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Abstract

Andrei Markov’s 1890 method for convergence-acceleration of series bears an amazing resemblance
to WZ theory, as was recently pointed out by M. Kondratieva and S. Sadov. But Markov did not
have Gosper and Zeilberger’s algorithms, and even if he did, he wouldn’t have had a computer to run
them on. Nevertheless, his beautiful ad-hoc method, when coupled with WZ theory and Gosper’s
algorithm, leads to a new class of identities and very fast convergence-acceleration formulas that
can be applied to any infinite series of hypergeometric type.

Preface: Where are the Examples?

One Example is given in the Appendix, but lots and lots of examples can be found at

http://www.math.rutgers.edu/˜zeilberg/Markov/Examples.html.

Many other interesting examples for acceleration formulas will be found in a forthcoming article
by the first author[Mo1].

In addition, readers can generate (potentially) infinitely many other examples by using the Maple
package MarkovWZ downloadable from that page. No knowledge of Maple is necessary!, just a basic
knowledge of typing! Read the on-line instructions!

The research (and of course, writing the Maple packages) is joint work between the authors. The
actual writing was done by the second author. In particular we means the Royal we.

How Andrei Andreyevich Markov (almost) Discovered WZ Pairs

On Jan. 7, 2004, one of us (DZ) received an E-mail message from Sergei Sadov, that he kindly
allowed us to quote from.

* Thanks to Herb Wilf, the referee, Ben Kalba, and Tipesh Gadol for many suggestions
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> From sergey@math.mun.ca Wed Jan 7 21:38:58 2004

To: Doron Zeilberger <zeilberg@math.rutgers.edu>

cc: Margo Kondratieva <mkondra@math.mun.ca>

Subject: Markov’s transformation of series

Dear Professor Zeilberger,

I am finally writing to you, which is what I ought to have done at least 16 months

ago, after narrowly missing you at ICM in Beijing.

At the ICM-2002 we, I and my wife and coauthor Margo (I speak for both of us), pre-

sented a poster under the title "Summation technique forgotten for a century: Markov

(1890) - Wilf-Zeilberger (1990)". The abstract can be found on p. 404 of the ICM

Abstracts volume. [In my present view, some particulars in that little text are in-

accurate.]

Moving to a new place, teaching, not making progress in the topic -- resulted in a

delay, which grew indefinitely.

This summer, visiting Markov’s home city St.Petersburg (Russia), and combing through

old textbooks on series during this new year break, we have collected more material

around Markov’s memoir of 1890, aiming to answer the question why it had been for-

gotten.

What Markov did in his memoir, very much resembles the WZ approach. Currently we are

preparing a first larger-than-abstract size publication. We’d like to hear your first-

hand opinion on Markov’s work.

You can find the scanned pdf’s of Markov’s memoir at

http://www.math.mun.ca/~sergey/Research/History/Markov/markov1890.html .

A particular question, which, perhaps, you can answer easily, is: whether Sister Ce-

line had cited Markov?

I enjoyed reading some (since I didn’t read all) of your Opinions and your opinion

on this subject will be greatly appreciated here!

Yours truly, Sergey

[Note: see [KS1] and [KS2] for the abstract and paper mentioned in Sergey Sadov’s message. The
very interesting [KS2] exposits Markov’s work very thoroughly. As for Sadov’s question about
Sister Celine citing Markov, the answer is negative].

Our initial reaction was mixed. Objectively, it was very interesting that the so-called WZ method
seemed to have been anticipated by the great Markov, but subjectively, it is annoying to be scooped
by anyone, especially someone a hundred years ago.
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Naturally, we read Markov’s mémoire([M]) right away, and sure enough, already at the very be-
ginning, there was something very familiar: the definition of a WZ-pair!, or so it seemed. It was
contained inside a proposition facile a déduire par la considération d’une somme double. Here is a
free translation, from French, of that proposition.

“If two functions
Ux,z and Vx,z

of independent variables x and z are related by the condition

Ux,z − Ux+1,z = Vx,z − Vx,z+1 (1)

one has

U0,0 + U0,1 + U0,2 + . . . + U0,j−1

−Ui,0 − Ui,1 − Ui,2 − . . . − Ui,j−1
=

V0,0 + V1,0 + V2,0 + . . . + Vi−1,0

−V0,j − V1,j − V2,j − . . . − Ui−1,j
, (2)

where i and j are arbitrary positive integers.”

He then states that all the (U, V )’s in his memoir will be such that when i and j go to infinity the
top series converge, and the bottom series converge to 0, yielding the identity

∞∑
j=0

U0,j =
∞∑

i=0

Vi,0 . (3)

Markov then proceeded to construct interesting pairs of functions (Ux,z, Vx,z), that satisfy (1),
and the convergence property, yielding an identity of type (3) where the left side is a classical
constant (most notably ζ(3)) and the right side is a rapidly converging series. So his motivation was
convergence-acceleration. Interestingly, this was one of the spin-offs(see [Z2], [AmZ1][AmZ2])
of modern WZ-theory, whose initial motivation was identity-proving.

Markov’s immediate motivation was to one-up Stieltjes, in the race for numerical computations of
ζ(3). Using an appropriate ‘WZ-pair’, he computed ζ(3) to 33 decimal digits, beating the previous
record of Stieltjes.

Markov was Brilliant but He did not Discover WZ-pairs

First, he didn’t give this concept a name, say ‘M-pair’, equation (1) is just the hypothesis of his
central lemma. Second, he did not realize, explicitly, the role of hypergeometricity, even though
all of his examples were in fact hypergeometric (either ordinary or q-). Finally he did not have
Gosper’s algorithm, so all his constructions were completely ad hoc, using, however, a very clever
ansatz. But he didn’t algorithmize his method (well, you can’t really blame him, since he couldn’t
have possibly consulted his son, Andrei, Jr., [one of the co-discoverers (with Turing, Church, and
Post) of the modern notion of algorithm], as the latter was yet to be born [Andrei, Jr. was born
13 years later, in 1903]).
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Markov’s Brilliant Idea

However, implicit in Markov’s ad-hoc method is a new (well, new to us!) idea, that, when interfaced
with Gosper’s algorithm, offers a far-reaching extension of WZ-pairs, that we will call MWZ
pairs. In this article we will describe an algorithm for finding such pairs, that uses ‘Gosper with
parameters’ as a subroutine in an analogous way to Zeilberger’s algorithm.

We Have a Dream

Apéry’s amazing proofs of the irrationality of log 2, ζ(2), and ζ(3) can be recast in terms of WZ-
theory ([Z2],[Z3]). Naturally, one would like to generalize these to ζ(5) and beyond. A big stumbling
block for the extension was that they did not appear to be natural WZ-pairs that handle ζ(5) and
beyond. We will show later that there are many (in fact too many!) MWZ-pairs that can handle
ζ(n) for any n ≥ 2. Alas, we do not (yet!) have irrationality proofs of ζ(5) and beyond, because
there is another ingredient to Apéry’s success: a judicious averaging-function. So far, our very
limited explorations did not succeed, but we believe that a systematic search, possibly by also
allowing more general averaging functions, might ultimately succeed.

We should mention that the race for ζ(5) and beyond is currently a very lively field practiced by
great talents such as Almkvist, Hata, Fischler, Rivoal, Zudilin and others. See Fischler’s[F] recent
Séminaire Bourbaki. Perhaps the new flexibility of MWZ pairs, coupled with the already existing
ideas of these people, will lead to a breakthrough.

Markov’s ad-hoc method

Markov starts with a kernel H(x, z), and then, by starting with d = 0, tries to find the smallest
non-negative integer d for which there exist U(x, z), V (x, z) of the form

U(x, z) = H(x, z)

(
d∑

i=0

Ai(x)zi

)
, (Ansatz1)

and

V (x, z) = H(x, z)

(
d∑

i=0

Bi(x)zi

)
, (Ansatz2)

(for some non-zero Ai(x), Bi(x) [0 ≤ i ≤ d] ), that satisfy

U(x + 1, z) − U(x, z) = V (x, z + 1) − V (x, z) (WZ)

The Ai(x)’s and Bi(x)’s are undetermined ‘coefficients’, in fact functions of the single variable x.
In addition, Markov poses the initial conditions A0(0) = 1, Ai(0) = 0, i ≥ 1. Now Markov plugs
(Ansatz1) and (Ansatz2) into (WZ), divides throughout by H(x, z), clears denominators, and
sets all the coefficients of the powers of z in the numerator equal to 0. This leads to a system of
first-order linear recurrence equations with polynomial coefficients for the Ai’s and Bi’s, and if in
luck, he finds explicit expresions for the Ai(x)’s and Bi(x)’s. Finally, if successful, he deduces a
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convergence-acceleration formula

∞∑
z=0

H(0, z) =
∞∑

x=0

V (x, 0) , (Acc)

where
V (x, 0) = H(x, 0)B0(0) ,

and it so happens that the series on the right-hand side converges much faster than the series on
the left-hand side.

Prerequisites

We assume that the reader is familiar with [PWZ] (available freely on the web), and, for some
of this paper, with, [Z2]. In particular, the reader should know, or be willing to look up, the
definitions of hypergeometric, proper-hypergeometric, holonomic, and WZ-pair. Please note that
the WZ-pairs featuring in Apéry’s proofs for the irrationality of log 2, ζ(2) and ζ(3) are slightly
different than the ones in this article, since the domain in [Z2] (as well as the one implicit in
Apéry’s original paper[Ap]) is {n ≥ k ≥ 0}), whereas, in this article, following Markov, we use the
more user-friendly domain {0 ≤ n, k < ∞}. Of course this only amounts to a simple change of
(discrete) variables featuring in the WZ-pairs. Also, we sometimes use x and z instead of n and k,
as homage to Markov, who used the former. Finally ‘ClosedForm’ (in this paper) is the same as
Proper-Hypergeometric.

Gosper

Gosper’s algorithm is a decision procedure that inputs a hypergeometric sequence a(k),
in one variable (i.e. a sequence for which a(k +1)/a(k) is a rational function of k) and outputs
a r

¯
ational function r(k) such that b(k) := r(k)a(k) satisfies a(k) = b(k + 1) − b(k), if such an r(k)

exists, and otherwise returns FAIL. Its driving force is a system of linear equations.

The first phase of Gosper is to peel-off the polynomial of largest degree, p(k) such that a(k) =
p(k)a(k), and a(k) is a hypergeometric sequence that is minimal in some sense. So the second
phase of Gosper really inputs a polynomial and a hypegometric sequence. It then proceeds to
construct a certain system of inhomogeneous linear equations. Then it tries to solve that system.
If it succeeds, then Gosper reports success, and the solution of the system leads to the anti-
difference. If it fails, then Gosper returns FAIL.

Gosper with Parameters

It turns out that the system of linear equations constructed by Gosper is also linear in the poly-
nomial p(k). So one can just start with any-old hypergeometric a(k) and a polynomial p(k) that
depends, linearly, on certain auxiliary parameters. Then one may ask: For what choice of these
parameters (if any), is p(k)a(k) gosperable? Now we get the same system of linear equations as
before, but the set of ‘unknowns’ consist, in addition to those given by Gosper, of these additional
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auxiliary parameters. Now the system of linear equations is homogenous, so there is always a so-
lution. Alas, it may return 0, which is correct (0 does indeed have a hypergeometric anti-difference),
but not terribly interesting. If we get a non-zero solution, then GosperWithParameters returns
the successful choice of parameters whose plugging-in into p(k) makes p(k)a(k) gosperable. It also
returns the corresponding anti-difference.

Zeilberger

The Z-algorithm uses, as a crucial subroutine, GosperWithParameters.

Given a hypergeometric term F (n, k) in two variables, n and k, and an integer L, it tries to find
a0(n), a1(n), . . . , aL(n) such that

a0(n)F (n, k) + a1(n)F (n + 1, k) + . . . + aL(n)F (n + L, k) ,

is gosperable with respect to k. After dividing throughout by F (n, k), adding the resulting fractions
(using, in Maple, normal), and multiplying back by F (n, k), the above quantity has the form:

POL(a0, a1, . . . , aL) · ClosedForm(n, k) ,

where POL is a polynomial in k that depends linearly on a0, a1, . . . , aL. Of course it is also a
polynomial in n, but this is irrelevant right now, since n is silent (all the action is with respect to
k). To find out whether there exists indeed a choice of (non-zero!) ai’s that makes this gosperable,
we use GosperWithParameters, that returns the successful ai’s as well as the certificate G(n, k). It
was proved in [Z1] (see also [PWZ]) that there always exists an L for which it is successful. So in
practice one starts with L = 0 and keeps increasing L until success is reached.

Markov meets Gosper

It so happens that Markov could have saved himself lots of calculations (even without a computer),
if he would have known about GosperWithParameters. Coupled with the computer, it leads to
really amazing results, as we hope to show.

Markov’s motivation was series-acceleration, so let’s reconstruct his reasoning, and superpose on
it our modern know-how. We are given a series that slowly converges to some (usually ‘famous’)
constant, let’s call it c:

c =
∞∑

k=0

a(k) ,

where a(k) is hypergeometric. We first look for a two-variable proper-hypergeometric term, let’s
call it H(n, k) such that H(0, k) = a(k) (of course, there are lots of [in fact infinitely-many])
possibilities.) So we have

c =
∞∑

k=0

H(0, k) .
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Now, following Markov, fix a degree d, and write

F (n, k) =

(
d∑

i=0

ai(n)ki

)
H(n, k) .

We also want F (0, k) = H(0, k), so we insist that the ai(n) satisfy the following initial conditions:

a0(0) = 1 ; ai(0) = 0 , 1 ≤ i ≤ d .

Question: Does there exist a choice of {ai(n)} that makes ∆nF (n, k) := F (n + 1, k) − F (n, k)
gosperable with respect to k? If there is indeed such a choice, then for that particular assignment,
there exists a G(n, k), which furthermore is of the form Rational(n, k)H(n, k), such that (F,G) is
a “WZ-pair”,

F (n + 1, k) − F (n, k) = G(n, k + 1) − G(n, k) , (MWZ)

and by (Acc), this would entail

c =
∞∑

n=0

G(n, 0) ,

which, if all goes well, is a much faster-converging series than the original.

Answer: Having fixed the degree d, and trying the above ansatz for F (n, k), as yet with unde-
termined coefficients ai(n) that are functions of n, forming ∆nF (n, k) and dividing by H(n, k),
simplifying H(n + 1, k)/H(n, k) (it is a rational function since H(n, k) is hypergeometric), would
yield a rational function whose numerator features both ai(n) and ai(n+1). Because H(n, k) is
not just hypergeometric but proper- hypergeometric (see [PWZ] for definitions), the denominator
of the above expression can be combined with the ‘purely-hypergeometric’ part, and we can input
the latter, and the numerator, into GosperWithParameters, where the ‘parameters’ are both the
ai(n)’s and the ai(n + 1)’s.

Now GosperWithParameters, if successful, will return a system of linear equations relating the
‘unknowns’ ai(n) (0 ≤ i ≤ d), ai+1(n) (0 ≤ i ≤ d), and the coefficient of the polynomial in Gosper’s
algorithm. If the ‘co-rank’ of this system of homogeneous linear equations is d + 1, it should be
possible to express all these unknowns, in particular the ai(n+1)’s, in terms of the ai(n)’s, thereby
getting a first-order system of linear recurrences with polynomial coefficients

(a0(n + 1), . . . , ad(n + 1))T = A(n) (a0(n), . . . , ad(n))T , (Recurrence)

where A(n) is a (d + 1) × (d + 1) matrix with entries that are rational functions in n. Note that
this defines the ai(n)’s (subject to the initial conditions), and in general it is not possible to solve
them ‘explicitly’. But ‘solving’ is just a human hang-up. From our, and the computer’s, point of
view, (Recurrence) is as explicit as n!, since after all, n! is just shorthand for the solution of the
recurrence a(n) = na(n − 1), a(0) = 1.
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In addition, the coefficients of the polynomial that is hidden inside the original Gosper algorithm,
are also expressible in terms of the ai(n), and hence the anti-difference G(n, k) can be expressed as

G(n, k) = ClosedForm(n, k) ·
(

d∑
i=0

ai(n)bi(n, k)

)
,

where bi(n, k) are certain polynomials in n and k.

Finally, plugging-in k = 0 gives

b(n) := G(n, 0) = ClosedForm(n, 0) ·
(

d∑
i=0

ai(n)bi(n, 0)

)
,

and the ‘fast’ series for c,

c =
∞∑

n=0

b(n) .

If everything works out with d = 0, then the “system” (Recurrence) only has one unknown function
a0(n), and (F,G) is a good-old (hypergeometric) WZ pair. But if d > 0 then while (F,G) still
satisfy

F (n + 1, k) − F (n, k) = G(n, k + 1) − G(n, k) , (MWZ)

now they are no longer hypergeometric. On the other hand, they are more than “just holonomic”,
since, in fact, both F (n, k) and G(n, k) have the form:

ProperHypergometric(n, k) ·
(

d∑
i=0

Holonomic(n)ki

)
.

We call these more generalized pairs MWZ-pairs.

What is Needed for the Markov-WZ Method to Become Official

Like in Zeilberger’s algorithm, we need a formal proof that there exists a d such that the resulting
system of linear equations outputted by GosperWithParameters has co-rank d+1. In other words,
we need to prove that for any proper-hypergeometric kernel H(n, k) there exists a non-negative
integer d such that F (n, k) in the form given in (Markov) has a MWZ-mate. We know how to
do it, but confess that we haven’t carried out the details yet. The way to do it is to consider a
generic proper-hypergeometric kernel, and ‘trace’ the algorithm in this general form, finding upper
bounds for d to guarantee that the system of linear equations buried inside GoseprWithParameters
has a d + 1-parameter solution, and that a0(n), . . . , ad(n) can be used as these parameters, forcing
ai(n + 1)’s to be expressible in terms of these, as well as the coefficients of the polynomial implicit
in Gosper.

On the other hand, the proof of the proof is in the eating. Whenever we succeed, we know for
sure that we have a bona-fide MWZ pair, unlike, say, Miller-Rabin-style primality testing. Since,
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in real time, there would be lots of examples where the size of the problem is too big, and our
main motivation is to prove irrationality of famous constants, (and, as consolation prizes, create
super-fast accelerating series for favorite constants), the a posteriory reassurance is almost as
good as an a priori assurance. But, if the readers wish to have this a priori guarantee, they are
more than welcome to carry out the details.

All this only applies to the existence of an MWZ pair. In order to use it for convergence-acceleration,
one must check, in addition, that

∞∑
k=0

F (0, k) ,

∞∑
n=0

G(n, 0) ,

converge, and that

lim
n→∞

∞∑
k=0

F (n, k) = 0 , lim
k→∞

∞∑
n=0

G(n, k) = 0 .

Of course, this is only useful if the accelerated series converges faster than the original series, so
this has to be checked as well.

Bonus

In the original WZ method, the main motivation was the automated proving (and discovery) of
identities and the application to convergence-acceleration came later. Markov’s motivation,
as we said above, was the latter, but, whenever we get an MWZ pair, we have as before an identity∑

k

F (n, k) = Constant ,

and similarly for G(n, k). It is true that these new identities may look weird to human eyes,
since F (n, k) is not closed-form in the narrow sense of the word, but rather features sequences
a0(n), a1(n), ..., ad(n), satisfying a system, but in the eyes of God they are just as beautiful,
perhaps even more so, since they are deeper in some sense.

If in luck, it may still happen that a0(n), a1(n), . . . are closed-form (which can be guessed empirically,
and then proved rigorously by verifying that (Recurrence) is satisfied). This was the case in all
the examples that occur in Markov’s original article [M].

Potential Function and Irrationality

Just as for WZ pairs (see [Z2]), every MWZ leads to a potential function c(n, k) that satisfies

F (n, k) = c(n, k + 1) − c(n, k) , G(n, k) = c(n + 1, k) − c(n, k) ,

which, of course, is no longer closed form, and that may be given by

c(n, k) =
k−1∑
k′=0

F (0, k′) +
n−1∑
n′=0

G(n′, k) ,
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or equivalently

c(n, k) =
n−1∑
n′=0

G(n′, 0) +
k−1∑
k′=0

F (n, k′) .

Note that c(n, k) are all diophantine approximations to the constant c. Indeed the definition of c is
c(0,∞) and the ‘accelerated version’ is c(∞, 0). If one can find a subsequence of the doubly-infinite
sequence c(n, k), let’s call it, {em/fm}∞m=1 such that for some δ > 0, there exists a constant C such
that

|em

fm
− c| ≤ C

fm
1+δ

,

then we immediately have a proof that c is irrational. Unfortunately, this didn’t happen yet (even
for Apéry’s spectacular sequences for log 2, ζ(2) and ζ(3), that needed weighted-averaging), but in
our experiments we obtained (empirically) δ’s that, while negative, were pretty close to 0. If you
take a random sequence and a random constant, δ would be −1 or very close to it, so any δ closer
to 0 than to −1 is already a step in the right direction.

See the sample input and output files in the webpage of this article.

Recall that Roger Apéry’s[Ap] brilliant method (see [Z2] and [Z3]), consists of finding a ‘clever’
averaging function b(n, k) such that

en

fn
:=
∑n

k=0 b(n, k)c(n, k)∑n
k=0 b(n, k)

,

or in, the present, Markovian notation, where the natural habitat of c(n, k) is the discrete positive
quadrant:

en

fn
:=

∑
x+y=n b(x, y)c(x, y)∑

x+y=n b(x, y)
,

turns out to be a successful rational-approximating sequence with a positive δ. As we said above,
our (and quite a few other people’s) dream is to emulate Apéry for ζ(5) and beyond.

How to (Who Knows?) Fulfill Our Dream

In addition to producing irrationality proofs, Apéry’s method also yields, as a bonus, convergence-
acceleration series for the constants in question. Hitherto, even the latter were not possible for
ζ(5) and beyond, but now, with the extended notion of MWZ pairs, our computer easily cranks
out amazingly fast series for ζ(5), ζ(7), . . ., and many other constants defined by hypergeometric
series, that we randomly experimented with. Each of them comes from a certain MWZ pair, and its
associated potential function gives diophantine approximations to the constant under consideration.
Now if we could only find a good ‘averaging function’ then we will be famous.

The Major Strength of the MWZ method: Generality

There are infinitely many choices of hypergeometric ‘kernels’ H(n, k) extending a given hypergeo-
metric sequence a(k) such that H(0, k) = a(k). Each of these gives its own MWZ pair. There are
also infinitely many possible averaging functions b(n, k), so just keep on trying!
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The Major Weakness of the MWZ method: Generality

Since life is finite, and there are infinitely many possibilities, a brute-force search is probably
doomed to failure. But perhaps one can develop the theory further in order to predict potentially
successful candidates for H(n, k) and b(n, k), that would narrow the haystack.

A User’s Manual for the Maple package MarkovWZ

This is implemented in the Maple package MarkovWZ downloadable from the webpage of this article

http://www.math.rutgers.edu/~zeilberg/Markov/marwz.html ,

that also has sample input and output.

To use the program, save it as MarkovWZ, stay in the same directory, go into Maple, and type:
read MarkovWZ; ,
and then follow the on-line instructions.

The main functions are Markov, ACC, and WtAve. The functions H1 := (−1)zz!/(x + z + 1)!, for
log 2, H2 := (−1)z(2z!/(x + z + 1))/(2x + z + 1)! for ζ(2), H3 := (z!/(2x + z + 1)!)/(x + z + 1)2

for ζ(3), and C1 := (−1)z(1/4)(z + 1/2)!2/(2x + z + 3/2)!2 for 1−Catalan (alas, this one does not
lead (yet!) to an irrationality proof) are built-in. For example, to find the MWZ-pair for ζ(2), say,
type:

Markov(H2,z,x);

The output consists of four parts. The first one is the inputted kernel H itself (H2 in this particular
example). The second one is the matrix A above. The third part is just the list of powers
[1, k, . . . , kd], and the last part is the vector of the bi’s, rational functions in the variables n and k,
whose dot product with the ai(n)’s (multiplied by H) would give the MWZ-mate, G.

A verbose version of Markov, with all the details, for the benefit of humans, is procedure Markov-

Paper.

Procedure ACC(H,k,n), finds an acceleration formula, e.g. try:

ACC((k!/(n+k+1)!)**2,k,n); .

The output consists of four parts. The first part is simply H when n = 0, which is the summand
of the slowly-converging series. The second part is the matrix A (same as in Markov), describing
the transition matrix between the ai’s at n and the ai’s at n + 1, which, together with the initial
conditions a0(0) = 1, a1(0) = . . . = ad(0) = 0, determine the ai’s uniquely (and make them easy
to compute numerically). The third part is a vector (bi(n)) (the same as the corresponding one
for Markov, but with k = 0 substituted), whose dot-product with the (ai) gives the summand of
the ‘fast’ series. Finally, the fourth part is the convergence-rate, i.e. the absolute value of the
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asymptotic ratio of consecutive terms in the accelerating series.

A verbose version of ACC, will all the details, for the benefit of humans, is procedure ACCpaper.

Procedures Appx and Appxf use ACC to find numerical approximations. Procedure delt empirically
(and of course, approximately) finds the above δ for a specific approximation.

Procedure WtAve(MWZ,z,x,b,L) finds the L-th term in the sequence obtained from using b (a
proper-hypergeometric expression in x and z) as the averaging function for the MWZ-pair MWZ.
For example, using the built-in H2 and H3, type:

z2:=WtAve(Markov(H2,z,x),z,x,binomial(z+2*x,x)*binomial(x+z,z)**2,30);

z3: =WtAve(Markov(H3,z,x),z,x,binomial(z+2*x,x)**2*binomial(x+z,z)**2,30).

Typing delt(z2,Zeta(2)); and delt(z3,Zeta(3)); would yield positive numbers, confirming
(empirically), Apéry’s historic constructions.

There is also a new version of Zeilberger’s algorithm (Zeil), that today is part of Maple’s SumTools
package. It is one of the main functions of Zeilberger’s package EKHAD. The new version uses
GosperWithParameters directly, and seems to be much more efficient than EKHAD, and a little
more efficient than SumTools.

The Maple packages MarkovAZ and ContMarkovWZ

The Markov analog for pairs (F (n, x), G(n, x)), such that F (n+1, x)−F (x, n) = d
dx

G(n, x) that uses
an extension of the Almkvist-Zeilberger algorithm ([AlZ]), is implemented in MarkovAZ. The simple
extension for finding pairs satisfying d

dxF (n, x) = G(n + 1, x) − G(n, x) is done in ContMarkovWZ.

The q-analog of this paper will appear in [Mo2].

Appendix: An example

As mentioned in the preface, many examples, both tersely and verbosely, are given in the Examples
webpage of this article

http://www.math.rutgers.edu/˜zeilberg/Markov/Examples.html.

Better still, use procedures MarkovPaper and ACCpaper in the Maple package MarkovWZ, to get as
many examples as you wish.

Theorem: Let the column-vector of functions of n, a(n) := [a0(n), a1(n), a2(n)]T , be defined by
the initial conditions: a(0) = [1, 0, 0]T , and a(n + 1) = A(n)a(n), where

A(n) :=




1
2

3n+2
4

3n(n+1)
8 ,

−3
2(n+1)

−(7n+4)
4(n+1)

−3n+2
8

3
2(n+1)2

3n
4(n+1)2

−(5n+2)
8(n+1)


 .
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In other words, a(n) = A(n − 1)A(n − 2)...A(0) times [1, 0, 0]T . Let

F (n, k) =
(

n

k

)3

(a0(n) + a1(n)k + a2(n)k2) .

We have, for every non-negative integer n

∑
k

F (n, k) = 1 .

Proof: We cleverly construct

G (n, k) =
(

n

k

)3

·
(
−1/2

a0(n)k3

(n + 1 − k)3
+ 1/8

a1(n)k3(6n + 8 − 4 k)
(n + 1 − k)3

+ 1/8
a2(n)k3(3n2 − 3n − 6 + 6nk + 10 k − 4 k2)

(n + 1 − k)3

)

with the motive that

F (n + 1, k) − F (n, k) = G(n, k + 1) − G(n, k) ,

(check!), and the identity follows upon summing with respect to k. QED.
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