
A Fast Algorithm for MacMahon’s Partition Analysis

Guoce Xin ∗
Department of Mathematics

Brandeis University, Waltham, USA
maxima@brandeis.edu

Submitted: Aug 26, 2004; Accepted: Aug 30, 2004; Published: Sep 9, 2004
Mathematics Subject Classifications: 11Y60, 05A17

Abstract

This paper deals with evaluating constant terms of a special class of rational
functions, the Elliott-rational functions. The constant term of such a function can be
read off immediately from its partial fraction decomposition. We combine the theory
of iterated Laurent series and a new algorithm for partial fraction decompositions
to obtain a fast algorithm for MacMahon’s Omega calculus, which (partially) avoids
the “run-time explosion” problem when eliminating several variables. We discuss
the efficiency of our algorithm by investigating problems studied by Andrews and
his coauthors; our running time is much less than that of their Omega package.

1 Introduction

Zeilberger [20] proved a conjecture of Chan et al. [11] by proving an identity equivalent
to

CT
x1

· · ·CT
xn

1∏n
i=1(1 − xi)

1∏
i<j(xi − xj)

= C1 · · ·Cn−1, (1.1)

where Ck’s are the Catalan numbers.
This identity should be interpreted as taking iterated constant terms [10]; i.e., in

applying CTxn to the displayed rational function, we expand it as a Laurent series in xn;
the result is still a rational function and we can apply CTxn−1 , . . . , CTx1 to it iteratively.

The idea behind the above treatment is to give a proper series expansion of 1/(xi−xj)
for every i and j, so that all of the expansions are compatible. Once we have determined
the relations between the x’s, there is no confusion about their series expansion. For
instance, we can let 1 > x1 > · · · > xn. For the particular rational function in equation
(1.1), which is symmetric in the x’s, there is no confusion after a total ordering on the x’s
is given.

∗Thanks to Ira Gessel
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Here we present a slightly different, but more efficient, approach, by means of applying
the theory of the field of iterated Laurent series. We first treat the rational function in
question as an iterated Laurent series, by which we mean we expand it as a Laurent series
in xn, then a Laurent series in xn−1, and so on. Then we take the constant term. This
idea led to the study of the field of iterated Laurent series in [18, Ch. 2], which applies
to MacMahon’s Partition Analysis.

MacMahon’s Partition Analysis is suited for solving problems of counting solutions
to linear Diophantine equations and inequalities. Using MacMahon’s approach, problems
such as counting lattice points in a convex polytope, counting integral solutions to a sys-
tem of linear Diophantine equations, and computing Ehrhart quasi-polynomials, become
evaluations of the constant term of an Elliott-rational function: a rational function whose
denominator has only factors of the form A−B, where A and B are both monomials. An
example of such is the rational function in (1.1).

MacMahon’s technique has been restudied by Andrews et. al. using computer algebra
in a series papers [1–9]. New algorithms have been found and computer programs such
as the Omega package have been developed.

The constant term (in one variable) of an Elliott-rational function can be read off
immediately if its partial fraction decomposition is given. However, the coefficients of
a rational function must lie in a field to guarantee the existence of its partial fraction
decompositions, and the classical algorithm for partial fraction decomposition is rather
slow because the coefficients contain many other variables. The above two problems are
solved by applying the theory of iterated Laurent series and a new algorithm for partial
fraction decompositions in [17].

In section 2, we give the basic theory of iterated Laurent series. The fundamental
structure theorem tells us when a formal Laurent series is an iterated Laurent series.
In section 3, we introduce MacMahon’s partition analysis. In section 4, we develop an
efficient algorithm for MacMahon’s partition analysis by combining the theory of iterated
Laurent series and a new algorithm for partial fraction decompositions. The theory of
iterated Laurent series is crucial in avoiding the “run-time explosion” problem [7, p.
9] when eliminating several variables. In section 5, we use our Maple package to test
the efficiency of our algorithm. We investigate problems related to k-gons, generalized
Putnam problems, and magic squares [4; 6; 7; 9]. The known formulas are obtained within
seconds, and several new formulas are produced in minutes. Finally in section 6, we point
out several ways to accelerate the computer program. There are also ways to make the
computation easier that are hard to implement on the computer. As an example, we give
a simple proof of the formula for k-gon partitions in [4].

2 The Field of Iterated Laurent Series

By a formal Laurent series in x1, . . . , xn, we mean a series that can be written in the form

∞∑
i1=−∞

· · ·
∞∑

in=−∞
ai1...inxi1

1 · · ·xin
n ,
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where ai1...in are elements in a field K. For formal Laurent series, the definition of the
constant term operator is clear:

Definition 2.1 (Natural Definition). The operator CTxj
acts on a formal series in

x1, . . . , xn with coefficients ai1,...,in in K by

CT
xj

∑
(i1,...,in)∈Zn

ai1,...,inxi1
1 · · ·xin

n =
∑

(i1,...,in)∈Zn,ij=0

ai1,...,inxi1
1 · · ·xin

n .

The simplest way to apply the natural definition would be to work with all formal series∑
i1,...,in

ai1,...,inxi1
1 · · ·xin

n , where (i1, . . . , in) ranges over all elements of Zn. Unfortunately,
they do not form a ring. Therefore we usually work in a ring, such as the ring of Laurent
series K((x1, . . . , xn)): formal series of monomials where the exponents of the variables
are bounded from below. But we need a larger ring or even a field that includes all rational
functions, because many constant term evaluation problems involves rational functions.

Let K be a field. We define K〈〈x1〉〉 to be the field of Laurent series K((x1)), and define
the field of iterated Laurent series K〈〈x1, . . . , xn〉〉 inductively to be K〈〈x1, . . . , xn−1〉〉((xn)),
which is the field of Laurent series in xn with coefficients in K〈〈x1, . . . , xn−1〉〉. Thus an
iterated Laurent series is first regarded as a Laurent series in xn, then a Laurent series
in xn−1, and so on. An iterated Laurent series obviously has a unique formal Laurent
series expansion. However, it is not obvious which formal series are in K〈〈x1, . . . , xn〉〉.
The fundamental structure theorem solves this problem nicely.

We define a total ordering � on monomials by representing xi1
1 · · ·xin

n by (i1, . . . , in) ∈
Zn, where Zn is ordered reverse lexicographically. So xs

i ≺ xj for all i < j and s ∈ Z. We
define the support of a formal Laurent series by

supp
∑

(i1,...,in)∈Zn

ai1,...,inxi1
1 · · ·xin

n := { (i1, . . . in) | ai1,...,in 6= 0 }.

Recall that a totally ordered set S is well-ordered if each nonempty subset of S contains
a minimal element.

Theorem 2.2 (Fundamental Structure). A formal series in x1, . . . , xn belongs to
K〈〈x1, . . . , xn〉〉 if and only if it has a well-ordered support.

The proof of this theorem is omitted. For details, see [18, Proposition 2.1.2]. The
result gives us an overview about when a formal Laurent series is an iterated Laurent
series.

The fundamental structure theorem, together with the simple and useful fact that any
subset of a well-ordered set is well-ordered, justify the application of the natural definition
in K〈〈x1, . . . , xn〉〉 because of the following three properties:

P1. CTxi
: K〈〈x1, . . . , xn〉〉 → K〈〈x1, . . . , x̂i, . . . , xn〉〉. This property is necessary to make

the natural definition applicable.

P2. CTxk

∑
i Fi =

∑
i CTxk

Fi. This property is the key to converting many problems
into simple algebraic computations.
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P3. CTxi
CTxj

F = CTxj
CTxi

F . This property may significantly simplify the constant
term evaluations.

We define the order ord(f) of an iterated Laurent series f to be the minimum of
its support, which is well-ordered by the fundamental structure theorem. We have the
following composition law.

Proposition 2.3 (Composition Law). Suppose that f belongs to K〈〈x1, . . . , xn〉〉 and
ord(f) > ord(1). Then for any bi ∈ K for all i,

∞∑
i=0

bif
i

is well defined and belong to K〈〈x1, . . . , xn〉〉, in the sense that all of its coefficients are
finite sum of nonzero elements in K.

This result is a consequence of a general result for Malcev-Neumann series [18, The-
orem 3.1.7]. As a consequence, the series expansion of 1/(1 − f) for ord(f) > ord(1)
is just 1 + f + f 2 + · · · . More generally, for two iterated Laurent series A and B with
ord(A) < ord(B), the expansion of 1/(A − B) is

1

A − B
=

1

A

1

1 − B/A
=
∑
k≥0

Bk/Ak+1.

For instance, in K〈〈x1, x2, x3〉〉, we have

1

x2
1x

4
2 − x3

=
∑
k≥0

xk
3/(x2

1x
4
2)

k+1.

In the field K〈〈x1, . . . xn〉〉, we define a total ordering on the variables, which produces
a total ordering on its group of monomials. This total ordering plays a central role in
series expansion. By thinking of iterated Laurent series as numbers, ord(f) > ord(1)
means that f is much smaller than 1, or f = o(1). Similarly ord(B) > ord(A) means that
B is much smaller than A, or B = o(A).

The analogous situation for complex variables would be informally written as 1 >>
x1 >> · · · >> xn when expanding rational functions into Laurent series, where >> means
“much greater”. See [16] and [14, p. 231].

The the following three computational rules are frequently used in constant term
evaluations. Let F, G ∈ K〈〈x1, . . . , xn〉〉.

1. Linearity: CTxi
(aF + bG) = a CTxi

F + b CTxi
G, if a and b are independent of xi.

2. If F can be written as
∑

k≥0 akx
k
i , then CT

xi

F = F |xi=0 .

3. Res
xi

∂

∂xi

F = 0.
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Remark 2.4. Depending on the working field, rational functions Q(x1, x2, . . . , xm) may
have as many as m! different expansions. More precisely, if σ is a permutation of [m],
then Q(x) will have a unique expansion in K〈〈xσ1 , xσ2 , . . . , xσm〉〉. The expansions of Q(x)
for different σ are usually different. So we need to specify the working field whenever a
reciprocal comes into account.

Iterated Laurent series is to obtained by defining a total ordering on its variables (this
idea is not new, e.g., [14; 16]). In fact, it is a special kind of Malcev-Neumann series,
which has been studied in [18], and has applications to MacMahon’s partition analysis.

3 MacMahon’s Partition Analysis

MacMahon’s Partition Analysis is used for counting the solutions to a system of linear
Diophantine equations and inequalities, and the number of lattice points in a convex
polytope. Such problems can be converted into evaluating the constant terms of cer-
tain Elliott-rational functions. This conversion has been known as MacMahon’s partition
analysis, and has been given a new life by Andrews et al. in a series of papers [1–9]

Definition 3.1. An Elliott-rational function is a rational function that can be written in
such a way that its denominator can be factored into the products of one monomial minus
another, with the 0 monomial allowed.

In the one-variable case, this concept reduces to the generating function of a quasi-
polynomial.

MacMahon’s idea was to introduce new variables λ1, λ2, . . . to replace linear con-
straints. For example, suppose we want to count the nonnegative integral solutions to the
linear equation 2a1 − 3a2 + a3 + 2 = 0. We can compute the generating function of such
solutions as the following:∑

a1,a2,a3≥0
2a1−3a2+a3+2=0

xa1
1 xa2

2 xa3
3 =

∑
a1,a2,a3≥0

CT
λ

λ2a1−3a2+a3+2xa1
1 xa2

2 xa3
3 .

Now apply the formula for the sum of a geometric series. It becomes

CT
λ

λ2

(1 − λ2x1)(1 − λ−3x2)(1 − λx3)
.

The above expression is a power series in xi but not in λ.
It is clear that if there are r linear equations, we can compute their solutions by

introducing r variables Λ, short for λ1, . . . , λr. Thus counting solutions of a system of
linear Diophantine equations can be converted into evaluating the constant term of an
Elliott-rational function.

Theorem 3.2. If F is Elliott-rational, then the constant terms of F are still Elliott-
rational.
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This result follows from “The method of Elliott” (see [13, p. 111–114]) developed from
the following identity. Note that we have not specified the working field yet.

Lemma 3.3 (Elliott Reduction Identity). For positive integers j and k,

1

(1 − xλj)(1 − yλ−k)
=

1

1 − xyλj−k

(
1

1 − xλj
+

1

1 − yλ−k
− 1

)
.

Elliott’s argument is that after finitely many applications of the above identity to an
Elliott-rational function, we will get a sum of rational functions, in which every denomi-
nator has either all factors of the form 1 − xλi, or all factors of the form 1 − y/λi. Now
taking the constant term of each summand is easy.

Theorem 3.2 reduces the evaluation of CTΛ F to the univariate case CTλ F by iteration.
Unfortunately, the Elliott reduction algorithm is not efficient in practice. Other algorithms
have been developed, and computer programs have been set up, such as the “Omega”
package [6]. But we can do much better by the partial fraction method and working in a
field of iterated Laurent series.

Before going further, let us review some of the work in [6]. The key ingredient in their
argument is MacMahon’s Omega operator Ω≥, which is defined by:

Ω
≥

∞∑
s1=−∞

· · ·
∞∑

sr=−∞
As1,...,srλ

s1
1 · · ·λsr

r :=
∞∑

s1=0

· · ·
∞∑

sr=0

As1,...,sr ,

where the domain of the As1,...,sr is the field of rational functions over C in several complex
variables and λi are restricted to a neighborhood of the circle |λi| = 1. In addition, the
As1,...,sr are required to be such that any of the 2r − 1 sums

∞∑
si1

=0

· · ·
∞∑

sij
=0

Asi1
,...,sij

is absolute convergent within the domain of the definition of As1,...,sr .
Another operator Ω= is given by

Ω
=

∞∑
s1=−∞

· · ·
∞∑

sr=−∞
As1,...,srλ

s1
1 · · ·λsr

r := A0,...,0.

Andrews et al. emphasized in [6] that it is essential to treat everything analytically
rather than formally because the method relies on unique Laurent series representations
of rational functions.

It is not hard to see that their definition always works if we are working in a ring such
as the ring of formal power series in x with coefficients Laurent polynomials in Λ, where
x is short for x1, . . . , xn and Λ is short for λ1, . . . , λr. In fact, this approach was used by
Han in [12].

By Theorem 3.2, it suffices to consider the case of r = 1, since the general case can be
done by iteration. In the previous work by Andrews et al. and by Han, the problem was
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reduced to evaluating the constant term (with respect to λ) of a rational function of the
form

λk∏
1≤i≤m(1 − λjixi)

∏
1≤i≤n(1 − yi/λki)

. (3.1)

This treatment has assumed the obvious geometric expansion:

1

1 − λjixi
=

∞∑
s=0

λsjixs
i and

1

1 − yi/λki
=

∞∑
s=0

λ−skiys
i .

In other words, for each factor f in the denominator, f has positive powers in λ indicates
that the series expansion of 1/f contains only nonnegative powers in λ; and f has negative
powers in λ indicates that 1/f contains only nonpositive powers in λ. In our approach,
these indications are dropped off after defining a total ordering.

We find it better to do this kind of work in a certain field of iterated Laurent series,
because in such a field, we can use the theory of partial fraction decompositions in K(λ)
for any field K and any variable λ. We illustrate this idea by solving a problem in [6, p.
252] with the partial fraction method.

Problem. Find all nonnegative integer solutions a, b to the inequality 2a ≥ 3b.

Solution. First of all, using geometric series summations we translate the problem into a
form which MacMahon calls the crude generating function, namely

f(x, y) :=
∑

a,b≥0,2a−3b≥0

xayb = Ω
≥

∑
a,b≥0

λ2a−3bxayb = Ω
≥

1

(1 − λ2x)(1 − λ−3y)
,

where everything is regarded as a power series in x and y but not in λ.
Now by converting into partial fractions in λ, we have

1

(1 − λ2x)(1 − λ−3y)
=

y(1 + λx2y + λ2x)

(1 − x3y2)(λ3 − y)
+

1 + λx2y

(1 − x3y2)(1 − λ2x)
.

Where the right-hand side of the above equation is expanded as a power series in x and
y, the second term contains only nonnegative powers in λ, and the first term,

y(1 + λx2y + λ2x)

(1 − x3y2)(a3 − y)
=

y

1 − x3y2

λ−3 + λ−2x2y + λ−1x

1 − λ−3y

contains only negative powers in λ. Thus by setting λ = 1 in the second term, we obtain

f(x, y) =
1 + x2y

(1 − x3y2)(1 − x)
.

By a geometric series expansion, it is easy to deduce that

{ (a, b) ∈ N
2 : 2a ≥ 3b } = { (m + n + dn/2e, n) : (m, n) ∈ N

2 }.

In solving the above problem, we see that partial fraction decomposition helps in
evaluating constant terms, and that only part of the partial fraction is needed.
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4 Algorithm by Partial Fraction Decomposition

Working in the field of iterated Laurent series has two advantages. First, the expansion
of a rational function into Laurent series is determined by the total ordering “� ” on its
monomials, so we can temporarily forget its expansion as long as we work in this field.
Second, the fact that F is a rational function in λ with coefficients in a certain field
permits us to apply the theory of partial fraction decompositions.

Note that the idea of using partial fraction decompositions in this context was first
adopted by Stanley in [14, p. 229–231], but without the use of computers, this idea was
thought to be impractical.

MacMahon’s partition analysis always works in a ring like K[Λ, Λ−1][[x]], where Λ−1 is
short for λ−1

1 , . . . , λ−1
r . This ring can be embedded into a field of iterated Laurent series,

such as K〈〈Λ,x〉〉.
While working in the field of iterated Laurent series, it is convenient to use the operator

PTλ, which is formally defined by

PT
λ

∞∑
n=−∞

anλn =

∞∑
n=0

anλn,

whose validity is justified by the fundamental structure theorem.
MacMahon’s operators can be realized as the following.

Ω
≥

F (Λ,x) = PT
Λ

F (Λ,x)
∣∣∣
Λ=(1,...,1)

, (4.1)

Ω
=

F (Λ,x) = CT
Λ

F (Λ,x) = PT
Λ

F (Λ,x)
∣∣∣
Λ=(0,...,0)

. (4.2)

So it suffices to find PTΛ F . In fact, it is well-known that Ω≥ can be realized by Ω= by
introducing new variables, just as the PT operators can be realized by the CT operators
(see [18, Ch. 1]). So either an algorithm for PTΛ F or an algorithm for CTΛ F will be
sufficient for our purpose. Generally speaking, PT is more suitable for the algorithm, and
CT is more suitable for theoretical analysis.

Now we need an algorithm to evaluate PTλ F (λ) with

F (λ) =
P (λ)∏

1≤i≤n(λji − zi)

where P (λ) is a polynomial in λ, ji are nonnegative integers, and zi are independent of
λ. Note that we allow zi to be zero, so that the case of P (λ) being a Laurent polynomial
is covered. Our approach is different from the previous algorithms, which deal with
rational functions expressed as in (3.1) (the difference will be further explained in the
next section). It based on the following known fact, which says that once the partial
fraction decomposition of F is given, PTλ F can be read off immediately.
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Theorem 4.1. Suppose that the factors in the denominator of F are pairwise relatively
prime, and that the partial fraction decomposition of F is

F = f(λ) +
∑

1≤i≤n

pi(λ)

λji − zi
,

where f(λ) is a polynomial in λ, and pi(λ) is a polynomial of degree less than ji for each
i. Then

PT
λ

F = f(λ) +
∑

i

pi(λ)

λji − zi
, (4.3)

where the sum ranges over all i such that zi ≺ λji.

Proof. The condition that zi is independent of λ implies that either λji ≺ zi or zi ≺ λji.
In the former case, we observe that the expansion of pi(λ)/(λji − zi) into Laurent series
contains only negative powers in λ, hence has no contribution when applying PTλ. In the
latter case, the expansion contains only nonnegative powers in λ. Thus the the theorem
follows.

To apply Theorem 4.1, we need to know the partial fraction decompositions of the
given rational function. In fact, we need only part of the partial fraction decompositions.
Thus we need an efficient algorithm for the partial fraction decompositions. More ideally,
an algorithm that only give us the necessary parts. The classical algorithm does not seem
to work nicely. We use the new algorithm in [17] developed from the following Theorem
4.2.

To state the theorem, we need some concepts. Let K be a field. For N, D ∈ K[t] with
D 6= 0, N/D can be uniquely written as the summation of a polynomial p and a proper
fraction (or rational function) r/D. We denote by Poly(N/D) the polynomial part, which
is p, and by Frac(N/D) the fractional part, which is r/D.

Suppose that N, D ∈ K[t] and D is factored into pairwise relatively prime factors
D = D1 · · ·Dk. Then the ppfraction (short for polynomial and proper fraction) expansion
of N/D with respect to D1, . . . , Dk is the decomposition of N/D as

N/D = p + r1/D1 + · · · rk/Dk

such that p, ri are polynomials and deg(ri) < deg(Di) for every i. We denote the above
ri/Di by Frac(N/D, Di), the fractional part of N/D with respect to Di.

Theorem 4.2 (Theorem 2.3 [17]). For any N, D ∈ K[t] with D 6= 0, if D1, . . .Dk ∈
K[t] are pairwise relatively prime, and D = D1 · · ·Dk, then

N

D
= Poly

(
N

D

)
+ Frac

(
N

D
, D1

)
+ · · ·+ Frac

(
N

D
, Dk

)

is the ppfraction expansion of N/D with respect to (D1, . . . , Dk). Moreover, if 1/(D1Di) =
si/D1 + pi/Di, then

Frac(N/D, D1) = Frac(Ns2s3 · · · sk/D1).
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By Theorem 4.2, we need two formulas to develop our algorithm. One is for the
fractional part of p(λ)/(λj − a), and the other for the partial fraction decomposition of
(λj − a)−1(λk − b)−1. These are given as Propositions 4.3 and 4.6 respectively.

Let n mod k be the remainder of n when divided by k. We have

Proposition 4.3. The fractional part of p(λ)/(λj − a) can be obtained by replacing λd

with λ(d mod j)abd/jc in p(λ) for all d, and dividing the result by λj − a.

Proof. By linearity, it suffice to show that the remainder of λd when divided by λj − a
equals λ(d mod j)abd/jc, which is trivial.

It is easy to see that this operation takes time linear in the number of nonzero terms
of p(λ), where we assume fast arithmetic operations.

Remark 4.4. Observe that the numerator of the fractional part of p(λ)/(λj−a) is always
a Laurent polynomial in all variables.

Lemma 4.5. For positive integers j and k, if ak 6= bj, then the following is a partial
fraction expansion.

1

(λj − a)(λk − b)
=

1

bj − ak
Frac

(∑k−1
i=0 λijak−1−i

λk − b

)
− 1

bj − ak
Frac

(∑j−1
i=0 λikbj−1−i

λj − a

)

(4.4)

Proof. First we show that if ak 6= bj , then λj − a and λk − b are relatively prime. If not,
say ξ is their common root in a field extension, then ξj = a and ξk = b. Thus we have
ak = (ξj)k = ξjk = (ξk)j = bj , a contradiction.

We have

bj − ak

(λj − a)(λk − b)
=

λjk − ak

(λj − a)(λk − b)
− λjk − bj

(λj − a)(λk − b)

=

∑k−1
i=0 λijak−1−i

λk − b
−
∑j−1

i=0 λikbj−1−i

λj − a
.

Now the polynomial part of bj−ak

(λj−a)(λk−b)
is clearly 0. Thus the sum of the polynomial

parts of the two terms on the right side of the above equation also equals 0. So taking
the fractional part of both sides and then dividing both sides by bj − ak gives the desired
result.

Now if gcd(j, k) is not 1, then we can replace λgcd(j,k) with µ and apply the above
lemma. This gives us the following result.

Let

F(λj − a, λk − b) =

∑j′−1
i=0 λikbj′−1−i

ak′ − bj′ ,

where j′ = j/ gcd(j, k) and k′ = k/ gcd(j, k).
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Proposition 4.6. For positive integers j and k, if ak 6= bj, then we have

Frac

(
1

(λj − a)(λk − b)
, λj − a

)
= Frac

(F(λj − a, λk − b)

λj − a

)
, (4.5)

Remark 4.7. Note that a similar result appeared in [6, Theorem 1], but their proof was
lengthy.

Now by Theorem 4.2, we have the following:

Theorem 4.8. With the notation of Theorem 4.1, the polynomial ps(λ) equals the re-
mainder of

P (λ)
n∏

i=1,i6=s

F(λjs − as, λ
ji − ai),

when divided by λji − zi as a polynomial in λ.

In Theorem 4.1, we assumed that λji − zi and λjk − zk are relatively prime. Now let
us consider the case that λji − zi and λjk − zk have a nontrivial common factor. This
happens if and only if zjk

i = zji

k , which can be easily checked. Andrews et al. [6] suggested
that we temporarily regard zi and zj as two different variables. After the computation,
we replace them. We find an alternate approach, which has been implemented in our
computer program and will be discussed in the next section.

Thus the above argument, Theorem 4.1, and Theorem 4.8 together will give us an fast
algorithm for evaluating CTλ F .

Remark 4.9. From Remark 4.4, Theorem 4.1, and Theorem 4.8, we see that PTλ F is
Elliott-rational when F is. This is another way to prove Theorem 3.2.

Example 4.10. Count all triples (a, b, c) in N3 such that they satisfy the triangle in-
equalities.

Similar problems have been done, such as counting non-congruent triangles with inte-
gral side lengths [15, Exercise 4.16]. We are going to illustrate our new approach by this
example.

Solution. We solve the following three Diophantine inequalities: a+b−c ≥ 0, b+c−a ≥ 0,
and c+a−b ≥ 0. The generating function of these solutions is equal to Ω≥F (Λ,x), where

F (Λ) =
1

((1 − λ1λ3x1/λ2)(1 − λ1λ2x2/λ3)(1 − λ2λ3x3/λ1))
.

Although F (Λ,x) is in K[Λ, Λ−1][[x]], we shall work in a field of iterated Laurent
series. We will chose K〈〈Λ,x〉〉, and K〈〈Λ, x3, x2, x1〉〉 and compare the results.

We will apply Ω≥ to λ3, λ2, λ1 subsequently. The first step, applying Ω≥ to λ3 makes
no difference for the two working fields. Applying Theorems 4.1 and 4.8 to the factors of
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F (Λ) containing λ3, we get

Ω≥,λ3F (Λ,x) =

λ2λ
2
1x1(

λ1
2x1 − λ2

2x3

) (
1 − λ1

2x2x1

)
(λ1x1 − λ2)

− λ1λ2
2x3(

λ1
2x1 − λ2

2x3

) (
1 − λ2

2x2x3

)
(λ1 − λ2x3)

Denote by F1 and F2 the above two summands. At this stage, we note that the expansion

of
(
λ1

2x1 − λ2
2x3

)−1
does not exist in K[Λ, Λ−1][[x]], and generally there is no advantage

in getting rid of the factor λ2
1x1 − λ2

2x3 in the denominator by combining the above two
summands into one rational function. This will be further explained in the next section.

Now when applying Ω≥ on λ2 to F1 and F2, the results are different for the two working

fields. Let us look at F1, especially the expansion of
(
λ1

2x1 − λ2
2x3

)−1
. The expansion in

K〈〈Λ,x〉〉 contains only nonnegative powers in λ2, while the expansion in K〈〈Λ, x3, x2, x1〉〉
contains only negative powers in λ2. The situation for F2 is similar. The conclusion is
that working in K〈〈Λ, x3, x2, x1〉〉 is better: applying Ω≥ on λ2 to F1 will gives us 0, and
we have

Ω≥,λ3,λ2F (Λ,x)

=
λ1 (λ1 + x3) x2(−x3 + λ1

2x2

) (−1 + λ1
2x2x1

)
(x2x3 − 1)

+
λ1x3(−x3 + λ1

2x2

)
(−1 + x1x3) (−x3 + λ1)

Applying Ω≥ on λ1 to the two summands of the above equation and simplifying gives
us

Ω≥,λ3,λ2,λ1F (Λ,x) =
1 + x3x2x1

(1 − x1x3) (1 − x2x1) (1 − x2x3)
.

Remark 4.11. It is left to the reader to check that for the above example, C〈〈Λ, x2, x3, x1〉〉
is the best working field.

5 The Maple Package

Lemma 5.1. Let ji be positive integers and let zi be monomials. If λj1−z1 is not relatively
prime to λj2 − z2, nor to λj3 − z3, then λj2 − z2 and λj3 − z3 are not relatively prime.

Proof. By the proof of Lemma 4.5, we have zj2
1 = zj1

2 and zj3
1 = zj1

3 . It is easy to see that
zj3j1
2 = zj2j1

3 . Now the fact that zi is a monomial (and hence has coefficient 1) implies that
zj3
2 = zj2

3 .

Thus to obtain the complete algorithm, we need to handle the situation when λj1 −
z1, . . . , λjk − zk are not relatively prime to each other. For this situation, we have not
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succeeded in applying the suggestion of the last section: we tried to let zi = zivi and do
the computation, and finally replace vi with 1. But the problem is that the last step can
only be done after simplification, for which the rational function will be too big for Maple
to deal with. The following example explains why this is not a fast approach: evaluating

Ω≥
1

(1 − λx)10(1 − y/λ)8
.

Our current program uses a modified ppfraction expansion as follows. Suppose that
N , D, pi belong to K[λ], and that P = p1 · · ·pk is relatively prime to D. Then we can
obtain a formula for Frac(N/PD, P ) satisfying our needs:

Write N/(p1D) = r1/p1+N1/D with deg(r1) < deg(p1). Then r1/p1 = Frac(N/p1D, p1)
can be easily obtained.

Now write N1/(p2D) = r2/p2 + N2/D. Then N/(p1p2D) = r1/(p1p2) + r2/p2 + N2/D.
In general, we have

N

p1 · · · pkD
=

r1

p1 · · · pk

+ · · ·+ rk

pk

+
Nk

D
,

with deg(ri) < deg(pi). Now it is easy to see that

Frac

(
N

PD
, P

)
=

r1

p1 · · · pk

+ · · ·+ rk

pk

.

The recurrence formula for ri and Ni is given by

ri

pi

= Frac

(
Ni−1

piD
, pi

)
and Ni =

Ni−1 − riD

pi

,

where N0 = N . Note that we shall let Maple compute Ni with respect to λ.
Now we can give the algorithm for computing PTλ F (λ) as follows.

1. Collect the factors in the denominator of F into several groups, such that the factors
in different groups are relatively prime and factors in a same group are not.

2. For each group having a contribution, find its corresponding fractional part of F .

3. Take the sum of the results obtained from step 2, and add the polynomial part of
F .

Remark 5.2. We will simplify only if needed.
The factors in the denominator of F that are independent of λ should be factored out

to speed up the calculation. This has been implemented in our computer program.

The algorithm for ΩΛF (Λ,x) is described as follows.

1. Fix a total ordering on x and a total ordering on Λ. Suppose we are working in
C〈〈Λ,x〉〉.
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2. Eliminate λ1 by computing PTλ1 F and then replacing λ1 with 1.

3. For each rational functions obtained from step 2, eliminate λ2.

4. Eliminate all the λ’s, and finally simplify.

This approach partially solves the “run-time explosion” problem existing in Omega
Calculus. Let us analyze a simple situation by considering Ω≥F (λ), where

F (λ) =
p(λ)∏m

i=1(1 − xi/λ)
∏n

j=1(1 − yjλ)
.

The result after eliminating λ and combining terms will have a denominator of mn factors:
(1 − xiyj) with 1 ≤ i ≤ m and 1 ≤ j ≤ n. Such factors potentially contain the other
variables that are going to be eliminated. This explains the existence of the run-time
explosion problem.

In our approach, the result after eliminating λ will be a sum of n rational functions
(with a possible polynomial part), each with a denominator of m + n factors. Now it is
crucial that for each rational function, we can apply the theory of iterated Laurent series
to eliminate the other variables.

A Maple package implementing the above algorithm is available online at [19]. Here
is an example of how to use this program after downloading this package. The current
program uses E Oge(F,x, Λ) to compute Ω≥ F (Λ,x) in the field C〈〈Λ,x〉〉, where x is
realized by [x1, · · · , xn] in maple and Λ is realized similarly.

Example 5.3. Compute the generating function of k-gon partitions, which are partitions
that can be the side lengths of a k-gon.

This problem was first studied in [4], where the generating functions of k-gon partitions
are obtained only for k ≤ 6 by using the authors’ Omega package. We will discuss in the
next section about their formula for general k.

In the following F (k) is the crude generating function of k-gon partitions

F (k) =
x1a

−1
1

(1 − x1
ak

a1
)(1 − x2

a1ak

a2
) · · · (1 − xk−1

ak−2ak

ak−1
)(1 − xk

ak−1

ak
)
,

where we use ai to replace λi. The function test(k) computes Ω≥ F (k) and gives its normal
expression.

> read "Ell.mpl";

> F:=proc(k)

> product(1-q*a[k]*a[i-1]/a[i],i=2..k-1);

> q/a[1]/((1-q*a[k]/a[1])*%*(1-q*a[k-1]/a[k]));

> end:

> va:=proc(k) seq(a[i],i=1..k) end:
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> F(3);

qa1
−1

(
1 − qa3

a1

)−1(
1 − qa3a1

a2

)−1(
1 − qa2

a3

)−1

> E_Oge(%,[q],[va(3)]);

−q−3 (q−2 − q2)
−1

(q−2 − q)
−1

(1 − q−2)
−1

> test:=proc(n) F(n);va(n);E_Oge(%%,[q],[%]);normal(%);end:

> test(3);

− q3

(q4 − 1) (q3 − 1) (q2 − 1)
> test(4);

q4 (q3 − q2 + 1)

(q3 − 1) (−1 + q) (q2 − 1)2 (q3 + q2 + q + 1) (q2 − q + 1)
> test(5);

− (q10 + q9 + q8 + q7 + q6 + q5 + q4 + q3 + q2 + q + 1) q5

(q3 − 1) (−1 + q) (q4 − q3 + q − 1) (q6 + q5 − q − 1) (−1 + q8) (q + 1) (q2 + 1)
> test(6);

(q12+q11+q10+q9+q8+2 q7+q6+q5+q3+q2+q+1)q6

(q3−1)(q5−1)(q8+q6−q2−1)(q4−1)(q2−1)(q6−q4+q2−1)(q+1)(q4−q3+q2−q+1)

> time(test(7));

34.765

All of the above are done in a personal computer. The time of test(7) is measured by
seconds.

Example 5.4. A Putnam problem (B3 on the 2000 Putnam examination) was gen-
eralized in [7]. The generalized problems are converted to evaluating CP (T, k, c) =

Ω≥ P (T, k, c) where

P (T, k, c) =
1

(1 − x1(a1 · · ·aT )ka
−(k(T−1)+c)
1 ) · · · (1 − xT (a1 · · ·aT )ka

−(k(T−1)+c)
T )

for k > c and for k < c we have

P (T, k, c) =
1

(1 − x1(a1 · · ·aT )−ka
(k(T−1)+c)
1 ) · · · (1 − xT (a1 · · ·aT )−ka

(k(T−1)+c)
T )

.

Note that the case of k = c is trivial.

> read "Ell.mpl";

> P:=proc(T,k,c) if k>c then

> 1/product(1-x[i]*product(a[j]^k,j=1..T)/a[i]^(k*(T-1)+c),i=1..T);
> else
> 1/product(1-x[i]/product(a[j]^k,j=1..T)*a[i]^(k*(T-1)+c),i=1..T)fi;
> end:
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> va:=proc(T) seq(a[i],i=1..T) end:

> vx:=proc(T) seq(x[i],i=1..T) end:

> CP:=proc(T,k,c) E_Oge(P(T,k,c),[vx(T)],[va(T)]);normal(%); end;

The case T = 3, k = 2 and c = 1 is given explicitly.

> P(3,2,1);(
1 − x1a2

2a3
2

a1
3

)−1(
1 − x2a1

2a3
2

a2
3

)−1(
1 − x3a1

2a2
2

a3
3

)−1

> CP(3,2,1);

−x1
4x2

4x3
4 + x1

3x2
3x3

3 + x2
2x3

2x1
2 + x2x1x3 + 1

(−1 + x3x2
2x1

2) (−1 + x2x3
2x1

2) (x2
2x3

2x1 − 1)
> time(CP(3,3,1));

0.171

> time(CP(3,2,3));

0.391

> time(CP(3,1,3));

0.235

> time(CP(3,1,4));

0.686

> time(CP(3,1,5));

2.172

> CP(4,1,3):factor(%);

Maple will give us the following result:

(x4
2x3

2x2
2x1

2 + 1 + x2x4x3x1)

(x4x3x1
3x2 − 1) (x1x4x3

3x2 − 1) (x1x4
3x3x2 − 1) (x2

3x4x3x1 − 1)(
x2

3x4
3x3

2x1
3 + x2

3x4
3x3

3x1
3 + x4

3x3
3x2

2x1
3 + x2

3x4
2x3

3x1
3 + x2

3x4
3x3

3x1
2

+ x1
2x4x3

2x2 + x1
2x4

2x3x2 + x2
2x4x3x1

2 + x4x3x2x1
2 + x1x4

2x3
2x2

+ x2
2x4x3

2x1 + x4x3
2x2x1 + x2

2x4
2x3x1 + x4

2x3x2x1 + x2
2x4x3x1 + 1

)
It will take Maple more than 5 minutes to evaluate CP (4, 2, 3).
We give a detailed comparison of the new algorithm and the Omega package in Table

1, where the unit of the run-time is seconds. Note that programs are not running on the
same computer, and that the data for the Omega package comes from [7].

Table 1: Comparison of our new method and the Omega package
run-time for CP (3, 3, 1) (3, 2, 3) (3, 1, 3) (3, 1, 4) (3, 1, 5) (4, 1, 3)

New method 0.171 0.391 0.235 0.686 2.172 14.140
Omega package 7.14 58.95 100.55 643.86 - -
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Example 5.5. Magic squares of order n are n by n matrices with integral entries such
that all the row sums and column sums are equal.

The crude generating function for Magic square is:

1

1 − t(λ1 · · ·λnµ1 · · ·µn)

n∏
i=1

n∏
j=1

1

1 − xi,j/(λiµj)
.

When evaluating the constant term in Λ and µ’s, we use E Oeq instead of E Oge. Our
maple program will reproduce the result for n = 3 quickly. For n = 4, we get a sum of 96
simple rational functions, which is less than the 254 of the Omega package. Moreover, if
we set xi,j = x at the beginning, and finally replace x with 1, our program will reproduce
the formula for the case n = 5 in about two minutes, which is the generating function of
the row sums for magic squares of order 5 [15, p. 234].

6 Ways to Accelerate the Program

Our program should have been accelerated by several ways, which are not implemented
due to the author’s lack of programming skills. These ways are listed as follows and
explained by examples. we will manage to reduce the number of rational functions of the
output, since the simplification of a sum of many rational functions is a bottle neck for
Maple (also Mathematica).

1. The order of the variables to eliminate can make a difference for the computational
time.

2. The total ordering on the x’s can make a difference for the computational time, as
will the total ordering on the λ’s.

3. The following alternative formula of (4.3) can simplify the computation:

PT
λ

F (λ) = F (λ) −
∑

i

pi(λ)

λji − zi
, (6.1)

where the sum ranges over all i such that zi � λji.

(1) is a well-known fact. To take advantage from it, we use the fact that the number of
rational functions produced by eliminating λi is equal to the number cf(λi) of factors in
the denominator of F that have contributions with respect to λi. If cf(λi0) is the smallest
among all the cf(λi), then we shall eliminate the λi0 first. Note that This way does not
guarantee the best result.

The first part of (2) can be explained by Example 4.10, which gives a simple example
of how to take advantage of (2). The exact description will take time and is omitted. The
second part is similar [18, Example 2.5.13].
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Using (3) might produce fewer rational functions. This happens when the denominator
of F has more factors with a contribution than those factors without a contribution. See
the following example.

Example 6.1. Count all k-gons with nonnegative integral side lengths, which are not
required to be in an increasing order.

Solution. Suppose the side lengths of a k-gon is given by a1, . . . , ak. Then we have k
inequalities, a1 + · · ·+ ak ≥ 2ai for all i.

Using formula (6.1) we can compute the generating function of k-gons without a
computer. The eliminating order is λk, . . . , λ1.

∑
a1+···+ak≥2ai for all i

xa1
1 · · ·xak

k = Ω≥
1

(1 − x1λ1 · · ·λk/λ2
1) · · · (1 − xkλ1 · · ·λk/λ2

k)

= Ω≥
1

(1 − x1λ1 · · ·λk−1/λ2
1) · · · (1 − xk−1λ1 · · ·λk−1/λ2

k−1)(1 − xkλ1 · · ·λk−1)

− xkλ1 · · ·λk−1

(1 − x1xkλ2
1 · · ·λ2

k−1/λ
2
1) · · · (1 − xk−1xkλ2

1 · · ·λ2
k−1/λ

2
k−1)(1 − xkλ1 · · ·λk−1)

.

Now notice that Ω≥ acting on the second term is simply obtained by replacing λi with 1.
Repeat the above computation. We get the final generating function:

1

(1 − x1) · · · (1 − xk)
−

k∑
i=1

xi

(1 − x1xi) · · · (1 − xkxi)
.

However, it is probably better not to use (6.1) if the total degree of those factors
without a contribution is much greater than those factors with a contribution. Also note
that this formula is not easy to apply for the CT operator, we shall use CTλ F (λ) =
CTλ F (1/λ) instead.

There are also ways that may speed up the computation, but are not easy to implement
by the computer. The following example is simplified by using different parameters for a
given problem.

Example 6.2. Count k-gon partitions (revisited).

An exact formula for the generating function of k-gon partitions was given in [4,
Theorem 1]. Here we give a simple proof by using different parameters and formula (6.1).

Solution. The problem is to find all (a1, . . . , ak) ∈ P
k such that 1 ≤ a1 ≤ a2 ≤ · · · ≤ ak,

and a1 + · · · + ak−1 > ak.
Let b1 = a1−1, b2 = a2−a1,. . . , bk = ak−ak−1. Then ai = 1+b1 + · · ·+bi for all i, and

it suffices to find all bi such that bi ≥ 0, and k − 3 + (k − 2)b1 + (k − 3)b2 + · · · bk−2 ≥ bk.
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Thus the generating function for these bi are given by

Ω
≥

λk−3

(1 − x1λk−2) · · · (1 − xk−2λ)(1 − xk−1)(1 − xk/λ)

=
1

(1 − x1) · · · (1 − xk)
− xk−2

k

(1 − x1x
k−2
k )(1 − x2x

k−3
k ) · · · (1 − xk−1)(1 − xk)

.

Now it is easy to convert this formula to [4, Theorem 1].

References

[1] G. E. Andrews, MacMahon’s partition analysis. I. The lecture hall partition theorem,
Mathematical essays in honor of Gian-Carlo Rota (Cambridge, MA, 1996), Progr.
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