [3], i 6= j. So
disc(G × G) ≤ 2 < 4 = disc(G)2. (Easy to see if we visualize G × G like that: The
vertices form a 3 × 3–grid, the hyperedges consist of the corners of the rectangles having
axis-parallel edges. All these rectangles have one or two points on the diagonal of the
grid, thus having discrepancy two or zero with respect to χ.)

Looking at examples like this one might ask whether the discrepancy of a direct product
is at least the discrepancy of its factors, or in an even weaker form we ask, whether the
discrepancy of a direct product of two hypergraphs of nonzero discrepancy has discrepancy
greater than 0. In general this is not true:

Example 2: Let G be the hypergraph

({1, . . . , 7}, {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3, 4, 5, 6, 7}})

as depicted in Figure 1.

1

23567 4

Figure 1: Example 2
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G does not have discrepancy 0; if so, the points 2, 3, 4 and 5 were in the same color class
leaving the edge E = {2, 3, 4, 5, 6, 7} imbalanced.

The hypergraph G×G however has discrepancy 0. The coloring depicted in Figure 2 does
the job.

1 2 3

1

2

3

4

5

6

7

4 5 6 7

Figure 2: A coloring of G × G with discrepancy 0
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4 Some Special Cases

In this section, we investigate some related problems.

4.1 Symmetric Arithmetic Progressions

First we consider d–dimensional arithmetic progressions that are the product of just one
arithmetic progression (we call them symmetric), i. e., our hypergraph HS is defined by

HS = ([N ]d, {
d∏

i=1

A|A arithmetic progression}).

At the workshop of the graduate school ,,Algorithmische Diskrete Mathematik” in Berlin
in April 1997 Walter Deuber asked about the bounds for the discrepancy of this hyper-
graph.

Note that this is a special case of our general problem in the sense that HS ⊂ H. This
shows disc(HS) ≤ cN

d
4 , but actually we have a much stronger result.

Theorem 4.1. There is a constant C independent of d and N such that

disc(HS) ≤ CN
1
4 .

We give a general solution.

Let H = (X, E) denote a hypergraph. Set Ed
sym := {Ed|E ∈ E}. We call Hd

sym :=
(Xd, Ed

sym) the d–fold symmetric direct product of H. We have

Theorem 4.2.
disc(Hd

sym) ≤ disc(H).

Proof. Let D := {(x, . . . , x)|x ∈ X} be the diagonal of Xd. For x ∈ Xd \ D set

a(x) := min{i|xi 6= xi+1}.
Define f : Xd → Xd by

f(x)i :=


xa(x)+1 if x /∈ D, i ≤ a(x)
x1 if x /∈ D, i = a(x) + 1
xi otherwise

.

Note that f(f(x)) = x for all x ∈ Xd, so f is a bijection. For all x ∈ Xd \ D the f–orbit
Of(x) of x has order 2 and consists of x and f(x). Further we have

{xi|i ∈ [d]} = {f(x)i|i ∈ [d]},
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and thus f leaves the hyperedges of Hd
sym invariant.

Pick an optimal coloring χH of H. Choose a system R of representatives of the f–orbits
in Xd \D, i. e., for all x ∈ Xd \D either x or f(x) lies in R. Define χ : Xd → {−1, 1} by

χ(x) :=


−1 if x ∈ R
χH(v) if x = (v, . . . , v) ∈ D
1 otherwise

.

Let E ∈ E . From the properties of f and R we deduce |Ed ∩ R| = |f(Ed ∩ R)| =
|f(Ed) ∩ f(R)| = |Ed ∩ (Xd \ D \ R)| = |Ed \ D \ R|. So we have∑

x∈Ed

χ(x) =
∑

x∈Ed∩R

−1 +
∑

x∈Ed∩D

χ(x) +
∑

x∈Ed∩f(R)

1 =
∑
v∈E

χH(v),

and this proves the theorem.

Unfortunately, we do not know very much about lower bounds. For the general case,
nothing can be said, as is obvious from Example 2 in Section 3. In the special case of
arithmetic progressions, it is not possible to use the circle-method in the way of Section 2,
because the convolution and Fourier–transform take place on different groups, namely Zd

and the diagonal of Zd. Thus we do not have ‖χ̂F ∗ ηδ‖2
2 = ‖χ̂F · η̂δ‖2

2, i. e., we are not
able to separate the coloring from the characteristic function, which was one main step
in the proof of Theorem 2.1.

4.2 Arithmetic Progressions on Lines

Another generalization of one–dimensional arithmetic progressions are one–dimensional
arithmetic progressions in the [N ]d–lattice.

Let l ∈ {1, . . . , N}, u ∈ [N ]d and v ∈ {−(N−1), . . . , N−1}d such that u+(l−1)v ∈ [N ]d.
Then we call Al,u,v := u + [l]v = {u + jv|j ∈ [l]} an arithmetic progression on a line. For
the hypergraph of all arithmetic progressions on lines Hd

L, in the mean-time Valko [Val02]
has found sharper bounds than in [Weh97]. He proved a lower bound of Ω(Nd/(2d+2)) and

an upper bound of O(Nd/(2d+2)(log
5
2 N).

Yet, if we allow only “a few” lines, we can determine the discrepancy quite well. First let
us consider only lines parallel to the axes. Then from the product coloring argument in
Section 3, the following is obvious.

Corollary 4.3. Let Ed
L0

= {Al,u,v|∃!i ∈ {1, . . . , d} : vi 6= 0} and let Hd
L0

:= ([N ]d, Ed
L0

) be
the hypergraph under consideration. Then

disc(Hd
L0

) = Θ(N
1
4 ).
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We may also add any constant number of lines and still get a result sharp up to polylog-
arithmic factors:

Theorem 4.4. For all C, d ∈ N exist constants c, c′ > 0 such that for all V ⊆ [N ]d,
|V | = C and Hd

L,V := ([N ]d, {Al,u,v|v ∈ V } ∪ Ed
L0

) we have

cN
1
4 ≤ disc(Hd

L,V ) ≤ c′N
1
4 log

5
2 N.

Proof. The lower bound is clear. The upper bound is (apart from a constant) the same as
the upper bound that J. Beck achieved for 1–dimensional arithmetic progressions [Bec81].
Like there we can decompose any arithmetic progression into O(log N) canonical arith-
metic progressions (this is a one–dimensional phenomenon). Therefore

disc(Hd
L,C) ≤ c0 log N disc(HC) (6)

where HC is the hypergraph of the canonical sets and c0 a constant independent on N .
Similarly, all degree problems can be bounded by the respective one-dimensional result
times C, hence for a suitable constant c1 we also get deg({A ∈ HC : |A| ≥ c1

√
N}) ≤

c1

√
N . Thus a theorem of Beck [Bec81] yields disc(HC) ≤ c2N

1
4 log

3
2 N (all constants

independent of N).

4.3 Arithmetic Progressions in N

There are also some results on the discrepancy of the hypergraph of all finite arithmetic
progressions on the set of all non-negative integers N. An easy consequence of Roth’s
lower bound proof can be found, e. g., in [BS95]:

Corollary 4.5. Given any 2–coloring χ : N → {−1, +1} of the non-negative integers,
then for infinitely many values of δ there is a (finite) arithmetic progression A of difference
δ such that

|χ(A)| > c
√

δ

for an absolute constant c.

The so far best upper bound for the discrepancy in terms of the difference was shown by
J. Beck and J. Spencer [BS84]:

Theorem 4.6. There is a constant c0 such that the following holds: Let n be a positive
integer. Then there exists a 2–coloring χ : N → {−1, +1} such that for any arithmetic
progression A of difference δ ≤ n and of arbitrary length

|χ(A)| < c0

√
δ log3.5 n.
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We will show an analogous result in the d–dimensional case. Let Al,a,δ := a + δ[l] denote
the arithmetic progression with starting point a, difference δ and length l. For a, δ, l ∈ Nd

set Al,a,δ :=
∏d

i=1 Aai,δi,li. Write δ > k (resp. δ ≤ k) to express that all components δi of
δ are greater than k (resp. less or equal than k).

Theorem 4.7. For any 2–coloring χ : Nd → {−1, +1} and every vector k ∈ Nd there
exists a d–dimensional arithmetic progression Al,a,δ such that δ > k and

|χ(Al,a,δ)| > π−d
√

δ1 . . . δd.

Conversely, for any positive integer n there exists a 2–coloring χ : Nd → {−1, +1} such
that for any arithmetic progressions Al,a,δ of difference δ ≤ n and of arbitrary length and
starting point

|χ(Al,a,δ)| < cd
0

√
δ1 . . . δd log3.5d n.

Proof. For the upper bound, the product coloring argument again solves the problem.
Let χ and k be given. Define a 2–coloring χk of Nd by

χk(x) := χ(kx)

for all x ∈ Nd (where kx := (kixi)
d
i=1). Choose an integer N > ‖k‖2

∞. From the proof
of Theorem 2.1 we have the existence of vectors l, δ′ ∈ ∆ = {1, . . . ,√N}d and a′ ∈ [N ]d

such that
|χk(Al,a′,δ′)| > π−dN

d
4 ≥ c

√
δ′1 . . . δ′d.

From χk(Al,a′,δ′) = χ(Al,ka′,kδ′) we see that Al,ka′,kδ′ is an arithmetic progression satisfying
our needs.

5 Discussion

This article determines the discrepancy of cartesian products of arithmetic progressions.
A related problem remains open: For the symmetric arithmetic progressions a lower bound
is missing. Our feeling is that if both the dimension of the grid and the hyperedges are
raised from one to d, then everything stays fine, but if we change just one dimension, then
things get quite difficult.

Also, the problem of a polynomial-time construction of good colorings for arithmetic
progressions remains open. For arbitrary hypergraphs this is a NP–hard problem. At
the moment, there is not much hope even for the hypergraph of arithmetic progressions,
because the existence of optimal colorings is proved via the pigeonhole principle.
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