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Abstract

The Ramsey game we consider in this paper is played on an unbounded set of
vertices by two players, called Builder and Painter. In one move Builder introduces
a new edge and Painter paints it red or blue. The goal of Builder is to force
Painter to create a monochromatic copy of a fixed target graph H, keeping the
constructed graph in a prescribed class G. The main problem is to recognize the
winner for a given pair H,G. In particular, we prove that Builder has a winning
strategy for any k-colorable graph H in the game played on k-colorable graphs.
Another class of graphs with this strange self-unavoidability property is the class of
forests. We show that the class of outerplanar graphs does not have this property.
The question of whether planar graphs are self-unavoidable is left open. We also
consider a multicolor version of Ramsey on-line game. To extend our main result for
3-colorable graphs we introduce another Ramsey type game, which seems interesting
in its own right.

1 Introduction

In this paper we consider the following extension of the Ramsey on-line game introduced
independently by Beck [1] and Friedgut et al. [2]. Let G denote a class of finite graphs
and let H be a fixed graph from G. There are two players—Builder and Painter—and
the board of the game is an infinite, independent set of vertices. In each of her moves
Builder presents a new edge and then Painter immediately colors it red or blue. Builder’s
goal is to force Painter to create a monochromatic copy of H , but there is a catch here; at
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any moment of the game (even after the very last move) the red-blue graph must belong
to G; otherwise the game stops and Builder loses. Thus, Builder wins the game if and
only if she can force Painter to create a monochromatic copy of H in a graph belonging
to G. In this case we say that H is unavoidable (for Painter) in the Ramsey on-line game
on G. Otherwise we say that H is avoidable.

Let R(H) be a Ramsey graph of H , that is, a graph which exhibits a monochromatic
copy of H in any 2-coloring of its edges. If R(H) ∈ G then H is trivially unavoidable on G,
but otherwise it may be difficult to detect the winner. Suppose, for instance, that H = K4

and G consists of all 4-colorable graphs. Clearly, no Ramsey graph R(K4) belongs to G,
yet K4 is unavoidable on this class. This is a special case of one of our results (Theorem
2) asserting that any k-colorable graph H is unavoidable on k-colorable graphs. The
fact that this result is based on two fundamental theorems of Ramsey theory, Ramsey’s
original unabridged theorem and the Bipartite Ramsey Theorem, may help convince the
reader that we are indeed studying Ramsey theoretic questions.

It seems that this self-unavoidability of a class of graphs (not containing Ramsey
graphs of its members) is a rather exceptional property. Therefore it would be interesting
to find other non-trivial examples of this unexpected phenomenon. The last section offers
a speculative discussion on this and related questions.

2 k-colorable graphs

We start with some preparations for the proof of our first result. Let [n] denote the set
{1, ..., n} and

(
X
k

)
denote the set {S ⊆ X : |S| = k}. Let R(k)(u) be the smallest number

n (guaranteed to exist by Ramsey’s theorem [3]) such that for every 2-coloring of
(
[n]
k

)
there exists a u-subset H ⊆ [n] such that

(
H
k

)
is monochromatic.

Now we are ready to state and prove our first theorem. Note that in the following
statement n (k, k, k) is the value in which we are most interested.

Theorem 1 There exists a function n (a, b, k) such that for all integers a, b, k with 2 ≤
a, b ≤ k, Builder can force Painter to create either a red a-clique or a blue b-clique while
building the edges of a k-colorable graph on n(a, b, k) vertices.

Proof: We begin by recursively defining n (a, b, k). Let

1. n(2, i, k) = n(i, 2, k) = i for 2 ≤ i ≤ k.

2. n(a, b, k) = s(a, b, k) + t(a, b, k), where

(a) s(a, b, k) = 2(k − 2)
(

t(a,b,k)
k−1

)
n(a − 1, b − 1, k − 1),

(b) t(a, b, k) = R(k−1)(u(a, b, k)) and

(c) u(a, b, k) = max {n(a − 1, b, k), n(a, b − 1, k)}.
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We argue by induction on a + b + k. The base step is trivial so consider the induction
step. We give Builder’s strategy. Let s = s(a, b, k), t = t(a, b, k) and n = n(a, b, k) = s+t.
Let V be a set of n vertices and let {S, T} be a partition of V with |S| = s and |T | = t,
where S has the form

S =

{
(F, i) : F ∈

(
T

k − 1

)
, i ∈ [2(k − 2)n(a − 1, b − 1, k − 1)]

}
.

First Builder presents all edges of the form {(F, i), j}, where j ∈ F . Notice that at this
point Builder can still add any (k − 1)-colorable graph G to S or any k-colorable graph
G′ to T (but not both) and still have a k-colorable graph. The second statement follows
from the fact that every vertex in S has degree k − 1 and so any k-coloring of T can be
extended to a k-coloring of S ∪ T .

Case 1: For every F ∈ (
T

k−1

)
there exists (F, i) ∈ S such that all edges incident to

(F, i) have the same color c(F ). This induces a coloring c of the (k− 1)-subsets of T and,
by the choice of t, there exists a u-subset H ⊆ T such that

(
H

k−1

)
is monochromatic under

c (say red). By the inductive hypothesis Builder can force painter to create either a red
(a − 1)-clique on some set K or a blue b-clique, while building a k-colorable graph G′on
H . In the latter case we are done. For the former case let K ⊆ F ∈ (

H
k−1

)
. We can add

(F, i) to K to get a red a-clique.
Case 2: There exists F ∈ (

T
k−1

)
such that every vertex (F, i) ∈ S is incident to edges

of both colors. Then there exists x, y ∈ F and

H ⊆ {(F, i) : i ∈ [2(k − 2)n(a − 1, b − 1, k − 1)]}
such that |H| = n(a−1, b−1, k−1) and for all z ∈ H we have c(xz) = red and c(yz) = blue.
Indeed, fix a vertex v ∈ F . There exists I ⊆ [2(k − 2)n(a − 1, b − 1, k − 1)] such that
|I| ≥ (k−2)n(a−1, b−1, k−1) and the edges v (F, i), with i ∈ I, are of the same color (say
red). Set x = v. Also there exists w ∈ F and I ′ ⊆ I such that |I ′| ≥ n(a− 1, b− 1, k − 1)
and the edge w (F, i) is blue for every i ∈ I ′. Set y = w. Let H = {(F, i) : i ∈ I ′}. By
the induction hypothesis Builder can force painter to create either a red (a− 1)-colorable
clique or a blue (b− 1)-clique, while building a (k − 1)-colorable graph G on H . In either
case we are done by adding x or y to the clique.

�
We shall use the above result together with the Bipartite Ramsey Theorem (see [3])

to show that the class of k-colorable graphs is self-unavoidable. Let B(p) be the smallest
number t (guaranteed to exist by the Bipartite Ramsey Theorem [3]) such that for every
2-edge-coloring of Kt,t there exists a monochromatic copy of Kp,p. Let B(m)(p) be the
m-fold iteration of B(p).

A “blown-up” copy of a simple graph G is a graph obtained by replacing each vertex
of G by an independent set of vertices, and each edge of G by a complete bipartite graph
between sets corresponding to its ends. If all sets replacing vertices are of the same size
p the blown-up copy of G is denoted by Gp. If G is edge-colored then we call a colored
graph Gp the true colored copy of G if all edges of the bipartite part corresponding to a
given edge of G have its color.
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Theorem 2 Builder wins the Ramsey on-line game on the class of k-colorable graphs
with any k-colorable graph as a target.

Proof: Let p, k > 1 be fixed integers. It suffices to show that Builder can force the
complete k-partite graph Kp

k . Let n = n(k, k, k) be as defined in the proof of Theorem 1.
Let m be large enough so that Builder can force Painter to create a monochromatic Kk

while building a k colorable graph on n vertices and m edges. Let V1, ..., Vn be disjoint
sets of vertices of size B(m)(p) and let V = V1 ∪ ... ∪ Vn. Let U = {v1, ..., vn} be another
set disjoint from V . Builder will apply her strategy from the Kk-game while constructing
bipartite graphs between sets Vi, using U as an auxiliary board in the following way. Let
pi = B(m−i)(p) for i = 1, ..., m. At the first stage she presents all edges between V1 and
V2. By the Bipartite Ramsey Theorem a monochromatic copy of Kp1,p1 appears. This is
marked on the auxiliary board U by painting the edge v1v2 the same color. Assume by
induction that after the i-th stage of the game the situation looks as follows: (1) there is
a red-blue graph Gi on U which is a winning position for Builder in the Kk-game, and
(2) the graph Hi constructed on V is a blown-up copy of Gi containing the true colored
copy Gpi

i of Gi. Let X1, ..., Xn, with |Xi| = pi be the independent parts of the graph Gpi

i

corresponding to vertices v1, ..., vn of Gi. Note that Gi and Hi are k-colorable graphs.
Now, suppose e = vrvs is the next edge Builder would present if she had played the Kk-
game on U . Then in the actual game on V she presents all edges between Xr and Xs

to get a monochromatic copy of Kpi+1,pi+1
, and next paints e with the same color. Thus

Gi+1 = Gi + e. To see that this completes the inductive step let Yr ⊂ Xr and Ys ⊂ Xs

be the bipartite parts of the just obtained monochromatic Kpi+1,pi+1
and let Yj ⊂ Xj ,

j 6= r, s, be arbitrary sets of size pi+1. Then the graph G
pi+1

i+1 induced by Y1 ∪ ... ∪ Yn is a
true colored copy of Gi+1. By the choice of m the proof is complete.

�

3 Planar graphs

Another class of graphs with this peculiar self-unavoidability property is the class of
forests.

Proposition 1 Builder can force Painter to create any monochromatic forest in the Ram-
sey on-line game on forests.

Proof: It suffices to prove the assertion for trees. Let T be any tree with n vertices
v1, ..., vn. We apply induction on the number of vertices. Let u be a leaf of T and let
T ′ = T − u. By induction Builder can force n disjoint copies T1, ..., Tn of T ′ in the same
color, say red. (See Figure 1 where T is a binary tree of height 2.) Let ui be the vertex of
Ti corresponding to the neighbor of u in T . Now, Builder shows exactly those edges uiuj

for which the corresponding pair vivj is an edge of T . Since Painter cannot paint it red,
a blue copy of T will appear. Clearly, no cycles have emerged on the painted edges.
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Figure 1: Forcing a tree

�
A non-trivial example in the opposite direction can be found already in the class of

outerplanar graphs (that is, planar graphs having a plane embedding with all vertices
lying on the outer face).

Theorem 3 Painter can avoid a monochromatic triangle on outerplanar graphs.

Proof: We will show that Painter can control the number of red and blue edges so
that their difference on any bounded face is not divisible by 3. We argue by induction.
Suppose that in the first n moves an outerplanar graph G satisfying the requirement
has been constructed, and let e be an edge shown by Builder in the next move. Then
either 0, 1 or 2 new bounded faces can be created. The first two possibilities are trivial.
In the last situation e must cross a bounded face F (by outerplanarity of G) splitting
its boundary cycle into two paths, say P1 and P2. Let ri and bi denote the number of
red and blue edges in Pi, respectively. Then Painter can color e so that both new faces
are colored properly, unless ri − bi ≡ (−1)i or (−1)i−1(mod 3). In both cases we get
(r1 + r2) − (b1 + b2) ≡ 0(mod 3) which contradicts our induction hypothesis.

�
On the other hand, Builder can force a monochromatic triangle while building the

edges of a 2-degenerate planar graph.

Proposition 2 K3 is unavoidable for Painter on planar 2-degenerate graphs.

Proof: Builder starts with forcing 3 disjoint copies S1, S2, S3 of a star K1,2 in the same
color, say red. Let ci denote the center of Si, i = 1, 2, 3. Now Builder joins ci with the
leaves of Si+1 in the cyclic order mod 3. Then either a red-blue diamond or a red C6

without a chord appears. The first case allow Builder to finish the game in one move
while the second in the next three moves, by joining each second vertex of C6 (see Figure
2). It is not hard to check that the resulting graph is planar and 2-degenerate.
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Figure 2: Forcing a triangle

�
In general, any cycle is unavoidable on planar graphs.

Proposition 3 Cycles are unavoidable for Painter on planar graphs.

Proof: To force Cn Builder adds edges incident to a vertex x until she has a large
monochromatic (say red) star with center x and leaf set L. Now playing on L she builds
a forest to force a monochromatic path P with t = (n− 2)(n− 1) edges. So far the graph
can be drawn with x and P = v0v1...vt on the outer face. If the path is red we are done,
so assume that it is blue. Now Builder shows n − 2 edges of the path v0vn−1v2(n−1)...vt,
and if any of these is painted blue we are done. Otherwise we get a red path on n − 1
vertices, which together with vertex x form a red Cn.

�
We suspect that Painter should be able to avoid K4, and maybe even K2,3, on planar

graphs, but so far we haven’t found a proof of either of these. The next Proposition
demonstrates that these questions are on the edge of our knowledge.

Proposition 4 The graph K4 − e is unavoidable for Painter on planar graphs.

Proof: To force K4−e Builder adds edges incident to a vertex x until she has a monochro-
matic (say red) star with center x and 9 leaves v0, ..., v8. Next she adds edges v0vi for
i ∈ [8]. To avoid a red K4 − e Painter must color at least 7 (say v0vi for i ∈ [7]) of them
blue. Now Builder adds the edges v2i−1v2i for i ∈ [3] and Painter must color two of them
(say v2i−1v2i for i ∈ [2]) with the same color (say blue), as in Figure 3. Finally, Builder
adds the edges v7v2 and v7v3. If Painter colors them both red then {x, v0, v2, v3, v7}
induces a red K4 − e; otherwise there is a blue K4 − e induced by a set of the form
{x, v0, v2i−1, v2i, v7}.

�
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Figure 3: Forcing K4 − e

4 More colors

It is natural to expect that the results of previous sections are valid if Painter has any
fixed number of colors at his disposal. However, with the exception of Proposition 1,
their proofs do not seem to generalize in the obvious way. Below we prove a multicolored
version of Theorem 1 for k = 3 using the following auxiliary game.

Let r, s ≥ 2 be fixed integers. The (r, s)-survival game is defined as follows. Alice
plays by presenting r vertices to Bob. Bob plays by putting an edge between two of them
and discarding the rest. These discarded vertices just disappear together with all edges
incident with at least one of them. Alice can never again present a vertex that Bob has
discarded. Alice’s goal is to create a clique of size s while Bob will try to prevent her from
doing so.

Lemma 1 For any r, s ≥ 2 there exists t = t(r, s) such that Alice can create a clique of
size s in a graph with at most t vertices, while playing the (r, s)-survival game with Bob.

Proof: We apply induction on s with r being fixed. For r = 2 the assertion is trivial
with t(2, s) = s. Assume the lemma holds for s − 1 and let d = t(r, s − 1). It suffices to
show that Alice can create an induced star S with center of degree d, since then she can
continue on the leaves of S to get Ks−1 there. Assume by induction that Alice can create
an induced star with d − 1 leaves. Repeating this construction r times on independent
sets of vertices she gets r disjoint stars with centers v1, ..., vr of degree d− 1. Then in her
last move she presents this set of centers and obtains a desired star S.

�

Let Rc(n) be the multicolored Ramsey number, that is, the minimum R such that in
any c-coloring of the edges of KR there is a monochromatic copy of Kn.
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Theorem 4 Builder can force Painter to create a monochromatic triangle in the multi-
color Ramsey on-line game while playing on a 3-colorable graph.

Proof: We apply induction on the number of colors c. The assertion is trivial for c = 1,
so let c ≥ 2, and assume it holds for c − 1 colors. Let n be the number of vertices of
a 3-colorable graph F on which Builder wins against Painter armed in c − 1 colors. Let
r = c + 1, s = Rc(n) and let m be large enough so that Alice can creates Ks in m moves
of the (r, s)-survival game. (For the rest of the proof assume that Builder’s name is Alice
and Painter’s name is Bob.) Let X, Y and U be disjoint sets of vertices of size at least
rm. As in the proof of Lemma 1, U will serve as an auxiliary board on which Builder
will mark Painter’s moves translated into Bob’s moves in the game of survival. For this
purpose let f : Y → U be a bijection. In the first part of the game Builder constructs a
bipartite graph between X and Y as follows. In the first move she picks a set A1 ⊂ Y of
r vertices and joins them to a vertex a1 in X. Since r > c at least two edges a1u1 and
a1v1 will get the same color, say red. Then she joins their images f(u1) and f(v1) by a
red edge and discards the rest of f(A1). In the next move she picks a set A2 ⊂ Y of size
r such that f(A2) is the next move in her strategy for the (r, s)-survival game on U and
joins its vertices to a new vertex a2 ∈ X. After Painter’s move there will be two edges
a2u2 and a2v2 of the same color which gives Bob’s next move in the (r, s)-survival game.
And so on. By Lemma 1, after at most m moves of this type there will be c-colored Ks

on U containing a monochromatic clique Kn. Assume the clique is red and V is the set
of its vertices. The game will now be continued on the set f−1(V ) ⊂ Y . Since no edge
of f−1(V ) can be painted red, Builder can apply her strategy for c − 1 colors to get a
monochromatic triangle in a 3-colorable graph F .

We are left to show that the whole resulting graph is 3-colorable. Let G be the bipartite
graph between X and Y constructed in the first part of the game. We may assume that
there are no isolated vertices in G. Let H be the corresponding auxiliary graph on the
set of vertices S ⊂ U that survived till the end of this part. We claim that if F is any
3-colorable graph with vertex set V (F ) = f−1(S) then any proper 3-coloring of V (F ) can
be extended to a proper 3-coloring of the whole graph G ∪ F . Let ai ∈ X and Ai ⊂ Y
be the vertices picked in the i-th step. Consider the following relation ρ on the set Y :
(a, b) ∈ ρ iff there exists j such that a, b ∈ Aj , f (a) is discarded in step j and b is the
largest element (under some total ordering of Y ) of Aj such that f (b) survives step j.
Let � denote the transitive and reflexive closure of ρ. Clearly � is a partial ordering.
Moreover, for each vertex y ∈ Y there exists a unique maximal element zy such that
y � zy. Note that f (zy) is a surviving element, and so zy ∈ V (F ). Color y with the same
color as zy. So far this is safe since the discarded vertices are isolated in F . Now consider
a vertex ai ∈ X with neighborhood Aj. Suppose that f (b′) and f (b) are the surviving
elements of the i-th step with b′ smaller than b. Then all the vertices of Ai have the same
color as b, except possibly b′. Thus there is a third color available with which to color ai.
This enables us to extend the original 3-coloring of F to a proper 3-coloring of the whole
graph. The proof is now complete.

�
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The following corollary can be deduced from the Bipartite Ramsey Theorem, similarly
as Theorem 2.

Corollary 1 Builder wins the multicolor Ramsey on-line game on the class of 3-colorable
graphs with any 3-colorable graph as a target.

The above method does not seem to be easily extendable to the general case of k-
colorable graphs. One natural attempt leads to the more general version of the (r, s)-
survival game (see 5.3).

5 Problems

5.1 Monotone classes of graphs

The most ambitious problem for further investigation would be to characterize self-
unavoidable classes among monotone decreasing classes of graphs. In particular, it would
be interesting to know the truth in case of the most popular families of graphs. For in-
stance, we expect a negative answer for planar graphs, but curiously, it is not so easy to
construct an example of Painter’s win in this class. It is also tempting to conjecture that
perhaps outerplanar graphs are unavoidable while other planar graphs are not.

Conjecture 1 The class of graphs unavoidable on planar graphs is exactly the class of
outerplanar graphs.

Let Gk be a family of graph classes indexed by some graph parameter k (thickness,
genus, treewidth, degeneracy, colorability, etc.). Let f(k) be the minimum number such
that any graph H ∈ Gk is unavoidable in the Ramsey on-line game on Gf(k). It would
be interesting to study the speed of f(k) for the most important graph parameters. For
many of them it is not even clear whether f(k) is finite for all k.

5.2 Ramsey on-line numbers

Let Gm be the class of graphs with at most m edges. The on-line Ramsey number R(k)
is the minimum m such that Kk is unavoidable on Gm. The problem of estimating R(k)
was posed in [1] and [2]. It is obvious that R(k) is at most

(
R(k)

2

)
, where R(k) is the

usual Ramsey number. Also it is not hard to prove that R(k) is at least R(k)/2 (see [1]).
Improvement of these bounds may appear hard, as it is not even clear if R(k) = o(R(k)2)
(see [2], [4]).

5.3 Ramsey game of survival

Consider the following generalization of the (r, s)-survival game presented in section 4. Let
r, s, k be fixed integers with k ≥ 2 and r, s ≥ k. In one round of the (r, s, k)-survival game
Alice presents r vertices and Bob discards r − k of them. Those k vertices that survive
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(at least to the next round) form a hyperedge. Surviving vertices can be presented in
later rounds but a hyperedge with at least one deleted vertex is irretrievably lost. Alice’s
goal is to create a k-uniform complete hypergraph on s vertices. By Lemma 1 she has a
winning strategy in case k = 2 for arbitrary s, but can she win this game for any k > 2?
A positive answer would yield a strategy for Builder in the multicolored Ramsey on-line
game on k-colorable graphs.
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