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Abstract

We define the hive ring, which has a basis indexed by dominant weights for
GLn(C), and structure constants given by counting hives [Knutson-Tao, “The hon-
eycomb model of GLn tensor products”] (or equivalently honeycombs, or BZ pat-
terns [Berenstein-Zelevinsky, “Involutions on Gel ′fand-Tsetlin schemes. . . ”]).

We use the octahedron rule from [Robbins-Rumsey, “Determinants. . . ”] to prove
bijectively that this “ring” is indeed associative.

This, and the Pieri rule, give a self-contained proof that the hive ring is isomor-
phic as a ring-with-basis to the representation ring of GLn(C).

In the honeycomb interpretation, the octahedron rule becomes “scattering” of
the honeycombs. This recovers some of the “crosses and wrenches” diagrams from
Speyer’s very recent preprint [“Perfect matchings. . . ”], whose results we use to give
a closed form for the associativity bijection.

∗AK was supported by NSF grant 0072667, and a Sloan Fellowship. TT was supported by the Clay
Mathematics Institute, and the Packard Foundation. CW was supported by NSF grant 9971357.
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1 Introduction

Let Rep(GLn(C)) denote the ring of (formal differences of algebraic finite-dimensional)
representations of GLn(C), with addition and multiplication coming from direct sum
and tensor product of representations. Then Rep(GLn(C)) has a canonical basis

{
[Vλ]

}
,

the irreducible representations, indexed by the set Zn
dec

of weakly decreasing n-tuples of
integers. (The “[ ]” are only there to maintain a proper distinction between an actual
representation Vλ and the corresponding element of Rep(GLn(C)), which is really an
isomorphism class.) Our reference for this representation theory is [FH].

The structure constants cν
λµ of this ring-with-basis, defined by

[Vλ] [Vµ] =
∑

ν

cν
λµ [Vν],

are necessarily nonnegative (being the dimensions of certain vector spaces of intertwining
operators), and there are many known rules for calculating them as the cardinalities of
certain combinatorially defined sets. The most famous is the Littlewood-Richardson rule,
which counts skew Young tableaux.

In several of these rules, the set being counted is the lattice points in a polytope (and
in fact the polytopes from the different rules are linearly equivalent). The first was in
the unpublished thesis [J], and was proved by establishing a bijection with skew Young
tableaux; see also the appendix to [B]. It was rediscovered in [BZ1], where the proof starts
with the (nonpositive) Steinberg rule for tensor products and uses an involution to cancel
the negative terms. There is another extremely roundabout proof via the connection with
Schubert calculus, for which a self-contained proof of a combinatorial rule was given in
[KT2].
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In this paper we give a new self-contained proof of this lattice-point-counting rule, in
its incarnation as counting the hives from [KT1], whose definition we recall below. The
main difficulty is in proving that the ring so defined (which is supposed to match up with
Rep(GLn(C))) is associative. We give a bijective proof of this, using the octahedron rule
from [RR, P, FZ, S]. This bijection was first found by CW in the honeycomb model,
where the connection to the octahedron rule is not transparent.

Very recently, in [S], a closed form was found for compositions of the octahedron rule.
In the last section we describe this formula in the special case relevant for this paper.

Since the octahedron rule is related to tropical algebraic geometry, we hope that our
bijective proof of associativity will turn out to be the tropicalization of some natural but
heretofore undiscovered birational map, as in [BZ3].

1.1 Acknowledgements.

It is our pleasure to thank Andrei Zelevinsky for comments on an earlier version of this
paper, David Speyer for kindly working out the special case of his results [S] which appears
in section 7, and Jim Propp for directing us to Speyer’s preprint.

Note added in proof. Since acceptance of this paper, we learned of related results in [NY].
We plan to explore this connection in a future paper.

2 Hives

Consider the triangle
{
[x, y, z] : x+y+z = n, x, y, z ≥ 0

}
. This has

(
n+2

2

)
integer points;

call this finite set trin. We will draw it in the plane and put [n, 0, 0] at the lower left,
[0, n, 0] at the top, and [0, 0, n] in the lower right. This triangle breaks up into

(
n+1

2

)

right-side-up triangles [x + 1, y, z] [x, y + 1, z] [x, y, z + 1] and
(

n
2

)
upside-down triangles

[x − 1, y, z] [x, y − 1, z] [x, y, z − 1]. We will count certain integer labelings of trin to com-
pute Littlewood-Richardson coefficients, following [J], [BZ1], and especially [KT1].

[0,3,0]

[1,1,1]

[0,0,3]
[2,1,0] [1,2,0]

[1,2,0]

[2,1,0]

[0,2,1]

[0,1,2]

[3,0,0]

Figure 1: The set tri3, with its
(

3+1
2

)
right-side-up and

(
3
2

)
upside-down triangles.

A hive of size n is a function h : trin → Z satisfying certain inequalities. Here are
three equivalent ways to state those inequalities (of which we shall mainly use the first):

1. hx+1,y,z+1 + hx,y+1,z+1 ≥ hx+1,y+1,z + hx,y,z+2 when these four points are all in trin,
and likewise for the 120◦ and 240◦ rotations of the hive.
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2. If you extend h to a real-valued function on the solid triangle by making it linear
on each little triangle [x ± 1, y, z] [x, y± 1, z] [x, y, z± 1], h is convex.

3. On each unit rhombus in the triangle, the sum across the short diagonal is greater
than or equal to the sum across the long diagonal.

Note that the definition also makes sense for real-valued functions, in which case we will
speak of a real hive. (We won’t use this concept until section 5.)

Call these inequalities the rhombus inequalities on a hive. They naturally come in
three families, according to the orientation of the rhombus.

3
5
6
6

3
2

0 2 4
4

(2,2,2)

3
5
6
6

3
2

0 4 6
5

(4,2,0)

3
5
6
6

3
2

0
5

4 5

(4,1,1)

3
5
6
6

3
2

0 3 6
4

(3,3,0)

3
5
6
6

3
2

0 3 5
4

(3,2,1)

3
5
6
6

3
2

0 3 5
5

(3,2,1)

Figure 2: The hives with Northwest and Northeast side having differences (2, 1, 0). The
differences across the South side are indicated.

Definitions linearly equivalent to this one appeared first in [J, BZ1, BZ2]. This version
from [KT1], like the one in [BZ2], has the benefit that each inequality only involves a
constant number of entries (namely four), independent of n.

Proposition 1. Let a0, a1, . . . , an be the numbers on one side of a hive (read left-to-
right). Then a is convex, i.e. ai ≥ 1

2
(ai−1 + ai+1). Put another way, the list (a1 −

a0, a2 − a1, . . . , an − an−1) is a weakly decreasing list of integers.

Proof. There are two rhombi with an obtuse vertex at ai. Adding the two corresponding
rhombus inequalities, we get the desired result.

We can interpret such a list as a dominant weight for GLn(C); call the set of such
weights Zn

dec
, and let λ, µ, ν ∈ Zn

dec
be three of them. Let HIVEν

λµ denote the set of hives
of size n such that

• the lower left entry is zero

• the differences on the Northwest side of the hive give λ

• the differences on the Northeast side of the hive give µ

• the differences on the South side of the hive give ν

where all differences are computed left-to-right throughout the paper. Note that for
HIVEν

λµ to be nonempty, we must have
∑

i(λi + µi) =
∑

i νi. The set
⋃

νHIVE
ν

(2,1,0),(2,1,0)

is in figure 2 above.
Our goal is a self-contained proof of the following positive formula for GLn(C) tensor

product multiplicities:
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Theorem 1. Let λ, µ, ν ∈ Z
n
dec and let Vλ, Vµ, Vν be irreducible representations of GLn(C)

with those high weights. Then the number of times Vν appears as a constituent of the
tensor product Vλ⊗Vµ is the number of lattice points in HIVEν

λµ.

For example, figure 2 is computing the tensor square

V
N

2
(2,1,0)

∼= V(4,2,0) ⊕ V(4,1,1) ⊕ V(3,3,0) ⊕ V
L

2
(3,2,1) ⊕ V(2,2,2).

While it doesn’t make any sense to count real-valued hives with fixed boundary (which
is why we insist on integer values), one can still consider the convex polytope thereof, and
relate it to the geometry of certain moduli spaces (see the appendix to [KTW]). It is
rather harder to formulate a “real version” of skew Young tableaux!

3 Recognizing the representation ring Rep(GLn(C))

Recall that the representation ring Rep(GLn(C)) has a basis {[Vλ]}, λ ∈ Z
n
dec. Let ωn

i

denote the “fundamental weight” (1, . . . , 1, 0, . . . , 0) with i 1s and n−i 0s, the high weight
of ΛiCn. (The notation is a little nonstandard – people usually just use ωi – but that
would be clumsy in lemma 2 to come.)

The only other facts we will need about Rep(GLn(C)) – for which our reference is
[FH] – are that

• it is associative

• it is generated by the fundamental representations [Vωn
i
] and [V(−1,−1,...,−1)]

• [Vλ] [Λ
nCn]−1 = [Vλ−(1,...,1)] (we’ll call this the det−1 rule)

• it satisfies the Pieri rule:

[Vλ] [Λ
i
C

n] =
⊕

π∈{0,1}n,
∑

π=i

λ+π ∈ Zn
dec

Vλ+π

The sum is over those 0, 1-vectors π with i ones (or equivalently those weights
occurring in ΛiCn), such that λ + π is weakly decreasing.

If R is a ring-with-basis isomorphic to Rep(GLn(C)), then it satisfies the det−1 and
Pieri rules; we now show that the converse is true. (Essentially the same observation is
used in [T] and is surely much older.)

Proposition 2. Let R be a ring with Z-basis {bλ}, λ ∈ Z
n
dec, satisfying the det−1 and Pieri

rules. Then the evident linear isomorphism φ : Rep(GLn(C)) → R, [Vλ] 7→ bλ is also a
ring isomorphism.
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Proof. We want to show that φ(xy) = φ(x)φ(y). By linearity, it’s enough to show it for
x a basis element [Vλ].

The Pieri and det−1 rules being true in both rings then tells us that this equation does
hold if x is a fundamental representation, [V(1,...,1,0,...,0)] or [V(−1,−1,...,−1)].

More generally, let y = bµ1
bµ2

. . . bµl
be a product of l > 0 generators. Then

φ(bλ(bµ1
bµ2

. . . bµl
)) = φ((bλbµ1

bµ2
. . . bµl−1

)bµl
) = φ(bλbµ1

bµ2
. . . bµl−1

)φ(bµl
)

and induction on l takes care of the rest. (Note that the identity, [V(0,...,0)], is itself a
product [V(1,...,1)][V(−1,...,−1)] of two of our generators, so requiring l > 0 does not cause us
to miss this basis element.)

So far we know that φ is establishing a ring isomorphism between the subspace of
Rep(GLn(C)) generated by the fundamental representations, and the image of that under
φ. But since the fundamental representations generate Rep(GLn(C)), and φ is a linear
isomorphism, that’s actually a ring isomorphism between the two rings.

In the rest of the paper our ring R will be the hive ring, where the multiplication is
defined by

bλbµ =
∑

ν

#HIVEν
λµbν.

The hardest part in applying proposition 2 will be to prove that R is associative. Since
we haven’t proved that yet it’s a bit disingenuous to call it a ring, but we’ll do it anyway
rather than having to rename it afterward.

Once we’ve checked det−1, Pieri, and associativity for the hive ring, theorem 1 will
follow from proposition 2.

4 The hive ring satisfies the det−1 and Pieri rules

Lemma 1. Let p be a lattice parallelogram in the hive triangle trin, with edges parallel
to the edges in the triangular lattice, and h a hive of size n. Then the sum of h’s entries
at the two obtuse angles of p is greater than or equal to the sum of h’s entries at the two
acute angles of p.

Proof. Add up all the rhombus inequalities from the rhombi inside and aligned with p;
everything cancels except the contributions from the four corners.

Proposition 3. In the hive ring, bλb(−1,...,−1) = bλ+(−1,...,−1). That is to say, the hive ring

obeys the det−1 rule.

Proof. We’re studying the hives with differences λi = hn−i,0,i − hn−i+1,0,i−1 on the North-
west side, and that are linear with slope −1 on the Northeast side (so h0,n−z,z = h0,n,0−z).
We want to show there’s exactly one, and it has hi,0,n−i = hi,n−i,0 − i.

Let h ∈ HIVEν
λ,(−1,...,−1) for some ν. Consider the entry hx,y,z, and the following two

parallelograms in trin with [x, y, z] as a vertex:
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[0,x+y+z,0]

[x,y+z,0]
[0,x+y,z]

[x,y,z]

[x,y+z,0]

[x,y,z]

[0,y+z,x]

[0,y,x+z]

Let Λ =
∑

i λi denote the value h0,n,0 at the top. Then the parallelogram inequalities
of lemma 1,

hx,y+z,0 + h0,x+y,z ≥ hx,y,z + h0,x+y+z,0 and hx,y,z + h0,y+z,x ≥ hx,y+z,0 + h0,y,x+z,

can be rewritten as

hx,y+z,0 + Λ − z ≥ hx,y,z + Λ and hx,y,z + Λ − x ≥ hx,y+z,0 + Λ − x − z.

These bound hx,y,z above and below by hx,y+z,0 − z.
In particular the South edge is given by hx,0,z = hx,z,0 − z; the only possible h has

the differences (λ1 − 1, λ2 − 1, . . . , λn − 1) across the bottom and the rest of the hive is
uniquely determined.

That shows uniqueness of the hive; how about existence? The convexity of the function
hx,y,z = hx,y+z,0 − z can be traced, with a bit of algebra, to the assumption that λ was
weakly decreasing.

This proposition can instead be proved by noting that adding an linear function of
y and z to a hive produces a new hive, and by using the same inequalities to show that
bλb~0 = bλ, whose unique hive is constant on NW/SE lines.

Lemma 2. Let h be an n-hive such that the differences down the NE edge are ωn
i . Then

the differences down the strip one step in from the NE edge are either ωn−1
i or ωn−1

i−1 .
Depending on which, the last difference h1,0,n−1−h0,0,n across the bottom either agrees

with the last difference h1,n−1,0 − h0,n,0 on the NW side, or is one larger, respectively.

Proof. For short, write h1,n−1,0, h0,n,0, h1,0,n−1, h0,0,n as x, x+a, y, x+a+ i respectively.
(That h0,0,n = x + a + i follows from the assumption that the differences across the NE
side are ωi, which has total i.)

x+a+i−1

y

x+a+i

x+a+i

x+a+iy

+1

+1

+1

+0

+0

+1

+1

+0

+0

x+i−1

x

x+a
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Using only the rhombus inequalities in the shaded regions of the figure above, and
the same line of argument as in proposition 3, we can show that h1,n−1−i,i = x + i and
h1,n−i−2,i+1 = y. (These are the two adjacent interior entries indicated in the figure.)

Now the two rhombus inequalities relating those hive entries and the NE boundary
say x + i ≥ y ≥ x + i − 1. In particular, the difference (x + a + i) − y is either a or a + 1,
and that binary choice determines the rest of the strip.

Proposition 4. In the hive ring,

bλbωi
=

∑
π∈{0,1}n,

∑
π=i

λ+π ∈ Zn
dec

bλ+π.

In other words, “the hive ring obeys the Pieri rule”.

Proof. Let h be a hive with differences λ on the NW side, ωi on the NE side. Rip off the
NE strip from it and repeat, each time producing a hive one size smaller.

By inductive use of lemma 2, we see that the differences on the NE side go from ωi

(at size n) to ω0 (at size 0), so the differences across the bottom agree with λ in n − i

places and are one larger in i places. Moreover, the hive is uniquely determined by its
labels on the bottom edge.

By proposition 1, the differences in the labels across the bottom are still decreasing.
This, plus the previous paragraph, establishes the Pieri rule as an upper bound.

Given a 0, 1-string π with i ones such that λ+ π is dominant (and so should be giving
a term in the Pieri rule), we can glue together the strips from lemma 2 and hope that we
get a hive. The only rhombus inequalities left to check are those intersecting two adjacent
strips, and we leave this to the reader.

5 The hive ring is associative

First off, what’s the equation we’re trying to prove? Let hσ
λµ = #HIVEσ

λµ, the structure
constant in the hive ring. Then

(bλbµ)bν =
∑

σ

hσ
λµbσbν =

∑
σ

∑
π

hσ
λµhπ

σνbπ

whereas
bλ(bµbν) =

∑
τ

bλh
τ
µνbτ =

∑
τ

∑
π

hτ
µνh

π
λτbπ

Comparing coefficents of bπ, we see that we need to prove

(∗)
∑

σ

hσ
λµhπ

σν =
∑

τ

hτ
µνhπ

λτ.

Consider a tetrahedron balanced perfectly on an edge, from directly above; the bound-
ary of what you see is a square. Label the edges of this square (starting from the top left

the electronic journal of combinatorics 11 (2004), #R61 8



vertex and going clockwise) with the partial sums of λ, µ, ν, π∗. (The dominant weight π∗

is (−πn, −πn−1, . . . , −π1), the highest weight of the contragredient representation (Vπ)∗.
One could say it comes up because we’re reading that edge of the hive backwards.)

If the top edge is labeled σ, then the number of ways of labeling the upper two faces
with hives is hσ

λµhπ
σν. Without fixing the labeling on that top edge, it’s

∑
σ hσ

λµhπ
σν. The

corresponding statement for the lower two faces gives the other sum.

σ

λ

ν

λ

ν

µ    π∗π∗ µ τ

Theorem 2. There is a continuous, piecewise linear bijection between ways of labeling
the upper two faces of this tetrahedron with a pair of real hives and ways of labeling the
lower two faces, with given fixed labels λ, µ, ν, π∗ around the four non-horizontal edges.

Moreover, each formula for a label on a bottom face is a “tropical Laurent polynomial”
in the entries on the top two faces, meaning it can be written as a maximum over some
linear forms.

This bijection on matched pairs of real hives restricts to a bijection on matched pairs
of integral hives, which establishes equation (∗) above.

Proof. This tetrahedron of size n breaks up into little tetrahedra, little upside-down
tetrahedra, and octahedra (think about the n = 2 case). In coordinates, let tetn =

{[x, y, z, w] ∈ N
4 : x + y + z + w = n}. Then the right-side-up tetrahedra have vertices

[x + 1, y, z, w], [x, y + 1, z, w], [x, y, z + 1, w], [x, y, z, w + 1],

the octahedra have vertices

[x+1, y+1, z, w], [x+1, y, z+1, w], [x+1, y, z, w+1], [x, y+1, z+1, w], [x, y+1, z,w+1], [x, y, z+1, w+1],

and the upside-down tetrahedra have vertices

[x + 1, y + 1, z+ 1, w], [x+ 1, y, z+ 1, w+ 1], [x+ 1, y+ 1, z, w+ 1], [x+ 1, y+ 1, z+ 1, w].

Imagine the tetrahedron as initially being “full” of these pieces, which we will remove
one by one from above, each being removable only when everything above is already out
of the way. Along the way, we’ll label all the interior lattice points with numbers. When
we’re done, leaving only the bottom two faces, it will turn out that we have two hives
there.

Whenever we remove a little tetrahedron, we don’t expose any new lattice points.
Whenever we remove an octahedron, though, one of the old vertices (a local height max)
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goes with it and a new one becomes visible (a local height min). As we go, we label the
vertices exposed according to the following formula:

e ′ := max(a + c, b + d) − e

where e was the label at the top, and a, b, c, d the labels around the equatorial square.
Our references for this octahedron rule are [P, FZ] (though it is much older, such as in
[RR]).

When we’re done, we have labeled the bottom two faces. The process — which we
call the excavation of tetn — obviously provides its own inverse (the equation above is
symmetric in e and e ′), and preserves integrality.

It remains to see that what we get on the bottom is a pair of hives, i.e. satisfies the
rhombus inequalities. We will show now that every unit rhombus in the tetrahedron gives
a true rhombus inequality.

Say we’ve partially excavated, and every rhombus above the level so far dug out has
satisfied this inequality. Now we extract a piece; this exposes some new rhombi that we
need to check.

The n = 2 case. We remove the top two tetrahedra, then the octahedron, then a
bottom tetrahedron. From the top, we see the labels

h

i

h

i

h

i

h

i

c  e

h

i

a

b

d

f

g

a c    e     e

b

d

f

g

a c

b

d

f

g

c
     e’

a c
    e’

b

d

f

g

a

b

d

f

g

where the heavy (resp. dotted) lines indicate visible (resp. hidden) creases, and the
shading indicates depth. From the South-Southeast (d in front, b in back), the process
looks like this:

hg

a

f i  e

cdb

hg

a

f i  e

cdb

hg

a

f i

cd

  e’

b

hg

a

f i

cd

  e’

b

hg

a

f i  e

cdb

and at the end only the bce ′h tetrahedron is left.
The first two moves, removing the abef and edci tetrahedra, expose no new lattice

points (only the creases change). The next move exposes the e ′ lattice point, and thus
the rhombus with obtuse vertices a, b, acute f, e ′ = max(a + c, b + d) − e. We want to
show that

a + b ≥ f + max(a + c, b + d) − e

or equivalently
a + b ≥ f + a + c − e, a + b ≥ f + b + d − e

which follow from the b + e ≥ f + c, a + e ≥ d + f inequalities on the top.
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The third move exposes the rhombus with obtuse vertices a, e ′, acute b, g. We want
to show that

a + max(a + c, b + d) − e ≥ b + g

so it’s enough to show one of them: a+b+d−e ≥ b+g. This follows from a+d ≥ e+g

on the top.
While we haven’t explicitly handled all the rhombi in this size 2 tetrahedron – or

even finished excavating it; the bhce ′ tetrahedron is still in place – the other rhombi are
equivalent to these two under the evident Z2 × Z2 symmetries.

The general case. Any rhombus exposed fits into a size 2 tetrahedron, so we just have
to apply the n = 2 case over and over.

Finally, we need the “tropical Laurent polynomial” statement. The rule e ′ = max(a+

c, b + d) − e is the tropicalization of the subtraction-free rational function E ′ = (AC +
BD)/E, meaning that +,×, / have been replaced with max, +, −. As a very special case of
the main theorem 1.6 in [FZ], one knows that if one uses this rational function recurrence
during excavation, the labels on the bottom two faces are Laurent polynomials in the
labels on the top two (rather than merely rational functions as one would expect).

Feeding this theorem and propositions 3 and 4 into proposition 2, we obtain theorem
1.

Since this paper was first written, it was proven in [S] that the coefficients in these
Laurent polynomials are all 1, and the monomials identified. We state this result, in the
special case relevant here, in section 7.

6 The honeycomb interpretation: scattering

This section is distinctly less detailed than the others, and is largely for motivation. We
recall briefly the honeycombs of [KT1], which are in 1 : 1 correspondence with hives, but
better suited for some aspects of their study.

Let R3∑
=0 denote the plane of triples of real numbers with zero sum. Define the coor-

dinate directions in R
3∑

=0 to be parallel to (0, 1, −1), which we will draw as Northwest,

(−1, 0, 1), which we will draw as Northeast, and (1, −1, 0), which we will draw as South.
A line segment oriented parallel to a coordinate direction has a constant coordinate,
the one of the three coordinates constant along the edge.

A honeycomb is a measure on R3∑
=0, constructed by summing the Lebesgue measure

on a finite number of coordinate-oriented line segments (which may be unbounded), such
that

• each unbounded ray goes in a coordinate direction (not its negative)

• around each point, the total “pull” of the up-to-six edges emanating from that point
is the zero vector.
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2

Figure 3: Two honeycombs, of sizes 4 and 3. The left one is more typical in having only
Y vertices. All edges are multiplicity 1, except for the edge labeled 2 in the right-hand
honeycomb.

Note that some of the segments may overlap (or even coincide), leading to multiplicities
along the edges. Two honeycombs are displayed in figure 3.

Since any vertex of a honeycomb satisfies this “zero-tension” condition, the honeycomb
as a whole does so (by a sort of Green’s theorem), so the number of edges (counted with
multiplicity) emanating in the Northwest, Northeast, or South directions must be the
same number n. We call this the size of the honeycomb.

From a hive of size n, we construct a honeycomb of size n as follows. There is one
honeycomb edge for each unit edge connecting two vertices in trin, but perpendicular to
it (living in the dual graph). The constant coordinate on that honeycomb edge is the
difference of the two labels in the hive, up to a certain sign. To determine this sign, look
for the unit triangle ∆ in trin aligned with trin, and containing the two hive labels and
an extra vertex. The constant coordinate assigned is then the label on ∆ counterclockwise
of the extra vertex, minus the label on ∆ clockwise of the extra vertex.

The vertices of the honeycomb then correspond to the linear regions in the hive. The
rhombus inequalities on the hive, reinterpreted, state that the edges of the honeycomb are
of nonnegative length. It is quite tricky to prove that this map from hives to honeycombs
is in fact a bijection (theorem 1 of [KT1]).

We are now in a position to describe “honeycomb scattering”, a honeycomb interpre-
tation of the tetrahedron-evacuation bijection from section 5. This was the form in which
one of us (CW) first found this proof of associativity.

Let HONEYν
λµ denote the set of honeycombs whose boundary edges have constant co-

ordinates λ in the Northwest direction, µ in the Northeast direction, and ν in the South
direction. To prove ∑

σ

hσ
λµhπ

σν =
∑

τ

hτ
µνhπ

λτ,
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consider the set of pairs of honeycombs

(h, h ′) ∈
⋃

σ

(
HONEYσ

λµ × HONEYπ
σν

)
.

We can draw such a pair (h, h ′) by rotating h ′ by 180◦, translating it some large distance
in the (1, −1, 0) direction, and gluing it to h, as in the first entry in figure 4. For reasons
to be explained below we also compress this picture in the y direction, making the edges
all 90◦ and 45◦ from one another rather than 60◦.

Now pull the lower honeycomb h ′ upwards, while sending the upper one downwards,
at the same constant speed (this interpretation involves a time coordinate). At some
point a vertex of h ′ will collide with one of h. We give an example of the whole process
in figure 4, and (before they are given below) we invite the reader to guess the general
rules defining scattering.

1. 2.
6.

7.

3. 4. 5.

8. 9. 10. 11.

Figure 4: The eleven stages of two size 2 honeycombs scattering off one another. The
collisions are circled. Before the double collision in (6), the rectangle is shrinking; after
that collision, the rectangle bounces back out.

The rules for scattering are as follows. Each vertex in h (respectively, h ′) is given an
initial velocity of down (respectively, up). All vertices move until there is a collision.

Generically, the first sort of collision met is that of a single edge contracting (as in
(1-2), (3-4), (7-8), (10-11) of figure 4). When this happens, we redirect the vertically
colliding particles to move left and right, conserving total energy and momentum. Note
that what used to be a vertical line connecting them is now horizontal.

After some of these collisions, a second type of collision is possible, involving two pairs
of converging vertices making a rectangle collapse (as in (5-6) of figure 4). These are again
redirected out, conserving energy and momentum.

(For generic h and h ′, these two are the only sorts of collisions that can happen
during the whole scattering. Nongeneric h, h ′ can be understood by taking limits from
the generic case, so we won’t dwell on them.)

It is true at the beginning, and remains true after either type of collision, that if a
vertex is attached to a vertical line then it is moving vertically and will eventually get into
a 2-vertex collision. Note that each 2-vertex collision increases the number of particles
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moving horizontally and decreases the number of vertical edges, and each 4-vertex collision
decreases the number of particles moving directly toward one another.

So there are only a finite number of collisions; when the scattering is over, all particles
are moving horizontally, there are no vertical edges, and all the left-moving particles are
left of all the right-moving particles. At this point we can cut the diagram in half along
the growing edges, and we get two new squashed honeycombs – except that they’ve been
squashed along the x direction rather than the y.

6.1 Honeycomb scattering vs. hive excavation.

These two types of collisions – 2-vertex and 4-vertex – correspond to the tetrahedral and
octahedral excavations in theorem 2. The hive labels are linearly related to the constant
coordinates on the diagonal lines. Note that during a 2-vertex collision, the four diagonal
lines incident move at a constant speed – on the excavation side, this reflects the fact
that excavating a tetrahedron exposes no new vertices and requires no new labeling. The
max of the octahedron rule is implemented by the two ways a rectangle can collapse –
whichever one comes first determines how the vertices bounce back out.

In the hive excavation picture, it is easier to deal with degenerate cases uniformly –
the octahedron rule still applies, it just happens that the max involved is achieved twice.
Also the hive picture doesn’t introduce this spurious “time” coordinate; in particular, the
excavation of the large tetrahedron can be done in many different ways, all giving the
same answer.

On the other hand, in the honeycomb picture it is more manifest that the limiting
object after scattering is again two honeycombs glued together, rather than having to
check the rhombus inequalities in various cases, as occurred in theorem 2.

6.2 The scattering rule in [GP].

A very similar result is proven in [GP], though phrased in terms of braid relations rather
than excavation. It is less immediately obvious that their rule is constructing an associ-
ator, since it involves six inputs rather than four. In fact their pseudo-line arrangements
can be corresponded to a partially excavated cube of size n, rather than our tetrahedron,
and their braid move corresponds to the removal of one little cube.

7 A closed form for the associativity bijection

As promised in section 5, we give a closed-form expression for each entry of the bottom
two hives as a “tropical Laurent polynomial” (a single maximum over a family of linear
expressions) in the entries of the top two.

This is a special case of a general result proved by Speyer in [S], conjectured in [FZ]:
during any order in which we excavate a tetrahedron, a label b exposed at time t2 > t1

is a Laurent polynomial with positive coefficients in those labels on the surface at time
t1. Speyer proves a more precise conjecture due to Propp: each Laurent monomial in b
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corresponds to a matching of a certain graph Gb, meaning a subset of the edges covering
each vertex exactly once, where the graph Gb is determined by the t1-surface and the
t2-entry. Intriguingly, the “graphs with open faces” Gb that Speyer constructs to prove
this look like partially-scattered honeycombs!

Consider the graph G (with some unbounded edges) constructed by scattering two
standard n-honeycombs (meaning, all finite edges of length 1) off one another, stopping
exactly when the first n collisions occur (simultaneously). This graph has n − 1 rhombi
and two triangular arrays of

(
n−1

2

)
hexagons. The n = 4 example is drawn in figure 5. Its

regions correspond to the labels on the top two faces of a tetrahedron to be excavated.

V
R S

J L Q
C D F G

A B E T Z
∆ Φ Γ Λ

Π Θ Σ
Ψ Ξ

Ω

V

R S

J L Q

C D F G

Α Β Ε Τ Ζ

∆ Φ Γ Λ

Π Θ Σ

Ψ Ξ

Ω

Figure 5: Two standard 4-honeycombs caught at the moment of first scattering (left). The
regions correspond to labels on the top two faces of a tetrahedron (right), as indicated.

To expose a bottom entry b, there is a unique minimal set of unit tetrahedra and
octahedra that must be excavated. For example, to expose the bottom entry below the F

in figure 5, one must remove the octahedra with top points labeled by T, E, F.
We are now ready to describe the graph Gb that Speyer associates to a bottom entry

b: it is the minimal subgraph of G enclosing those entries that must be excavated to get
to b. In fact one must also consider the adjoining hexagonal regions in Speyer’s definition
of Gb as a “graph with open faces”. See figure 6 for the case b being the entry below the
F.

Given such a graph Gb, and a matching µ of it, Speyer defines the matching (Lau-
rent) monomial mµ as the product over all faces of Gb (including the exterior hexagons),
of the corresponding variable raised to the power

• one minus the number of adjacent edges in µ, for a rhombus or external hexagon,
or

• two minus the number of adjacent edges in µ, for an interior hexagon.
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V

R S

J L Q

G

A B Z

∆ Φ Γ Λ

Π Θ Σ

Ξ

Ω

Ψ

E T

FDC

Figure 6: The graph with open faces whose matchings will calculate the entry directly
below the label F, with three interior and seven exterior faces.

In figure 7 we draw all the matchings of our Gb from figure 6, and compute the matching
monomials.

Γ Q

E  

ΓD

TF  

Q  Φ

EF

G LL      Λ

T

+L

+Γ

−F

+Φ

−T
Λ

−T
−E

−E

+Γ

+Q

+D −F

+L

+G

+Q

Figure 7: The matchings of Gb — in each figure, each vertex touches exactly one heavy
edge — and their matching monomials.

Speyer’s theorem (for our case) now reads as follows:

Theorem 1. [S] Let b be a label on the bottom of the hive tetrahedron, and Gb the minimal
subgraph of G enclosing the entries on the top that must be excavated to expose b.

Then if during excavation, we use the rational function octahedron recurrence E ′ =

E−1(AC+BD), the resulting value of b can be computed as a sum over all matchings {m}

of Gb, of the associated matching monomials {µm}.
If we instead use the tropical recurrence, the value of b can be computed as a maximum

over all matchings, of the corresponding linear forms.
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To compute the figure 6 example directly: the octahedron recurrence gives

T ′ = T−1(FΛ + GΓ)

E ′ = E−1(FΦ + DΓ)

F ′ = F−1(T ′L + QE ′)

= F−1(T−1(FΛ + GΓ)L + QE−1(FΦ + DΓ))

= T−1ΛL + F−1T−1GΓL + QE−1Φ + F−1QE−1DΓ

which agrees with the theorem, being the sum of the terms from figure 7. The tropical
version is therefore

F ′ = max{−T + Λ + L, −F − T + G + Γ + L, Q − E + Φ, −F + Q − E + D + Γ).
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