Random Cayley graphs are expanders: a simple proof
of the Alon—Roichman theorem
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Abstract

We give a simple proof of the Alon—Roichman theorem, which asserts that the Cayley
graph obtained by selecting log |G| elements, independently and uniformly at random,
from a finite groupGG has expected second eigenvalue no more ¢haerec. is a constant
that depends only on In particular, such a graph is an expander with constant probability.
Our new proof has three advantages over the original proof. (i.) it is extremely simple,
relying only on the decomposition of the group algebra and tail bounds for operator-valued
random variables, (ii.) it shows that theg |G| term may be replaced wittog D, where
D < |G| is the sum of the dimensions of the irreducible representations ahd (jii.) it
establishes the result above with a smaller constant

1 Introduction

A beautiful theorem of N. Alon and Y. Roichman [4] asserts tl@idom Cayley graphs are
expanders Specifically, they study the spectrum of the Cayley graphs obtained by selgécting
elements, independently and uniformly at random, from a finite gt@uphey show that for
everye > 0 there is a constant so that the expected second eigenvalue of the normalized
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adjacency matrix of the graph is less thaas long asc > (c. + o(1))log |G|. Their proof
involves a clever combinatorial argument that controls the behavior of random walks taken
on the (random) graph. Invoking established relationships between graph expansion and the
second eigenvalue, this implies bounds on the expected expansion of the Cayley graph formed
from k£ = O(log |G|) random elements.

In this article, we give a simple proof of the result based on tail bounds for sums of indepen-
dent operator-valued random variables established by R. Ahlswede and A. Winter [1]. Our proof
yields a stronger relationship betweenandes: we show that: = (2In2/e + o(1))?log |G|
elements suffice, whereas the original proof requiress? + o(1)) log |G| elements. More-
over, using some elementary group representation theory, we show thag th& term may
be replaced with the terfiog D, whereD is the sum of the dimensions of the irreducible rep-
resentations ofs. The improvement fronlog |G| to log D was independently discovered by
L. Schulman and P. Loh [6].

We remark that the theorem is tight, up to the constant appearing before the logarithm, in
the sense that there exist groufi;)” for example, that cannot even be generated with fewer
thann = log, 2" elements.

We begin, in Section 2, with a brief discussion of expander graphs, the representation the-
ory of finite groups, and tail bounds for positive operator-valued random variables. The main
theorem is proved in Section 3.

2 Background

We outline, below, the elements of graph theory, representation theory, and probability theory
required for the statement of the theorem and the subsequent proof. The exposition here is
primarily for the purposes of setting down notation; we refer the reader to the more complete
accounts appearing in Alon and Spencer [5], Serre [7], and Ahlswede and Winter [1] for greater
detail and discussion.

Let G be a finite group and C G a set of generators far. The CayleygraphX (G, S)
is the graph obtained by taking the elementg7odis vertices and including the edge ) if
a3 e SUST!, whereS™! = {s7! | s € S}. As the setS U S~!is closed under inverse,
a'Be SuST! e B7la e SU ST sothat we may naturally treéf (G, S) as an undirected
graph. We overload the symbblletting it denote the identity element of a grotip

Graph expansion and spectral gap. An undirected graptG = (V, E) is an (n,d,¢)-
expander graphf G hasn vertices, every vertex has degréer less, and for all subsefs
of vertices with| X' | < |V|/2, |I'(X) \ X| > €| X]|, where

I'X)={v|3JuelX, (uv) e E} .
A family of linear expanderss a family of graphs{G; | i > 0}, whereG; is a (n;,d, ¢)-
expandere and d are constants independentf and then; tend to infinity in:. Graphs

with these properties are the principal combinatorial elements featured in many pseudorandom
constructions.
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Graph expansion has a propitious relationship withgpectralproperties of the grapty.
Focusing, as we will, on regular graphs, define tleemalized adjacency matrik(G) of the
d-regular graplz so that

1
A(G)yy =8 if (u,v). €k,
0 otherwise.

As A(G) is a symmetric, real matrix, its eigenvalues are real and it is easy to see that all
eigenvalues lie in the intervél-1, 1]. A always possesses the eigenvalughich, whenG is
connected, has multiplicity one; the corresponding eigenvectors are those with uniform entries
(taking the same value at eaghe ). For a regular graply, we let\,(G) denote the second
largest element of the multiset of absolute values of eigenvalud$@j. As mentioned above,

a strong relationship between(-) and expansion has been achieved. In particulaf is

a d-regular graph withe vertices and\,(G) < X thenG is an(n, d, ¢)-expander withe >

2(1 —X)/(3 —2X) (see Alon and Milman [3]). Conversely, @f is an(n, d, ¢)-expander then

Ao (G) < 1—€*/[2d(2 + €%)] (see Alon [2]).

The representation theory of finite groups. Let GG be a finite group. Aepresentatiorp of
G is a homomorphismp : G — U(V'), whereV is a finite dimensional Hilbert space abid!”)
is the group of unitary operators 6 Thedimensiorof p, denotedi,, is the dimension of the
vector spacé’. By choosing a basis fdr, then, eachy(g) is associated with a unitary matrix
[p(g9)] sothatfor every, h € G, [p(gh)] = [p(g9)]-[p(h)], where- denotes matrix multiplication.
Fixing a representatiop : G — U(V), we say that a subspad€ C V is invariant if
p(g)W C W for all g € G; observe that in this case the restrictjgn : G — U(W) given by
restricting eachy(g) to W is also a representation. Wheihas no invariant subspace other than
the trivial space{0} andV/, p is said to berreducible In the case whep is notirreducible,
then, there is a nontrivial invariant subspatecC V' and, as the inner produ¢t -) is invariant
under each of the unitary map§y), it is immediate that the subspace

W ={u|v¥we W, (uw)=0}

is also invariant. Associated with the decomposifios- W ¢ W is the natural decomposition
of the operatorg(g) = pw(9) @ pw(g). By repeating this process, any representgtiod: —
U(V) may be decomposed into irreducible representations: we weter; @ - - - @ 0.

If two representations ando are the same up to an isometric change of basis, we say that
they areequivalent It is a fact that any finite grou@ has a finite number of distinct irreducible
representations up to equivalence and, for a gi@Gupve letG denote a set of representations
containing exactly one from each equivalence class.

Two representations play a special role in the following analysis. The first igithal
representation, the one-dimensional representation that maps all elementsmthe identity
operator oriC. The second is theegular representatiork, given by the permutation action of
G on itself. Specifically, leC[G] be the|G|-dimensional vector space of formal sums

{;%-g\%EC}
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equipped with the unique inner product for whigh /) is equal to one whep = h and zero

otherwise. ThemR is the representatioR : G — U(CJ|G]) given by linearly extending the
rule R(g)[h] = gh. While the trivial representatioh is irreducible,R is not: in fact, every

irreducible representatigne G appears ik with multiplicity equal to its dimension:

R:@p@---@p. Q)
ped dy

By counting dimensions on each side of this equation, we [Gye- ) d>.

Tail bounds for operator-valued random variables. Our principal technical tool will be a
tail bound for (positive) operator-valued random variables. The bound below was proved in [1],
where it is modestly attributed to H. Chernoft.

Let A(V) denote the collection of self-adjoint linear operators on the finite dimensional
Hilbert spacé/. For A € A(V'), we let||A|| denote the operator norm dfequal to the largest
absolute value obtained by an eigenvaluelofThe cone opositiveoperators

P(V) = {A € A(V) | W, (Av,v) > 0}

gives rise to a natural partial order &V’ by definingA > B iff A — B € P(V'). We shall
write B € [A, A'[for A< B < A,

Proposition 1 ([1]). LetV be a Hilbert space of dimensiaiand letA,, .. ., A, be independent,
identically distributed random variables taking values/\l”) with expected valu&[4;] =
M > pland A; < 1. Then for alle € [0,1/2],

k

" %ZAig[(l_g)M:(lﬂ)M] <od. e

i=1

3 A proof of the Alon-Roichman theorem

We shall demonstrate tail bounds on the distributiongfX (G, S)) and conclude from these a
strengthened version (Corollary 3) of the following theorem of Alon and Roichman.

Theorem 1 ([4]). For everye > 0 there is a functiork = k(|G|) = [ + o(1)] log |G| so that
for all finite groupsG,
E[X(X(G,9))] <e ,

wheresy, ..., s; are independent random variables, uniformly distributed/irand.S is the set

{517 Ceey Sk}.

We begin with the development of tail bounds for the variableX (G, S)); Corollary 3 will
follow.
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Theorem 2. LetG be afinite groups > 0, D =3_ _5d,, andk = (21n2/¢)*[log D + b+ 1].
Then
Pr[\(X(G,S)) > ¢ <27,

wheresy, ..., s; are independent random variables, uniformly distributed/irand.S is the set

{s1,..., 8K}

Proof. For an element = > a, - g € C[G] and a representation leta(p) = >_, ayp(9g).

Defining s to be the formal sun/(2k) - 2% (s, + s;71) € C[G], observe that the normalized
adjacency matrid of the graphX (G, S) is premsely the operatsi( R) expressed in the basis
{1-9| g € G} of C[G]. We consider the decomposition &f into irreducible representa-
tions given by Equation (1); as discussed above, this corresponds to an orthogonal direct sum
decomposition ofC[G] into spaces invariant under eaélig). Observe that the eigenvalue
corresponds to the appearance of the trivial representatiofGh It suffices, then, to bound the
spectrum ofs( R) when restricted to the nontrivial representations appearing in the decomposi-
tion: specifically,\>(X (G, S)) = max,.1 [|5(p)||, this maximum extended over all nontrivial
irreducible representations 6f Let p be a nontrivial irreducible representation(ofnd define
a; =1/2- (s; +s;1) € C[G]; thens = 1/k - Y a; and eachi;(p) = 1/2 - [p(si) + p(si) '] is
self-adjoint asp(s; ) = p(s;)~" = p(s;)*. Sincel|a;(p)|| < 1, definep; = 1/2- (1 + a;) and
observe thap;(p) is a positive operator satisfying(p) < 1.

Recalling thatR contains a single copy of the trivial representation and observing that the
operator) _, R(g) has rank 1 (indeed, in the basis above, each entry in the corresponding matrix

is a 1), we conclude tha,c:[p(g)] = 0 - 1 for nontrivial p. HenceE|[p;(p)] = 51 and, by

Proposition 1,
1-— 1 ke?
Pr [—sz [ 8]1, ;81] < 2d,exp <—4152)
n
d
= 2d,exp(—In(2)[log D +b+1]) = -£27" .

D

Finally, Pr[A:(X (G, S)) > ¢] = Pr[3p € G\ {1}, LS @(p) ¢ [—<1,¢1]] so that
PrX2(X (G, S)) > €] =Pr [Elpe@\{l} sz {1—517¥1}
< Z p2 b—9-

pEG

O

Remark. An even simpler proof, relying on no representation theory, can be given by writing
C[G] = T @& N, whereT is the one-dimensional eigenspace spanned by the uniform vector
Zgg and N is the orthogonal complement @f. By the reasoning above, the average of the
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operatorsRk(g) on the spaceV is zero and the proof may proceed by applying the tail bound
(Proposition 1) ovelV. This results in the bountd = ((21n2)/¢)?*(log |G| + b + 1).

Observe that ifX is a random variable taking values in the interjall] for which Pr[X >
e] <0, thenE[X] < (1 —d)e +d < e+ 0. In particular, selecting a functioi( D) tending
to zero for whichlog(6—') = o(log D) and applying the bound above with = £(1 — §)
andk’ = [(2In2)/e')*(log D — log(¢d) + 1), we obtain the following corollary that implies
Theorem 1 above.

Corollary 3. For everye > 0 there is a functiork = k(D) = [2122 + 0(1)}2 log D so that for
all finite groupsG,
E[X(X(G,9)] <e,

wheres,, ..., s, are independent random variables, uniformly distributed-ins is the set
{s1,....sx},andD =3 & d,.

Remark. This improves upon Theorem 1 both by reducing the leading constant (from
de/e? ~ 10.87/e? to (2In2/e)? ~ 1.93/¢?) and replacing théog |G| term withlog D. Re-

call that} d? = |G|, whenceD = >, d, < |G|, and that for groups with large irreducible
representation® can grow as slowly a®(,/|G|) (e.g., the affine groups; x Z,).
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