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Abstract

An antichain is a collection of sets in which no two sets are comparable under
set inclusion. An antichain A is flat if there exists an integer k ≥ 0 such that every
set in A has cardinality either k or k + 1. The size of A is |A| and the volume
of A is

∑
A∈A |A|. The flat antichain theorem states that for any antichain A on

[n] = {1, 2, . . . , n} there exists a flat antichain on [n] with the same size and volume
as A. In this paper we present a key part of the proof of the flat antichain theorem,
namely we show that the theorem holds for antichains on three consecutive levels;
that is, in which every set has cardinality k+1, k or k−1 for some integer k ≥ 1. In
fact we prove a stronger result which should be of independent interest. Using the
fact that the flat antichain theorem holds for antichains on three consecutive levels,
together with an unpublished result by the author and A. Woods showing that the
theorem also holds for antichains on four consecutive levels, Á. Kisvölcsey completed
the proof of the flat antichain theorem. This proof is to appear in Combinatorica.

The squashed (or colex) order on sets is the set ordering with the property that
the number of subsets of a collection of sets of size k is minimised when the collection
consists of an initial segment of sets of size k in squashed order. Let p be a positive
integer, and let A consist of p subsets of [n] of size k + 1 such that, in the squashed
order, these subsets are consecutive. Let B consist of any p subsets of [n] of size k−1.
Let |4NA| be the number of subsets of size k of the sets in A which are not subsets
of any set of size k+1 preceding the sets in A in the squashed order. Let |5B| be the
number of supersets of size k of the sets in B. We show that |4NA|+|5B| > 2p. We
call this result the 3-levels result. The 3-levels result implies that the flat antichain
theorem is true for antichains on at most three, consecutive, levels.

∗This research was done while at Charles Darwin University, NT 0909, Australia.
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1 Introduction

1.1 Definitions and Notation

Sets, Collections of Sets, and Orderings on Sets

Throughout the paper the universal set is the finite set {1, . . . , n} which is denoted by [n].
The size or cardinality of a set B is |B|. If |B| = k, then B is a k-set or a k-subset.
Alternatively we say that B is a set on level k. The collection of all the k-subsets of [n]
is denoted by [n]k.

When no ambiguity arises the braces are left out when writing sets: The set {a, b, c} may
be written abc.

For sets A and B, the set difference of A and B is A \ B = {i : i ∈ A, i 6∈ B}. The
symmetric difference of A and B is A + B = (A \ B) ∪ (B \ A). The complement of a
subset B of [n] is B′ = [n] \ B.

Let B be a collection of subsets of [n]. The size or cardinality of B is |B| and its volume
is V (B) =

∑
B∈B |B|. The average set size of B is B = V (B)/|B|. The complement

of B is B′ = {B : B′ ∈ B}. If the sets in B are ordered, then the sets in B′ inherit
the same ordering from B. The collection of the i-sets in B is denoted by B(i) = {B :
B ∈ B, |B| = i}. The parameters of B are the integers pi = |B(i)|, 0 ≤ i ≤ n, and its levels
are the integers i for which pi > 0.

The collection B is flat if for all B ∈ B, |B| =
⌊
B

⌋
or |B| =

⌊
B

⌋
+ 1. That is, B is flat if

it has at most two levels, and those levels are consecutive.

A partition of B is a collection of pairwise disjoint sub-collections of B whose union is B.
That is, the collection π1 = {B1,B2, . . . ,Bm} with Bi ∩ Bj = ∅, 1 ≤ i < j ≤ m, and⋃m

i=1 Bi = B is a partition of B. Note that in this definition of a partition of B, the
sub-collections are allowed to be empty.

Let L be a set such that B ∩ L = ∅ for all B ∈ B, and b < l for all b ∈ B ∈ B and all
l ∈ L. Then B ] L is defined to be B ] L = {B ∪ L, B ∈ B}.

Example 1.1. Let B = {1, 13, 23} and L = {56}. Then B ] L = {156, 1356, 2356}. ◦

A total order on sets, the squashed order, denoted by ≤S, is defined by: If A and B are
any sets, then A ≤S B if the largest element in A + B is in B or if A = B. We write
A <S B or B >S A if A ≤S B and A 6= B. If B is a collection of sets in squashed order,
we write A <S B or B >S A if A <S B for all B ∈ B, and A >S B or B <S A if A >S B
for all B ∈ B.

The reverse of the squashed order for subsets of [n] is called the antilexicographic order
and is denoted by ≤A. That is, A ≤A B implies that the largest element of A + B is in A
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or A = B.

Example 1.2. The first ten 3-sets in squashed order are: 123, 124, 134, 234, 125, 135,
235, 145, 245, 345.
The first 5 3-subsets of [5] in antilexicographic order are: 345, 245, 145, 235, 135. ◦

Fn,k(p) and Ln,k(p) denote the collections of the first p and the last p k-subsets of [n]
in squashed order respectively. Cn,k(p) denotes any collection of p consecutive k-subsets
of [n] in squashed order. If a collection Cn,k(p) comes immediately after the collection
Fn,k(m) in squashed order, then it is denoted by Nm

n,k(p). If a collection Cn,k(p) comes
immediately before the collection Ln,k(m) in squashed order, then it is denoted by P m

n,k(p).
Note that the use of the notation Fn,k(p), Ln,k(p), . . . , implicitly assumes that 0 ≤ k ≤ n
and p ≤

(
n
k

)
.

Let B be a collection of p sets in squashed order. If B = Fn,k(p) we say that B is an
initial segment of k-sets in squashed order or that B is a terminal segment of k-sets in
antilexicographic order. If B = Ln,k(p) we say that B is a terminal segment of k-subsets of
[n] in squashed order or that B is an initial segment of k-subsets of [n] in antilexicographic
order. Finally, F (p,B) and L(p,B) respectively denote the first and the last p sets of B.

Shadows and Shades

Let B be a k-subset of [n]. The shadow of B is 4B = {D : D ⊂ B, |D| = k − 1}
and its shade is 5B = {D ⊆ [n] : D ⊃ B, |D| = k + 1}. The new-shadow of B is
4NB = {D : D ∈ 4B, D 6∈ 4C for all C <S B}. That is, 4NB is the collection of the
(k − 1)-sets which belong to the shadow of B but not to the shadow of any k-set which
precedes B in squashed order. In other words, if B is the p-th set in squashed order,
the new-shadow of B can be thought of as being the contribution of B to the shadow of
the first p k-sets in squashed order. Similarly, the new-shade of B is 5

NB = {D : D ∈
5B, D 6∈ 5C for all C >S B}. That is, 5NB consists of the (k + 1)-sets which are in
the shade of B but not in the shade of any k-set which follows B in squashed order.

Let B be a collection of k-subsets of [n]. The shadow of B is 4B =
⋃

B∈B 4B and its

shade is 5B =
⋃

B∈B 5B. The new-shadow of B is 4NB =
⋃

B∈B 4NB and its new-shade

is 5
NB =

⋃
B∈B 5NB.

Example 1.3. Let [n] = [5]. For each 3-subset of [5], we list the sets in its new-shadow
and the sets in its new-shade. The 3-sets are listed in squashed order.

B 123 124 134 234 125 135 235 145 245 345
4NB 12, 13, 23 14, 24 34 - 15, 25 35 - 45 - -
5

NB - - - 1234 - - 1235 - 1245 1345, 2345

◦
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Antichains

An antichain on [n] is a set of incomparable elements in the Boolean lattice of order n,
the subsets of [n] ordered by inclusion. Let A be an antichain on [n] with largest and
smallest set size h and l respectively. For l ≤ i ≤ h, let pi = |A(i)| be the number of
subsets of size i in A. The antichain A is squashed if, for i = h, h − 1, . . . , l,

A(i) = N qi

n,i(pi)

where qh = 0, and for i < h, qi = |4Fn,i+1(qi+1+pi+1)|. That is, the sets in 4Fn,i+1(qi+1+
pi+1) ∪ A(i) form an initial segment of qi + pi i-sets in squashed order.

1.2 The Main Results

This paper presents two main results. The first concerns the number of subsets and
supersets of certain collections of subsets of a finite set [n].

Theorem 1.4 (The 3-levels result). Let n, k, and p be positive integers with 1 ≤ k < n
and p ≤ min

{(
n

k+1

)
,
(

n
k−1

)}
. Let A consist of p subsets of [n] of size k + 1 such that, in

the squashed order, these subsets are consecutive. Let B consist of any p subsets of [n] of
size k − 1. Then

|4NA| + |5B| > 2p.

An alternative form of the 3-levels result theorem is given by the theorem below. That
both theorems are equivalent can be seen by application of Corollary 2.7 and Theorem 2.9
(see Section 2).

Theorem 1.5. Let n, k, and p be positive integers with 1 ≤ k < n and
p ≤ min

{(
n

k+1

)
,
(

n
k−1

)}
. Then

|4NLn,k+1(p)| + |5NLn,k−1(p)| > 2p.

Exact values for |4NLn,k+1(p)| and |5NLn,k−1(p)| are known (see [1, 11]) but these values
are not always practical to use in an analytical sense. It is in this sense that we regard
Theorem 1.5 as an important result as it provides a simple lower bound for the sum
|4NLn,k+1(p)| + |5NLn,k−1(p)|.

Theorem 1.4 is a key part of the proof of the flat antichain theorem.

Theorem 1.6 (The flat antichain theorem). For any antichain A on [n] there exists
a flat antichain A∗ on [n] such that |A∗| = |A| and V (A∗) = V (A).

The flat antichain theorem has been conjectured by the author in 1994 [10]. The theorem is
known to hold for A when A is an integer (see [13]) or when A ≤ 3 (see [14]). Theorem 1.4
is used to show that the flat antichain theorem holds when the antichain has sets on at
most three consecutive levels. This is the second major result in this paper.
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Theorem 1.7. Let A be an antichain on [n] with parameters pi and let h and l respectively
be the largest and smallest integer for which pi 6= 0. Assume that h = k + 1 and l = k − 1
for some k ∈ Z+. Then the flat antichain theorem holds for A.

Proof. Without loss of generality, A can be assumed to be squashed (see Theorem 2.8
below). Assume that pk+1 ≥ pk−1 and let C consist of the last pk−1 sets of A(k+1), that
is, C = L

(
pk−1,A(k+1)

)
. By Theorem 1.4 |4NC| + |5A(k−1)| > 2pk−1. Thus there exists

a flat antichain on [n] consisting of pk+1 − pk−1 (k + 1)-sets and pk + 2pk−1 k-sets. The
case pk+1 < pk−1 is dealt with in a similar manner.

Using Theorem 1.7 and an additional result by the author and A. Woods [11] showing
that Theorem 1.6 holds for antichains on four consecutive levels, A. Kisvölcsey [8] com-
pleted the proof of the flat antichain theorem and thus showed the validity of the original
conjecture.

To prove the 3-levels result we prove its equivalent form as given by Theorem 1.5; this
proof is long and complex. Section 2 provides the background material needed in the
paper. The proof of Theorem 1.5 is split into three parts A, B and C, to be found in
Sections 3, 4 and 5 respectively. Parts A and B consider the cases when k ≤ n

2
, and

Part C proves Theorem 1.5 in the case k > n
2
. See Figure 1 page 9 for an outline of the

proof. The paper ends with Section 6 which discusses some possible alternative proofs of
Theorem 1.5.

The author is deeply grateful to two (anonymous) referees for their thorough and compre-
hensive review; their keen interest was very encouraging. Warm thanks to
G. Brown and B. McKay for reading the successive drafts and providing useful feedback.
A fully detailed proof is available at http://cs.anu.edu.au/~ bdm/lieby.html.

2 Background Material

Most of the material surveyed here can be found in [1]. In the course of the paper, no
explicit reference will be made to the results cited –which are standard in Sperner theory,
except in a few specific instances.

2.1 Simple Facts

Let A and B be two sets such that A ≤S B. Since A + B = A′ + B′, A ≤S B if and only
if B′ ≤S A′ and A′ ≤A B′. Thus, B is a collection of sets in squashed order if and only if
B′ is a collection of sets in antilexicographic order. In particular,

(Fn,k(p))′ = Ln,n−k(p).
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The self-duality of the Boolean lattice enables us to write that (4B)′ = 5B′, (4B)′ =
5B′, (4NB)′ = 5

NB′, and (4NB)′ = 5
NB′. In particular,

Lemma 2.1.

|4Fn,k(p)| = |5Ln,n−k(p)|, and |4NLn,k(p)| = |5NFn,n−k(p)|.

The squashed order is independent of the universal set. This implies that Fn,k(p) =

Fn′,k(p) for any n′ such that p ≤
(

n′
k

)
.

Given the definition of Fn,k, Cn,k and Ln,k, it is easy to see that Fn,k

((
n
k

))
= Cn,k

((
n
k

))
=

Ln,k

((
n
k

))
= [n]k.

It follows that∣∣∣∣4Fn,k

((
n

k

))∣∣∣∣ =

(
n

k − 1

)
, and

∣∣∣∣5Ln,k

((
n

k

))∣∣∣∣ =

(
n

k + 1

)
.

The next observations follow from the definitions of the new-shadow and the new-shade.
Trivially, 4NFn,k(p) = 4Fn,k(p) and 5

NLn,k(p) = 5Ln,k(p). If A and B are two
collections of k-sets such that A ∩ B = ∅, then |4N (A∪ B)| = |4NA| + |4NB| and∣∣5

N (A∪ B)
∣∣ =

∣∣5
NA

∣∣ +
∣∣5

NB
∣∣. Also,

|4Fn,k (p1 + p2)| = |4Fn,k (p1)| +
∣∣4NNp1

n,k (p2)
∣∣ ,

|4NLn,k (p1 + p2)| = |4NLn,k (p1)| +
∣∣4NP p1

n,k (p2)
∣∣ ,∣∣5

NFn,k (p1 + p2)
∣∣ =

∣∣5
NFn,k (p1)

∣∣ +
∣∣5

NNp1

n,k (p2)
∣∣ ,∣∣5Ln,k (p1 + p2)

∣∣ =
∣∣5Ln,k (p1)

∣∣ +
∣∣5

NP p1

n,k (p2)
∣∣ .

2.2 Some Isomorphism Results

The three lemmas below are obtained by establishing an isomorphism between a collection
of p subsets of [n] in squashed order and a collection of p subsets of [n − i] in squashed
order for 0 < i < n. This is possible when p is small.

Lemma 2.2. Let 0 ≤ i ≤ n−k and p ≤
(

n−i
k

)
. Then the collections Fn,k(p) and Fn−i,k(p)

are isomorphic and

|4NFn,k(p)| = |4NFn−i,k(p)|, and

|5NFn,k(p)| = |5NFn−i,k(p)|.
Lemma 2.3. Let 0 ≤ k ≤ n and let B be a collection of consecutive k-subsets of [n] in
squashed order. Assume that B = C ]L for some L ⊆ [n]. Then B and C are isomorphic
and

|4NB| = |4NC|, and

|5NB| = |5NC|.
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Lemma 2.4. Let 0 ≤ i ≤ k and p ≤
(

n−i
k−i

)
. Then the collections Ln,k(p) and Ln−i,k−i(p)

are isomorphic and

|4NLn,k(p)| = |4NLn−i,k−i(p)|, and

|5NLn,k(p)| = |5NLn−i,k−i(p)|.

2.3 Bounds for Shadows and Shades

Sperner’s lemma below gives a lower bound for the sizes of the shadow and the shade of
a collection B. The proof of when equality holds in the lemma can be found in [2, p. 12].

Lemma 2.5 (Sperner’s lemma, Sperner [15]). Let B be a collection of k-subsets of
[n]. Then

|4B| ≥ k

n − k + 1
|B| if k > 0

and

|5B| ≥ n − k

k + 1
|B| if k < n.

Equality holds if and only if B consists of all the
(

n
k

)
k-sets.

The next theorem by Kruskal and Katona shows a very important property of the squashed
order.

Theorem 2.6 (Kruskal [9], Katona [7]). Let B be a collection of p k-subsets of [n].
Then

|4B| ≥ |4Fn,k(|B|)|.

Equality holds when B is an initial segment of k-sets in squashed order.

This theorem, together with the duality lemma 2.1, shows that a terminal segment of p
k-subsets of [n] in squashed order minimises the size of the shade over all collections of p
k-sets:

Corollary 2.7. If B is a collection of k-subsets of [n] then

|5B| ≥ |5Ln,k(|B|)|.

A very important consequence of Theorem 2.6 is the fact that if A is an antichain on [n],
then there exists a squashed antichain on [n] with the same parameters as A.
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Theorem 2.8 (Clements [3], Daykin et al. [6]). There exists an antichain on [n]
with parameters p0, . . . , pn if and only if there exists a squashed antichain with the same
parameters.

Well-known results by Clements give lower bounds and upper bounds for the size of the
new-shadows and new-shades.

Theorem 2.9 (Clements [5]). Let p ∈ N be such that p ≤
(

n
k

)
. Then

|4Fn,k (p)| ≥ |4NCn,k (p)| ≥ |4NLn,k (p)| .

The dual statement reads as

Corollary 2.10. Let p ∈ N be such that p ≤
(

n
k

)
. Then

∣∣5Ln,k (p)
∣∣ ≥ ∣∣5

NCn,k (p)
∣∣ ≥ ∣∣5

NFn,k (p)
∣∣ .

Note that in Theorem 2.9 and Corollary 2.10, the collection Cn,k(p) denotes any collection
of p consecutive k-subsets of [n] in squashed order.

Theorem 2.11 (Clements [5]). Let p ∈ N be such that p ≤ min{
(

n
k

)
,
(

n
k+1

)
}. Then

|4Fn,k(p)| ≤ |4Fn,k+1(p)|, and

|4NLn,k(p)| ≤ |4NLn,k+1(p)|.

3 The Proof of Theorem 1.5 : Part A

See Figure 1 for an outline of the proof of Theorem 1.5.

Proposition 3.1. Theorem 1.5 holds for 1 ≤ k ≤ n+1
3

.

Proof. For k = p = 1 this is trivial. For k = 1 and p 6=
(

n
k−1

)
it follows from Sperner’s

lemma 2.5 that |5B| > 2p. When p =
(

n
k−1

)
, |5B| ≥ 2p and |4NA| > 0.

Proposition 3.2. Theorem 1.5 holds for n ≤ 32.

Proof. By exhaustive computations.
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Part A

1 ≤ k ≤ n+1
3

Proposition 3.1

n ≤ 32 Proposition 3.2

n > 32, n+1
3

< k ≤ n
2
, 1≤ p ≤

(
n−1
k−2

)
Proposition 3.4

n > 32, n+1
3

< k ≤ n
2
,
(

n−1
k−2

)
<

(
n−2
k−1

)
,
(

n−1
k−2

)
< p ≤

(
n−2
k−1

)
Proposition 3.5

n > 32, n+1
3

< k ≤ n
2
,
(

n−1
k−2

)
<

(
n−2
k−1

)
,
(

n−2
k−1

)
< p ≤

(
n−1

k

)
Proposition 3.6

n > 32, n+1
3

< k ≤ n
2
,
(

n−1
k−2

)
<

(
n−2
k−1

)
,
(

n−1
k

)
< p ≤

(
n

k−1

)
Proposition 3.7

n > 32, n+1
3

< k ≤ n
2
,
(

n−1
k−2

)
≥

(
n−2
k−1

)
,(

n−1
k−2

)
< p ≤

(
n−1
k−2

)
+

(
n−2

k

)
Proposition 3.8

n > 32, n+1
3

< k ≤ n
2
,
(

n−1
k−2

)
≥

(
n−2
k−1

)
, k−1

n−k
+ n−k−1

k
≥ 2,(

n−1
k−2

)
+

(
n−2

k

)
< p ≤

(
n

k−1

)
Proposition 3.9

Part B

n > 32, n+1
3

< k ≤ n
2
,
(

n−1
k−2

)
≥

(
n−2
k−1

)
, k−1

n−k
+ n−k−1

k
< 2,(

n−1
k−2

)
+

(
n−2

k

)
< p ≤

(
n

k−1

)
Proposition 4.12

Part C

1 n > 32, k > n
2
, 1 ≤ p ≤

(
n−1

k

)
Proposition 5.1

n > 32, k > n
2
,
(

n−2
k−3

)
>

(
n−1

k

)
,
(

n−1
k

)
< p ≤

(
n

k+1

)
Proposition 5.2

n > 32, k > n
2
,
(

n−2
k−3

)
≤

(
n−1

k

)
,
(

n−1
k

)
< p ≤

(
n−1
k−2

)
Proposition 5.3

n > 32, k > n
2
,
(

n−2
k−3

)
≤

(
n−1

k

)
,
(

n−1
k−2

)
< p ≤

(
n

k+1

)
Proposition 5.4

Figure 1: Outline of the cases considered in the proof of Theorem 1.5
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All subsequent proofs in this section and Sections 4 and 5 are proofs by induction on n.
The induction hypothesis is

Induction Hypothesis 3.3 (IH 3.3). Theorem 1.5 holds for all positive integers less
than n.

In each of the following propositions we show that the collections Ln,k+1(p) and Ln,k−1(p)
satisfy Theorem 1.5. The two collections Ln,k+1(p) and Ln,k−1(p) are partitioned into
{A1,A2, . . . ,Am} and {B1,B2, . . . ,Bm} respectively and it is shown that for each i,
i = 1, . . . , m, |4NAi| + |5NBi| ≥ 2 max{|Ai|, |Bi|} with a strict inequality occurring
for at least one value of i. Finding appropriate partitions for the collections Ln,k+1(p)
and Ln,k−1(p) is relatively easy except in the case dealt with in Part B of the proof
(Proposition 4.12).

Proposition 3.4. Let n > 32 and n+1
3

< k ≤ n
2
. Then Theorem 1.5 holds for p ≤

(
n−1
k−2

)
.

Proof. Since k ≤ n
2
, p ≤

(
n−1
k−2

)
<

(
n−1

k

)
. Consequently, |4NLn,k+1(p)| + |5NLn,k−1(p)| =

|4NLn−1,k(p)| + |5NLn−1,k−2(p)| and IH 3.3 applies.

Figure 2 illustrates the proof of Proposition 3.4.

(
n

k−1

)

(
n−1
k+1

)

(
n−1
k−2

)p

p

(
n−1

k

)
(

n
k+1

)

k + 1

k − 1

Figure 2: The collections Ln,k+1(p) and Ln,k−1(p) in Proposition 3.4

The
(

n
k+1

)
(k +1)-sets in squashed order are the

(
n−1
k+1

)
(k +1)-subsets of [n−1] followed by

the
(

n−1
k

)
(k+1)-subsets of [n] having n as an element. Figure 2 shows this decomposition

of the (k+1)-sets and a similar decomposition of the (k−1)-sets. The collections Ln,k+1(p)
and Ln,k−1(p) are shown by bold lines marked p.
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Similar figures are used to illustrate the remaining proofs. The figures are schematic and
are thus not drawn to scale.

Proposition 3.5. Let n > 32 and n+1
3

< k ≤ n
2

with
(

n−1
k−2

)
<

(
n−2
k−1

)
. Then Theorem 1.5

holds for
(

n−1
k−2

)
< p ≤

(
n−2
k−1

)
.

(
n

k−1

)

(
n−3
k−1

) (
n−3
k−2

)

(
n−1
k−2

)
p′

p

(
n−1

k

)

(
n−1
k−1

)

(
n−2

k

)

p
p′

(
n−1
k+1

)

p′

(
n

k+1

)

k + 1

k − 1

Figure 3: Partitioning Ln,k+1(p) and Ln,k−1(p) in proving Proposition 3.5

Figure 3 depicts a decomposition of the (k +1)-sets relevant to this case. We describe the
figure in detail instead of giving a formal proof.

The collection Ln,k+1

((
n−1

k

))
consists of the

(
n−2

k

)
(k + 1)-sets having n but not n−1 as

an element, which are followed in squashed order by the
(

n−2
k−1

)
(k + 1)-sets having n−1

and n as elements. The collection Ln,k+1

((
n−2
k−1

))
consists of the

(
n−3
k−1

)
(k + 1)-sets having

n−1 and n but not n−2 as elements, which are followed in squashed order by the
(

n−3
k−2

)
(k + 1)-sets having n−2, n−1 and n as elements.

Let p′ = p −
(

n−1
k−2

)
; note that 0 < p′ ≤

(
n−3
k−1

)
. Then the first p′ sets in Ln,k−1(p) are

isomorphic to Ln−1,k−1(p
′) and the first p′ sets in Ln,k+1(p) are isomorphic to some collec-

tion Cn−3,k−1(p
′) and we recall that |4NCn−3,k−1(p

′)| ≥ |4NLn−3,k−1(p
′)| by Theorem 2.9.

Since the collections Ln−3,k−1(p
′) and Ln−1,k+1(p

′) are isomorphic, Proposition 3.5 follows
from IH 3.3.

Proposition 3.6. Let n > 32 and n+1
3

< k ≤ n
2

with
(

n−1
k−2

)
<

(
n−2
k−1

)
. Then Theorem 1.5

holds for
(

n−2
k−1

)
< p ≤

(
n−1

k

)
.

Proof. See Figure 4 for an illustration.
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(
n

k−1

)

(
n−2
k−1

)(
n−1
k+1

) (
n−2

k

)

(
n−1
k−2

)p

p

(
n−1
k−1

)

p′

p′′

p′

p′

(
n

k+1

)

k + 1

k − 1

p′′

Figure 4: Partitioning Ln,k+1(p) and Ln,k−1(p) in proving Proposition 3.6

Let p = p′ +
(

n−2
k−1

)
= p′′ + p′ +

(
n−1
k−2

)
. Under the current assumptions,

0 < p′ ≤
(

n−2
k

)
. We write |4NLn,k+1 (p)| =

∣∣4NLn−2,k−1

((
n−2
k−1

))∣∣ + |4NLn−1,k+1 (p′)| and∣∣5
NLn,k−1 (p)

∣∣ ≥
∣∣5

NLn−1,k−2

((
n−1
k−2

))∣∣ +
∣∣5

NLn−1,k−1 (p′)
∣∣. Since∣∣4NLn−2,k−1

((
n−2
k−1

))∣∣ +
∣∣5

NLn−1,k−2

((
n−1
k−2

))∣∣ ≥ 2
(

n−2
k−1

)
for k > n+1

3
the result follows

by IH 3.3.

Proposition 3.7. Let n > 32 and n+1
3

< k ≤ n
2

with
(

n−1
k−2

)
<

(
n−2
k−1

)
. Then Theorem 1.5

holds for
(

n−1
k

)
< p ≤

(
n

k−1

)
.

Proof. Let p =
(

n−2
k−1

)
+ p′ +

(
n−1
k−2

)
. Under the current assumptions, p′ ≤

(
n−2
k−2

)
≤

(
n−2

k

)
,

p′ +
(

n−1
k−2

)
>

(
n−2

k

)
, and

(
n−1
k−2

)
<

(
n−2

k

)
. For n > 11 and n+1

3
< k ≤ n

2
,

(
n−1
k−2

)
<

(
n−2
k−1

)
implies that

(
n−2

k

)
>

(
n−2
k−1

)
. From which it follows that p′ > 0.

Using Figure 5 as an illustration, one may write

|4NLn,k+1 (p)|

≥
∣∣∣∣4NLn−2,k−1

((
n − 2

k − 1

))∣∣∣∣ +

∣∣∣∣4NLn−2,k

((
n − 1

k − 2

))∣∣∣∣ + |4NLn−2,k (p′)|

≥
∣∣∣∣4NLn−2,k−1

((
n − 2

k − 1

))∣∣∣∣ +

∣∣∣∣4NLn−2,k−1

((
n − 1

k − 2

))∣∣∣∣ + |4NLn−2,k (p′)|

(by Theorem 2.11)

=

∣∣∣∣4NLn,k+1

((
n − 2

k − 1

))∣∣∣∣ +

∣∣∣∣4NLn−1,k

((
n − 1

k − 2

))∣∣∣∣ + |4NLn−2,k (p′)| .
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(
n−2
k−1

)(
n−1
k+1

) (
n−2

k

)

(
n−2
k−1

) (
n−1
k−2

)
(

n
k−1

)

p

p(
n−2
k−2

)

p′

p′

(
n

k+1

)

k + 1

k − 1

Figure 5: Partitioning of Ln,k+1(p) and Ln,k−1(p) in proving Proposition 3.7

Applying Corollary 2.10,

∣∣5
NLn,k−1 (p)

∣∣
≥

∣∣∣∣5NLn−1,k−2

((
n − 1

k − 2

))∣∣∣∣ +
∣∣5

NLn−2,k−2 (p′)
∣∣ +

∣∣∣∣5NFn,k−1

((
n − 2

k − 1

))∣∣∣∣ .

For n > 4 and n+1
3

< k ≤ n
2
,
(

n−1
k−2

)
<

(
n−2
k−1

)
implies that k−1

n−k
+ n−k−1

k
≥ 2, and thus that∣∣4NLn,k+1

((
n−2
k−1

))∣∣+
∣∣5

NFn,k−1

((
n−2
k−1

))∣∣ ≥ 2
(

n−2
k−1

)
. Proposition 3.7 follows from this fact

and IH 3.3.

Proposition 3.8. Let n > 32 and n+1
3

< k ≤ n
2

with
(

n−1
k−2

)
≥

(
n−2
k−1

)
. Then Theorem 1.5

holds for
(

n−1
k−2

)
< p ≤

(
n−1
k−2

)
+

(
n−2

k

)
.

Proof. Figure 6 illustrates the proof. Let p = p′ +
(

n−1
k−2

)
. Under the current assumptions,

we have 0 < p′ ≤
(

n−2
k

)
and

(
n−2
k−1

)
≤

(
n−1
k−2

)
≤

(
n−1

k

)
.

Then |4NLn,k+1 (p)| ≥
∣∣4NLn−1,k

((
n−1
k−2

))∣∣ + |4NLn−1,k+1 (p′)| and∣∣5
NLn,k−1 (p)

∣∣ =
∣∣5

NLn−1,k−2

((
n−1
k−2

))∣∣ +
∣∣5

NLn−1,k−1 (p′)
∣∣. The result follows from

IH 3.3.

Proposition 3.9. Let n > 32 and n+1
3

< k ≤ n
2

be such that
(

n−1
k−2

)
≥

(
n−2
k−1

)
and k−1

n−k
+

n−k−1
k

≥ 2. Then Theorem 1.5 holds for
(

n−1
k−2

)
+

(
n−2

k

)
≤ p ≤

(
n

k−1

)
.
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(
n−1
k−1

)

(
n−2
k−1

)(
n−2

k

)

p

p

(
n−2
k+1

)

p′

p′

(
n

k−1

)

(
n

k+1

)
(
n−2

k

)

k + 1

k − 1

(
n−1
k−2

)

Figure 6: Partitioning of Ln,k+1(p) and Ln,k−1(p) in proving Proposition 3.8

Proof. Let p = p′ +
(

n−2
k−1

)
. Under the current assumptions, 0 < p′ ≤

(
n−2

k

)
+

(
n−1
k−2

)
. Then

|4NLn,k+1 (p)| ≥
∣∣4NLn,k+1

((
n−2
k−1

))∣∣ + |4NLn,k+1 (p′)| and
∣∣5

NLn,k−1 (p)
∣∣ ≥∣∣5

NLn,k−1 (p′)
∣∣ +

∣∣5
NFn,k−1

((
n−2
k−1

))∣∣. We have seen in the proof of Proposition 3.7 that∣∣4NLn,k+1

((
n−2
k−1

))∣∣ +
∣∣5

NFn,k−1

((
n−2
k−1

))∣∣ ≥ 2
(

n−2
k−1

)
when k−1

n−k
+ n−k−1

k
≥ 2. Proposi-

tion 3.9 follows from this fact and from Propositions 3.4 and 3.8 applied to p′. The proof
is illustrated by Figure 7.

(
n−2
k−1

)(
n−1
k+1

) (
n−2

k

)

(
n−1
k−2

) p

p

(
n−2
k−1

)

p′

p′

(
n

k−1

)

(
n

k+1

)

k + 1

k − 1

Figure 7: Partitioning of Ln,k+1(p) and Ln,k−1(p) in proving Proposition 3.9
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4 The Proof of Theorem 1.5 : Part B

4.1 Introduction: Lemma 4.2

In order to deal with the case where n and k are such that n > 32, n+1
3

< k ≤ n
2
,(

n−1
k−2

)
≥

(
n−2
k−1

)
, and k−1

n−k
+ n−k−1

k
< 2, and where p is in the range

(
n−1
k−2

)
+

(
n−2

k

)
< p ≤

(
n

k−1

)
,

we need to digress and prove a technical lemma, Lemma 4.2. Its proof is rather long; in
preparation we introduce some terminology and definitions specific to the proof.

All collections are assumed to be collections of sets in squashed order. A collection of
consecutive k-sets is meant to be a collection of consecutive k-sets in squashed order.
Whenever we say that a collection D of q k-sets comes before (after) a collection C of
k-sets, we mean that D consists of q consecutive k-sets in squashed order that come
immediately before (after) the first (last) set in C in squashed order.

We define A and B to be the collections Ln,k+1(p) and Ln,k−1(p) respectively. For q ∈ Z,
0 ≤ q ≤ min{

(
n

k+1

)
,
(

n
k−1

)
}, 1 ≤ k < n, let U be a collection of q (k + 1)-subsets of [n] and

D a collection of q (k − 1)-subsets of [n]. Then the pair (U ,D) is said to have property P
if |4NU| + |5ND| ≥ 2q.

Under the current assumptions for n, k and p, |A| = p >
(

n−1
k

)
so that

Ln,k+1

((
n−1

k

))
⊂ A.

Lemma 4.1. Let q be given with 0 ≤ q ≤
(

n−1
k

)
. Let U = F

(
q, Ln,k+1

((
n−1

k

)))
and let D

be a collection of q (k − 1)-sets such that |5ND| ≥ n−k
k
|D|. Then (U ,D) has property P.

Proof. Note that U is isomorphic to Fn−1,k(q) and apply Sperner’s lemma.

We now state Lemma 4.2 whose proof forms the bulk of this section. This lemma essen-
tially shows that given certain collections of sets P1 ⊆ A and P2 ⊆ B with |P1| = |P2|,
there exists a way of partitioning them which demonstrates that they have property P
(Apply Lemma 4.1 to see this).

Lemma 4.2. Let n > 32 and n+1
3

< k ≤ n
2

with
(

n−1
k−2

)
≥

(
n−2
k−1

)
and k−1

n−k
+ n−k−1

k
< 2. Let

p be such that
(

n−1
k−2

)
+

(
n−2

k

)
< p ≤

(
n

k−1

)
.

Let l ∈ N be such that 0 ≤ l ≤ k − 4, and let ql = p −
(

n−2
k−3

)
+

∑l
j=1

(
n−3−(j−1)
k−3−(j−1)

)
. Let

P2(l) = F (ql,B).
Then for each l, there exists a collection P1(l) ⊆ A and partitions {S1(l), T1(l)} and
{S2(l), T2(l)} of P1(l) and P2(l) respectively such that

(i) P1(l) is a collection of ql consecutive (k + 1)-sets,

(ii) there exists s ∈ N with

(a) S1(l) = F
(
s, Ln,k+1

((
n−1

k

)))
, and
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S1(l) = L(s,P1(l)) if Ln,k+1

((
n−1

k

))
\ P1(l) 6= ∅,

(b) |S2(l)| = |S1(l)| and |5NS2(l)| ≥ n−k
k
|S2(l)|,

(iii) (T1(l), T2(l)) has property P.

To aid readability the notation P1, S1, T1, P2, S2, T2 will be used instead of P1(l),
S1(l), T1(l), P2(l), S2(l), T2(l). The context will make clear which value of l is under
consideration.

Figure 8 pictures the collections P1, P2 and S1 satisfying the conditions of
Lemma 4.2. The collections A and B are indicated by a hatched line. Note that the
figure assumes that Ln,k+1

((
n−1

k

))
\ P1 6= ∅; thus S1 consist of the last s sets of P1.

��������������������������

��������������������������������

��������������������������������������������������������������������
������������������������

A

B

(
n−1
k−1

) (
n−2
k−2

) (
n−2
k−3

)

P1

P2

S1

(
n

k+1

)

(
n

k−1

)

k + 1

k − 1

(
n−1
k+1

) (
n−1

k

)

Figure 8: The collections P1 and P2 in Lemma 4.2

The following trivial fact is worth emphasizing: P1 ⊆ A if and only if
|Ln,k+1

((
n−1

k

))
\ P1| ≤ p − |P2|.

4.2 The Proof of Lemma 4.2: Base Case

Lemma 4.3. Lemma 4.2 holds for l = 0.

Proof. We consider three cases.

(i)
(

n−1

k−2

)
+

(
n−2

k

)
< p ≤ (

n−1

k

)
+

(
n−2

k−3

)
: Figure 9

For l = 0, q0 = p −
(

n−2
k−3

)
. Under the present assumptions,

(
n−2
k−2

)
< q0 ≤

(
n−1

k

)
. Let P2 =

F (q0,B) and choose P1 to be the collection F
(
q0, Ln,k+1

((
n−1

k

)))
. Let S1 = P1 and S2 = P2
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A

B

(
n−1
k−1

) (
n−2
k−2

) (
n−2
k−3

)P2

S1

P1

S2

(
n

k+1

)

(
n

k−1

)

k + 1

k − 1

(
n−1
k+1

) (
n−1

k

)

Figure 9: The collections P1 and P2 in proving Lemma 4.3.(i)

so that T1 = T2 = ∅. It is easy to see that{
Ln−1,k−1

(
q0 −

(
n−2
k−2

))
, Ln−2,k−2

((
n−2
k−2

))
] {n}

}
is a partition of S2, so that∣∣5

NS2

∣∣ > n−k
k
|S2| by applying Sperner’s lemma.

(ii)
(n−1

k

)
+

(n−2

k−3

)
< p ≤ ( n

k−1

)
and

(n−2

k

) − (n−2

k−2

) ≤ (n−2

k−3

)
: Figure 10

Here q0 = p −
(

n−2
k−3

)
>

(
n−1
k−1

)
. Let P2 = F (q0,B) and let {S2, T2} be a partition of P2

such that S2 = F
((

n−1
k−1

)
,P2

)
. Choose P1 to be the collection of q0 consecutive (k +1)-sets

partitioned into S1 = F
((

n−1
k−1

)
, Ln,k+1

((
n−1

k

)))
and T1 = L

(
q0 −

(
n−1
k−1

)
, Fn,k+1

((
n−1
k+1

)))
.

As
(

n−2
k

)
−

(
n−2
k−2

)
≤

(
n−2
k−3

)
by assumption,

∣∣Ln,k+1

((
n−1

k

))
\ P1

∣∣ ≤ p − |P2| so that P1 is
indeed a sub-collection of A.

S2 is a collection Cn,k−1

((
n−1
k−1

))
and so

∣∣5
NS2

∣∣ ≥
∣∣5

NFn,k−1

((
n−1
k−1

))∣∣ > n−k+1
k

(
n−1
k−1

)
by

Sperner’s lemma.

Noting that q0 −
(

n−1
k−1

)
≤

(
n−2
k−2

)
and q0 −

(
n−1
k−1

)
≤

(
n−2

k

)
, one sees that T2 is the collection

Ln−2,k−2

(
q0 −

(
n−1
k−1

))
] {n}. Since T1 is the collection

∣∣4NLn−2,k

(
q0 −

(
n−1
k−1

))∣∣, it follows
from IH 3.3 that (T1, T2) has property P.

(iii)
(n−1

k

)
+

(n−2

k−3

)
< p ≤ ( n

k−1

)
and

(n−2

k

) − (n−2

k−2

)
>

(n−2

k−3

)
: Figure 11

Here q0 = p −
(

n−2
k−3

)
>

(
n−1

k

)
. Let s =

(
n−1
k−1

)
+

(
n−3
k−2

)
. Then, when k−1

n−k
+ n−k−1

k
< 2 and(

n−2
k

)
−

(
n−2
k−2

)
>

(
n−2
k−3

)
, s ≤

(
n−1

k

)
for n > 18. Thus q0 − s > 0.

Let P2 = F (q0,B) and let {S2, T2} be a partition of P2 such that S2 = F (s,P2). Choose P1

to be the collection of q0 consecutive (k+1)-sets partitioned into S1 = F
(
s, Ln,k+1

((
n−1

k

)))
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A

B

S2

k − 1

k + 1

P2

P1

(
n−1

k

)(
n−1
k+1

)
(

n
k+1

)

(
n

k−1

)
(
n−1
k−1

) (
n−2
k−2

) (
n−2
k−3

)
T2

T1 S1

Figure 10: The collections P1 and P2 in proving Lemma 4.3.(ii)

S2

B

A

T1

k − 1

k + 1

P2

P1

T2

S1

(
n−3
k−3

)(
n−2
k−3

)
(

n−2
k−3

)(
n−2
k−2

)(
n−1
k−1

)
(

n
k−1

)

(
n−1

k

)(
n−1
k+1

)
(

n
k+1

)

Figure 11: The collections P1 and P2 in proving Lemma 4.3.(iii)
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and T1 = L
(
q0 − s, Fn,k+1

((
n−1
k+1

)))
.

When k−1
n−k

+ n−k−1
k

< 2 and
(

n−2
k

)
−

(
n−2
k−2

)
>

(
n−2
k−3

)
, it is also the case that

(
n−2

k

)
−

(
n−2
k−2

)
−(

n−3
k−2

)
≤

(
n−2
k−3

)
for n > 27. From which it follows that |Ln,k+1

((
n−1

k

))
\ P1| ≤ p − |P2| and

so P1 is contained in A.

S2 is a collection Cn,k−1

((
n−1
k−1

)
+

(
n−3
k−2

))
. Hence,

∣∣5
NS2

∣∣ ≥
∣∣5

NFn,k−1

((
n−1
k−1

)
+

(
n−3
k−2

))∣∣
≥ n−k

k
|S2| by Sperner’s lemma.

Under the current assumptions we have q0 − s ≤
(

n−3
k−3

)
and q0 − s ≤

(
n−3
k−1

)
. It follows

that T2 = L(q0 − s,P2) is isomorphic to Ln−3,k−3

(
q0 − s

)
and that T1 is isomorphic to

Ln−3,k−1 (q0 − s). Applying IH 3.3 shows that (T1, T2) has property P.

4.3 The Proof of Lemma 4.2: Inductive Step

Lemma 4.4. If Lemma 4.2 holds for l = i then Lemma 4.2 holds for l = i + 1 for all
0 ≤ i < k − 4.

The induction hypothesis in the proof is

Induction Hypothesis 4.5 (IH 4.5). Assume that Lemma 4.2 holds for l = i.

We denote the collections P1(l), S1(l), . . . , T2(l) in Lemma 4.2 by P ′
1, S ′

1, . . . , T ′
2 respec-

tively when l = i and by P1, S1, . . . , T2 respectively when l = i + 1. Note that the dash
does not carry any intrinsic meaning and is used for notational convenience only.

In addition to the above notation, let us also define
q′ = qi = p −

(
n−2
k−3

)
+

∑i
j=1

(
n−3−(j−1)
k−3−(j−1)

)
, q = qi+1 = p −

(
n−2
k−3

)
+

∑i+1
j=1

(
n−3−(j−1)
k−3−(j−1)

)
, and

m′ = |Ln,k+1

((
n−1

k

))
\ P ′

1|.

Note that q − q′ =
(

n−3−i
k−3−i

)
. Let X be a collection of (k − 1)-sets such that X comes after

P ′
2 with P2 = P ′

2 ∪ X . Thus |X | =
(

n−3−i
k−3−i

)
.

Let L and R be collections of (k+1)-sets such that L comes before P ′
1 and R comes after

P ′
1 with P1 = L ∪ P ′

1 ∪R. Thus |L| + |R| =
(

n−3−i
k−3−i

)
.

Figure 12 illustrates the collections P ′
1, P ′

2, L, R, X , P1, and P2. Note that it is assumed
that m′ > 0 when drawing Figure 12.

Before proceeding, let us observe that:
- p − |P ′

2| =
(

n−2−i
k−3−i

)
,

- L is isomorphic to some collection Cn−1,k+1(|L|),
- R is isomorphic to some collection Cn−1,k(|R|),
- X is isomorphic to Ln−3−i,k−3−i

((
n−3−i
k−3−i

))
,
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A

(
n

k+1

)

P ′
1

(
n−2−i
k−3−i

)

P2

P1

X

k − 1

(
n

k−1

)

(
n−3−i
k−3−i

)
(
n−1
k−1

)

P ′
2

B

(
n−1

k

)(
n−1
k+1

)

m′

k + 1

RL

Figure 12: The collections P ′
1, P ′

2, L, R, X , P1, and P2.

- P2 is a collection of q consecutive (k − 1)-sets,
- P1 is a collection of q consecutive (k + 1)-sets,
- m′ ≤ p − |P ′

2| and |R| ≤ m′.

We now state four lemmas which summarize the basic results required to complete the
proof of Lemma 4.4.

Lemma 4.6. Assume that one of the following conditions holds:

(a) |R| =
(

n−3−i
k−3−i

)
, or

(b) m′ ≤
(

n−3−i
k−4−i

)
and |R| = 0, or

(c) m′ <
(

n−3−i
k−3−i

)
and |R| =

(
n−4−i
k−3−i

)
, or

(d) m′ <
(

n−4−i
k−3−i

)
and |R| =

(
n−5−i
k−3−i

)
, or

(e) m′ <
(

n−5−i
k−3−i

)
and |R| =

(
n−6−i
k−3−i

)
.
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Then P1 ⊆ A.

Proof. This is equivalent to showing that in each case, m′ − |R| ≤ p − |P2|. In Case
(a), this is trivially true. For Case (b), m′ − |R| ≤

(
n−3−i
k−4−i

)
. For Cases (c), (d), and (e),

m′ − |R| <
(

n−4−i−j
k−4−i

)
<

(
n−3−i
k−4−i

)
with j = 0, 1, 2. Note that p − |P2| = p − |P ′

2| − |X | =(
n−3−i
k−4−i

)
. The result follows.

Lemma 4.7. Let D be some collection of consecutive (k − 1)-sets and assume that one
of the following conditions holds:

(a) D is isomorphic to the collection Ln−3−i,k−3−i

(
|D|

)
, or

(b) D is isomorphic to the collection Ln−4−i,k−3−i

(
|D|

)
, or

(c) D is isomorphic to the collection Ln−5−i,k−3−i

(
|D|

)
, or

(d) D is isomorphic to the collection Ln−6−i,k−3−i

(
|D|

)
and

(
n−3−i
k−4−i

)
<

(
n−5−i
k−3−i

)
.

Then |5ND| ≥ n−k
k
|D|.

Proof. In each case, D is isomorphic to the collection Ln−3−i−j,k−3−i

(
|D|

)
for j = 0, 1, 2, 3.

Then
∣∣5

ND
∣∣ ≥ n−k−j

k−2−i
|D| by Sperner’s lemma. For j = 0, 1, 2, n−k−j

k−2−i
≥ n−k

k
since

k ≤ n
2
. When j = 3, the additional condition

(
n−3−i
k−4−i

)
<

(
n−5−i
k−3−i

)
applies, in which case

n−k−3
k−2−i

≥ n−k
k

for n > 22.

Lemma 4.8. Let U and D be collections of consecutive (k + 1)-sets and (k − 1)-sets
respectively. Assume that one of the following conditions holds:

(a) U is isomorphic to a collection Cn−1,k+1

((
n−3−i
k−3−i

))
and D is isomorphic to the

collection Ln−3−i,k−3−i

((
n−3−i
k−3−i

))
, or

(b) U is isomorphic to a collection Cn−1,k+1

((
n−4−i
k−4−i

))
and D is isomorphic to the

collection Ln−4−i,k−4−i

((
n−4−i
k−4−i

))
, or

(c) U is isomorphic to a collection Cn−1,k+1

((
n−5−i
k−4−i

))
and D is isomorphic to the

collection Ln−5−i,k−4−i

((
n−5−i
k−4−i

))
, and

(
n−3−i
k−4−i

)
<

(
n−4−i
k−3−i

)
, or

(d) U is isomorphic to a collection Cn−1,k+1

((
n−6−i
k−4−i

))
and D is isomorphic to the

collection Ln−6−i,k−4−i

((
n−6−i
k−4−i

))
, and

(
n−3−i
k−4−i

)
<

(
n−5−i
k−3−i

)
.

Then (U ,D) has property P.

Proof. In each case we have
∣∣5

ND
∣∣ =

∣∣5
NLn−3−i−j,k−3−i−l

((
n−3−i−j
k−3−i−l

))∣∣ where either j = 0
and l = 0, or j = 1, 2, 3 and l = 1.
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For Cases (a) and (b), since
(

n−3−i−j
k−3−i−l

)
≤

(
n−1
k+1

)
, we have |4NU| ≥∣∣4NLn−1,k+1

((
n−3−i−j
k−3−i−l

))∣∣ =
∣∣4NLn−3−i−j,k−1−i−l

((
n−3−i−j
k−3−i−l

))∣∣ where either j = l = 0,
or j = l = 1. Apply IH 3.3.

For Case (c) note that U is isomorphic to a collection Cn,k+1

((
n−5−i
k−4−i

))
. Then |4NU| ≥∣∣4NLn,k+1

((
n−5−i
k−4−i

))∣∣ =
(

n−5−i
k−5−i

)
. The condition

(
n−3−i
k−4−i

)
<

(
n−4−i
k−3−i

)
implies that

(
n−5−i
k−5−i

)
+(

n−5−i
k−3−i

)
≥ 2

(
n−5−i
k−4−i

)
when n > 22.

For Case (d), |4NU| ≥
∣∣4NLn−1,k+1

((
n−6−i
k−4−i

))∣∣ =
(

n−6−i
k−5−i

)
. The condition

(
n−3−i
k−4−i

)
<(

n−5−i
k−3−i

)
implies that

(
n−6−i
k−5−i

)
+

(
n−6−i
k−3−i

)
≥ 2

(
n−6−i
k−4−i

)
when n > 10.

The next lemma does not require a proof.

Lemma 4.9. Assume that (XR,XL) is a partition of X with XR coming before XL. As-
sume that {S1, T1} and {S2, T2} are partitions of P1 and P2 respectively and assume that
one of the following conditions holds:

(a) S1 = S ′
1 ∪R,

T1 = T ′
1 ∪ L,

S2 = S ′
2 ∪ XR,

T2 = T ′
2 ∪ XL,

with |5NXR| ≥ n−k
k
|XR|, |L| = |XL|, and (L,XL) having property P,

or
(b) S1 = S ′

1,

T1 = T ′
1 ∪ L ∪R,

S2 = S ′
2,

T2 = T ′
2 ∪ X ,

with S ′
1 ∪R = Ln,k+1

((
n−1

k

))
and (L ∪R,X ) having property P.

Then the collections P1, S1, T1, S2, and T2 have the following properties:

(i) there exists s ∈ N with S1 = F (s, Ln,k+1

((
n−1

k

))
), and

L(s,P1) = S1 if Ln,k+1

((
n−1

k

))
\ P1 6= ∅,

(ii) |5NS2| ≥ n−k
k
|S2|,

(iii) (T1, T2) has property P.

To prove Lemma 4.4 we consider six cases, each case discussing a different value for m′. In
each of the six cases the proof is accompanied by a supporting figure visualising how P1

and P2 are formed. For illustrative purposes the value of i chosen in these figures is i = 0
and the situation pictured for i = 0 is that of Lemma 4.3 where P ′

2 = F
(
p −

(
n−2
k−3

)
,B

)
,
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and X is the collection of
(

n−3
k−3

)
sets that comes after P ′

2. The collections A and B are
indicated by hatched lines, P ′

1 and P ′
2 are represented by bold lines. The other collections

shown are X , R and L. None of S1, S2, T1 and T2 are shown, so as not to clutter the
figures.

1) m′ ≥ (
n−3−i

k−3−i

)
: Figure 13

Let |R| =
(

n−3−i
k−3−i

)
, |L| = 0 and S1 = S ′

1 ∪ R, S2 = S ′
2 ∪ X , T1 = T ′

1 , T2 = T ′
2 . Apply

Lemmas 4.6, 4.7 and 4.9.

����������

������������������

������������������

��������������������������������������������������������������

������������������������������

`
n

k+1

´

A

m′

k − 1

k + 1

`
n−2
k−2

´

`
n

k−1

´

`
n−2
k−3

´`
n−1
k−1

´

`
n−3
k−4

´`
n−3
k−3

´

R

X

B

P ′
2

P ′
1

`
n−1

k

´`
n−1
k+1

´

Figure 13: The collections P1 and P2 in case 1) : m′ ≥
(

n−3−i
k−3−i

)

2) m′ ≤ (n−3−i

k−4−i

)
: Figure 14

Let |R| = 0, |L| =
(

n−3−i
k−3−i

)
, and S1 = S ′

1, S2 = S ′
2, T1 = T ′

1 ∪ L, T2 = T ′
2 ∪ X . Apply

Lemmas 4.6, 4.8 and 4.9.

3)
(n−3−i

k−4−i

)
< m′ ≤ (n−3−i

k−3−i

)
and m′ ≥ (n−4−i

k−3−i

)
: Figure 15

Let |R| =
(

n−4−i
k−3−i

)
, |L| =

(
n−4−i
k−4−i

)
, and partition X into XR and XL with XR = F

((
n−4−i
k−3−i

)
,X

)
.

Then |XL| =
(

n−4−i
k−4−i

)
. Let S1 = S ′

1 ∪ R, T1 = T ′
1 ∪ L,

the electronic journal of combinatorics 11 (2004), #R50 23



����

������������������

������������������������������

������

����

����������������������������������������������������������������

`
n−1

k

´`
n−1
k+1

´

`
n

k+1

´

m′

k − 1

k + 1

`
n

k−1

´

`
n−3
k−4

´`
n−3
k−3

´

`
n−2
k−3

´`
n−2
k−2

´`
n−1
k−1

´

P ′
2

L

X

P ′
1

B

A

Figure 14: The collections P1 and P2 in case 2) : m′ ≤
(

n−3−i
k−4−i

)

������������������������������
����������������

����������������

��������

L P ′
1

B

A

`
n

k+1

´

P ′
2

m′

`
n−1

k

´`
n−1
k+1

´

k − 1

k + 1

XLXR

`
n

k−1

´

`
n−4
k−3

´ `
n−4
k−4

´

R

`
n−3
k−4

´`
n−3
k−3

´

`
n−2
k−3

´`
n−2
k−2

´`
n−1
k−1

´

Figure 15: P1 and P2 in case 3) :
(

n−3−i
k−4−i

)
< m′ <

(
n−3−i
k−3−i

)
and m′ ≥

(
n−4−i
k−3−i

)
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S2 = S ′
2 ∪ XR, T2 = T ′

2 ∪ XL and apply Lemmas 4.6, 4.7, 4.8, and 4.9.

4)
(

n−3−i

k−4−i

)
< m′ <

(
n−4−i

k−3−i

)
and m′ ≥ (

n−5−i

k−3−i

)
: Figure 16

Let |R| =
(

n−5−i
k−3−i

)
and |L| =

(
n−5−i
k−4−i

)
+

(
n−4−i
k−4−i

)
. Let {XR,XL} be the partition of X with

XR = F
((

n−5−i
k−3−i

)
,X

)
. Thus |XL| =

(
n−5−i
k−4−i

)
+

(
n−4−i
k−4−i

)
.

��������������������������������������������������

����������������������������������������������������������������

������������������

����������

`
n−2
k−3

´`
n−2
k−2

´`
n−1
k−1

´

P ′
2

B

A

`
n

k+1

´

`
n−3
k−3

´

m′

`
n−1

k

´`
n−1
k+1

´

k − 1

k + 1

X2

P ′
1 R

`
n

k−1

´

L2 L1

`
n−4
k−4

´`
n−5
k−4

´`
n−5
k−3

´

X1XR

`
n−3
k−4

´

Figure 16: P1 and P2 in case 4) :
(

n−3−i
k−4−i

)
< m′ <

(
n−4−i
k−3−i

)
and m′ ≥

(
n−5−i
k−3−i

)

To see that (L,XL) has property P, partition L and XL into {L1,L2} and {X1,X2} respec-
tively with |L1| =

(
n−5−i
k−4−i

)
, |L2| =

(
n−4−i
k−4−i

)
, X1 = F (

(
n−5−i
k−4−i

)
,XL), so that |X2| =

(
n−4−i
k−4−i

)
.

Apply Lemma 4.8 to (L1,X1) and (L2,X2).

Let S1 = S ′
1 ∪R, T1 = T ′

1 ∪ L, S2 = S ′
2 ∪ XR, T2 = T ′

2 ∪ XL and apply Lemmas 4.6, 4.7
and 4.9.

5)
(n−3−i

k−4−i

)
< m′ <

(n−5−i

k−3−i

)
and m′ ≥ (n−6−i

k−4−i

)
: Figure 17

This case is similar to Case 4). Let |R| =
(

n−6−i
k−3−i

)
, |L| =

(
n−6−i
k−4−i

)
+

(
n−5−i
k−4−i

)
+

(
n−4−i
k−4−i

)
.

Let {XR,XL} be the partition of X with XR = F
((

n−6−i
k−3−i

)
,X

)
. Then |XL| =

(
n−6−i
k−4−i

)
+(

n−5−i
k−4−i

)
+

(
n−4−i
k−4−i

)
.
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������������������������������

��������������������������������������������������������������

�� ���� ��

m′

`
n

k+1

´

A

B

P ′
2

`
n−1
k−1

´ `
n−2
k−2

´ `
n−2
k−3

´

`
n−3
k−3

´

XR X1

L1L2

`
n−6
k−3

´̀
n−6
k−4

´
+

`
n

k−1

´

X2

RP ′
1

k + 1

k − 1

`
n−1
k+1

´ `
n−1

k

´

`
n−4
k−4

´

`
n−3
k−4

´

`
n−5
k−4

´

Figure 17: P1 and P2 in case 5) :
(

n−3−i
k−4−i

)
< m′ <

(
n−5−i
k−3−i

)
and m′ ≥

(
n−6−i
k−4−i

)

��������������������������������

������������������������������������������������������������������

�� ����

��������������������

m′

`
n

k+1

´

A

B

P ′
1

P ′
2

`
n−3
k−4

´

XR

`
n−6
k−3

´

`
n−2
k−3

´`
n−1
k−1

´

`
n

k−1

´

R

XL

L

`
n−2
k−2

´

`
n−3
k−3

´

`
n−6
k−4

´
+

`
n−5
k−4

´

+`
n−4
k−4

´

k + 1

k − 1

`
n−1
k+1

´ `
n−1

k

´

Figure 18: The collections P1 and P2 in case 6) :
(

n−3−i
k−4−i

)
< m′ <

(
n−6−i
k−3−i

)
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Partition L and XL into {L1,L2} and {X1,X2} respectively with |L1| =
(

n−6−i
k−4−i

)
, |L2| =(

n−5−i
k−4−i

)
+

(
n−4−i
k−4−i

)
, X1 = F (

(
n−6−i
k−4−i

)
,XL), and apply Lemma 4.8 to see that (L,XL) has

property P.

Let S1 = S ′
1 ∪R, T1 = T ′

1 ∪ L, S2 = S ′
2 ∪XR, T2 = T ′

2 ∪ XL, and apply Lemmas 4.6, 4.7
and 4.9.

6)
(

n−3−i

k−4−i

)
< m′ <

(
n−6−i

k−3−i

)
: Figure 18

Let |R| = m′, |L| =
(

n−3−i
k−3−i

)
−m′. XR, XL are as in case 5), and partition L into {L1,L2}

such that |L2| = |XL|. Then (L2,XL) has property P. For
n > 32 and

(
n−3−i
k−4−i

)
<

(
n−6−i
k−3−i

)
, we have that

(
n−6−i
k−2−i

)
≥ 2

(
n−6−i
k−3−i

)
. Then∣∣5

NXR
∣∣ =

∣∣5
NLn−6−i,k−3−i

((
n−6−i
k−3−i

))∣∣ =
(

n−6−i
k−2−i

)
≥ 2|XR|. This shows that

(L ∪R,X ) has property P.

Let S1 = S ′
1, T1 = T ′

1 ∪ L ∪R, S2 = S ′
2, T2 = T ′

2 ∪ X and apply Lemma 4.9.

4.4 Proposition 4.12

At this point, with the proof of Lemma 4.2 behind us, we can state the following:

Lemma 4.10. Let n > 32 and n+1
3

< k ≤ n
2

with
(

n−1
k−2

)
≥

(
n−2
k−1

)
and k−1

n−k
+ n−k−1

k
< 2.

Let p be such that
(

n−1
k−2

)
+

(
n−2

k

)
< p ≤

(
n

k−1

)
. Let P2 = F

(
p −

(
n−k+2

1

)
,B

)
. Then there

exists a collection P1 ⊆ A such that (P1,P2) has property P.

Proof. Set l = k − 4 in Lemma 4.2.

Lemma 4.11. Let n > 32, k ≤ n
2
,
(

n−1
k−2

)
+

(
n−2

k

)
< p ≤

(
n

k−1

)
, and let D = L

((
n−k+2

1

)
,B

)
.

Then |5ND| > 2|D|.

Proof. Note that |B| = p >
(

n−k+2
1

)
, and that for n > 6, n−k+1

2

(
n−k+2

1

)
> 2

(
n−k+2

1

)
.

Let D = L
((

n−k+2
1

)
,B

)
. Then D is isomorphic to the collection Ln−k+2,1

((
n−k+2

1

))
. By

Sperner’s lemma,
∣∣5

ND
∣∣ =

∣∣5Ln−k+2,1

((
n−k+2

1

))∣∣ = n−k+1
2

(
n−k+2

1

)
> 2

(
n−k+2

1

)
.

Combining Lemmas 4.10 and 4.11 enables us to state:

Proposition 4.12. Let n > 32 and n+1
3

< k ≤ n
2

with
(

n−1
k−2

)
≥

(
n−2
k−1

)
and k−1

n−k
+ n−k−1

k
< 2.

Then Theorem 1.5 holds for
(

n−1
k−2

)
+

(
n−2

k

)
< p ≤

(
n

k−1

)
.
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5 The Proof of Theorem 1.5 : Part C

Proposition 5.1. Let n > 32 and k > n
2
. Then Theorem 1.5 holds for p ≤

(
n−1

k

)
.

Proof. Since k > n
2
, p ≤

(
n−1

k

)
≤

(
n−1
k−2

)
, and the result follows from IH 3.3. See Figure 19

for an illustration.

(
n−1
k−1

)
(

n
k−1

)
(
n−1
k−2

) p

p

k + 1

k − 1

(
n−1

k

)(
n−1
k+1

)
(

n
k+1

)

Figure 19: The collections Ln,k+1(p) and Ln,k−1(p) in Proposition 5.1

Proposition 5.2. Let n > 32 and k > n
2

with
(

n−2
k−3

)
>

(
n−1

k

)
. Then Theorem 1.5 holds

for
(

n−1
k

)
< p ≤

(
n

k+1

)
.

Proof. Let p = p′ +
(

n−1
k

)
. Under the current assumptions, p <

(
n−1
k−2

)
(as

(
n

k+1

)
<

(
n−1
k−2

)
)

and p′ > 0. Thus

|4NLn,k+1 (p)| =

∣∣∣∣4NLn−1,k

((
n − 1

k

))∣∣∣∣ + |4NLn−1,k+1 (p′)|

≥
∣∣∣∣4NFn−1,k

((
n − 1

k

))∣∣∣∣ + |4NLn−1,k (p′)|

by Theorem 2.11, and
∣∣5

NLn,k−1 (p)
∣∣ ≥ ∣∣5

NLn−1,k−2 (p′)
∣∣+∣∣5

NFn−1,k−2

((
n−1

k

))∣∣. Propo-
sition 5.2 follows from IH 3.3; see Figure 20 for an illustration.
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(
n−1
k−1

)
p′

p

p′

p

(
n

k−1

)
(
n−1
k−2

)

k + 1

k − 1

(
n

k+1

)
(

n−1
k+1

) (
n−1

k

)

Figure 20: Partitioning of Ln,k+1(p) and Ln,k−1(p) in proving Proposition 5.2

Proposition 5.3. Let n > 32 and k > n
2

with
(

n−2
k−3

)
≤

(
n−1

k

)
. Then Theorem 1.5 holds

for
(

n−1
k

)
< p ≤

(
n−1
k−2

)
.

Proof. The partitioning of Ln,k+1(p) and Ln,k−1(p) used here is illustrated by Figure 21.

(
n−1
k−1

) p

p
p′′p′

p′′ p′(
n−2
k−2

) (
n−2
k−3

)
(

n
k−1

)

k + 1

k − 1

(
n−1

k

)(
n−1
k+1

)
(

n
k+1

)

Figure 21: Partitioning of Ln,k+1(p) and Ln,k−1(p) in proving Proposition 5.3

Let p = p′ + p′′ +
(

n−2
k−3

)
be such that

(
n−1

k

)
= p′′ +

(
n−2
k−3

)
. Then 0 < p′ + p′′ ≤

(
n−2
k−2

)
. It

follows that |4NLn,k+1 (p)| =
∣∣4NLn−1,k

((
n−2
k−3

))∣∣ + |4NFn−1,k (p′′)| + |4NLn−1,k+1 (p′)|
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and that

∣∣5
NLn,k−1 (p)

∣∣
≥

∣∣∣∣5NLn−2,k−3

((
n − 2

k − 3

))∣∣∣∣ +
∣∣5

NLn−2,k−2 (p′)
∣∣ +

∣∣5
NFn−2,k−2 (p′′)

∣∣
=

∣∣∣∣5NLn−1,k−2

((
n − 2

k − 3

))∣∣∣∣ +
∣∣5

NLn−1,k−1 (p′)
∣∣ +

∣∣5
NFn−1,k−2 (p′′)

∣∣ .

Proposition 5.3 then follows from IH 3.3.

Proposition 5.4. Let n > 32 and k > n
2

with
(

n−2
k−3

)
≤

(
n−1

k

)
. Then Theorem 1.5 holds

for
(

n−1
k−2

)
< p ≤

(
n

k+1

)
.

Proof. See Figure 22 for an illustration.

(
n−1
k−1

) p

p
p′

p′

(
n−1
k−2

)
(

n
k−1

)

k + 1

k − 1

(
n−1

k

)(
n−1
k+1

)
(

n
k+1

)

Figure 22: Partitioning of Ln,k+1(p) and Ln,k−1(p) in proving Proposition 5.4

Let p = p′ +
(

n−1
k−2

)
, so p′ > 0. Since k > n

2
,

(
n−1
k−2

)
≥

(
n−1

k

)
. Thus, |4NLn,k+1 (p)| ≥∣∣4NLn,k+1

((
n−1
k−2

))∣∣ + |4NLn−1,k+1 (p′)|, and
∣∣5

NLn,k−1 (p)
∣∣ =

∣∣5
NLn,k−1

((
n−1
k−2

))∣∣ +∣∣5
NLn−1,k−1 (p′)

∣∣. Proposition 5.4 follows by IH 3.3 and Proposition 5.3 applied to
(

n−1
k−2

)
.

This concludes the proof of Theorem 1.5.
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6 Possible Alternative Proofs of Theorem 1.5

The proof of Theorem 1.5 has been long but to date no other proof is known. The values
|4Fn,k+1(p)| and |5NFn,k−1(p)| can be directly computed from the (k + 1)-binomial and
the (k − 1)-binomial representation of p respectively (see [1, 11]). These two binomial
representations of p are independent of n. This suggests that to prove Theorem 1.5 an
induction on p would be appropriate, although this seems to be difficult.

Another approach is to consider the real binomial representation of p (see [12, pp. 81
& 459]). This representation may be more convenient to use in investigating sizes of new-
shadows and new-shades. While computing |4Fn,k+1(p)| can be simplified by using this
approach, a suitable expression for |5NFn,k−1(p)| seems hard to find.

The output (not given in this paper) of the algorithm used to prove that Theorem 1.5 holds
for values of n less than 33 shows that for n fixed, the function
(|∇NLn,k−1(p)| + |4NLn,k+1(p)|)/p seems to attain its minimum over all k and p when
k = n

2
− 1, n even, and when k = n−1

2
, n odd, and n sufficiently large. A strategy to

prove Theorem 1.5 could then be to prove that this is indeed the case, and to prove that
Theorem 1.5 holds for k = n

2
−1, n even, and for k = n−1

2
, n odd, and n sufficiently large.

The latter seems reasonably easy to show, however the former appears difficult to prove.
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