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Abstract

We give a simple proof of the Alon–Roichman theorem, which asserts that the Cayley
graph obtained by selectingcε log |G| elements, independently and uniformly at random,
from a finite groupG has expected second eigenvalue no more thanε; herecε is a constant
that depends only onε. In particular, such a graph is an expander with constant probability.
Our new proof has three advantages over the original proof: (i.) it is extremely simple,
relying only on the decomposition of the group algebra and tail bounds for operator-valued
random variables, (ii.) it shows that thelog |G| term may be replaced withlog D, where
D ≤ |G| is the sum of the dimensions of the irreducible representations ofG, and (iii.) it
establishes the result above with a smaller constantcε.

1 Introduction

A beautiful theorem of N. Alon and Y. Roichman [4] asserts thatrandom Cayley graphs are
expanders. Specifically, they study the spectrum of the Cayley graphs obtained by selectingk
elements, independently and uniformly at random, from a finite groupG. They show that for
everyε > 0 there is a constantcε so that the expected second eigenvalue of the normalized
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adjacency matrix of the graph is less thanε as long ask ≥ (cε + o(1)) log |G|. Their proof
involves a clever combinatorial argument that controls the behavior of random walks taken
on the (random) graph. Invoking established relationships between graph expansion and the
second eigenvalue, this implies bounds on the expected expansion of the Cayley graph formed
from k = O(log |G|) random elements.

In this article, we give a simple proof of the result based on tail bounds for sums of indepen-
dent operator-valued random variables established by R. Ahlswede and A. Winter [1]. Our proof
yields a stronger relationship betweencε andε: we show thatk = (2 ln 2/ε + o(1))2 log |G|
elements suffice, whereas the original proof requires(4e/ε2 + o(1)) log |G| elements. More-
over, using some elementary group representation theory, we show that thelog |G| term may
be replaced with the termlog D, whereD is the sum of the dimensions of the irreducible rep-
resentations ofG. The improvement fromlog |G| to log D was independently discovered by
L. Schulman and P. Loh [6].

We remark that the theorem is tight, up to the constant appearing before the logarithm, in
the sense that there exist groups,(Z2)

n for example, that cannot even be generated with fewer
thann = log2 2n elements.

We begin, in Section 2, with a brief discussion of expander graphs, the representation the-
ory of finite groups, and tail bounds for positive operator-valued random variables. The main
theorem is proved in Section 3.

2 Background

We outline, below, the elements of graph theory, representation theory, and probability theory
required for the statement of the theorem and the subsequent proof. The exposition here is
primarily for the purposes of setting down notation; we refer the reader to the more complete
accounts appearing in Alon and Spencer [5], Serre [7], and Ahlswede and Winter [1] for greater
detail and discussion.

Let G be a finite group andS ⊂ G a set of generators forG. TheCayleygraphX(G, S)
is the graph obtained by taking the elements ofG as vertices and including the edge(α, β) if
α−1β ∈ S ∪ S−1, whereS−1 = {s−1 | s ∈ S}. As the setS ∪ S−1 is closed under inverse,
α−1β ∈ S ∪ S−1 ⇔ β−1α ∈ S ∪ S−1 so that we may naturally treatX(G, S) as an undirected
graph. We overload the symbol1, letting it denote the identity element of a groupG.

Graph expansion and spectral gap. An undirected graphG = (V, E) is an (n, d, ε)-
expander graphif G hasn vertices, every vertex has degreed or less, and for all subsetsX
of vertices with|X| ≤ |V |/2, |Γ(X) \ X| ≥ ε|X|, where

Γ(X) = {v | ∃u ∈ X, (u, v) ∈ E} .

A family of linear expandersis a family of graphs{Gi | i > 0}, whereGi is a (ni, d, ε)-
expander,ε and d are constants independent ofni, and theni tend to infinity in i. Graphs
with these properties are the principal combinatorial elements featured in many pseudorandom
constructions.
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Graph expansion has a propitious relationship with thespectralproperties of the graphG.
Focusing, as we will, on regular graphs, define thenormalized adjacency matrixA(G) of the
d-regular graphG so that

A(G)uv =

{
1
d

if (u, v) ∈ E,

0 otherwise.

As A(G) is a symmetric, real matrix, its eigenvalues are real and it is easy to see that all
eigenvalues lie in the interval[−1, 1]. A always possesses the eigenvalue1 which, whenG is
connected, has multiplicity one; the corresponding eigenvectors are those with uniform entries
(taking the same value at eachg ∈ G). For a regular graphG, we letλ2(G) denote the second
largest element of the multiset of absolute values of eigenvalues ofA(G). As mentioned above,
a strong relationship betweenλ2(·) and expansion has been achieved. In particular, ifG is
a d-regular graph withn vertices andλ2(G) ≤ λ thenG is an (n, d, ε)-expander withε ≥
2(1 − λ)/(3 − 2λ) (see Alon and Milman [3]). Conversely, ifG is an(n, d, ε)-expander then
λ2(G) ≤ 1 − ε2/[2d(2 + ε2)] (see Alon [2]).

The representation theory of finite groups. Let G be a finite group. Arepresentationρ of
G is a homomorphismρ : G → U(V ), whereV is a finite dimensional Hilbert space andU(V )
is the group of unitary operators onV . Thedimensionof ρ, denoteddρ, is the dimension of the
vector spaceV . By choosing a basis forV , then, eachρ(g) is associated with a unitary matrix
[ρ(g)] so that for everyg, h ∈ G, [ρ(gh)] = [ρ(g)]·[ρ(h)], where· denotes matrix multiplication.

Fixing a representationρ : G → U(V ), we say that a subspaceW ⊂ V is invariant if
ρ(g)W ⊂ W for all g ∈ G; observe that in this case the restrictionρW : G → U(W ) given by
restricting eachρ(g) to W is also a representation. Whenρ has no invariant subspace other than
the trivial space{0} andV , ρ is said to beirreducible. In the case whenρ is not irreducible,
then, there is a nontrivial invariant subspaceW ⊂ V and, as the inner product〈·, ·〉 is invariant
under each of the unitary mapsρ(g), it is immediate that the subspace

W⊥ = {u | ∀w ∈ W, 〈u,w〉 = 0}

is also invariant. Associated with the decompositionV = W⊕W⊥ is the natural decomposition
of the operatorsρ(g) = ρW (g)⊕ρW⊥(g). By repeating this process, any representationρ : G →
U(V ) may be decomposed into irreducible representations: we writeρ = σ1 ⊕ · · · ⊕ σk.

If two representationsρ andσ are the same up to an isometric change of basis, we say that
they areequivalent. It is a fact that any finite groupG has a finite number of distinct irreducible
representations up to equivalence and, for a groupG, we letĜ denote a set of representations
containing exactly one from each equivalence class.

Two representations play a special role in the following analysis. The first is thetrivial
representation1, the one-dimensional representation that maps all elements ofG to the identity
operator onC. The second is theregular representationR, given by the permutation action of
G on itself. Specifically, letC[G] be the|G|-dimensional vector space of formal sums{∑

g

αg · g | αg ∈ C

}
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equipped with the unique inner product for which〈g, h〉 is equal to one wheng = h and zero
otherwise. ThenR is the representationR : G → U(C[G]) given by linearly extending the
rule R(g)[h] = gh. While the trivial representation1 is irreducible,R is not: in fact, every
irreducible representationρ ∈ Ĝ appears inR with multiplicity equal to its dimension:

R =
⊕
ρ∈ bG

ρ ⊕ · · · ⊕ ρ︸ ︷︷ ︸
dρ

. (1)

By counting dimensions on each side of this equation, we have|G| =
∑

ρ d2
ρ.

Tail bounds for operator-valued random variables. Our principal technical tool will be a
tail bound for (positive) operator-valued random variables. The bound below was proved in [1],
where it is modestly attributed to H. Chernoff.

Let A(V ) denote the collection of self-adjoint linear operators on the finite dimensional
Hilbert spaceV . ForA ∈ A(V ), we let‖A‖ denote the operator norm ofA equal to the largest
absolute value obtained by an eigenvalue ofA. The cone ofpositiveoperators

P(V ) = {A ∈ A(V ) | ∀v, 〈Av,v〉 ≥ 0}

gives rise to a natural partial order onA(V ) by definingA ≥ B iff A − B ∈ P(V ). We shall
write B ∈ [A, A′] for A ≤ B ≤ A′.

Proposition 1 ([1]). LetV be a Hilbert space of dimensiond and letA1, . . . , Ak be independent,
identically distributed random variables taking values inP(V ) with expected valueE[Ai] =
M ≥ µ1 andAi ≤ 1. Then for allε ∈ [0, 1/2],

Pr

[
1

k

k∑
i=1

Ai 6∈
[
(1 − ε)M, (1 + ε)M

]] ≤ 2d · e− ε2µk
2 ln 2 .

3 A proof of the Alon-Roichman theorem

We shall demonstrate tail bounds on the distribution ofλ2(X(G, S)) and conclude from these a
strengthened version (Corollary 3) of the following theorem of Alon and Roichman.

Theorem 1 ([4]). For everyε > 0 there is a functionk = k(|G|) =
[

4e
ε2 + o(1)

]
log |G| so that

for all finite groupsG,
E
[
λ2(X(G, S))

] ≤ ε ,

wheres1, . . . , sk are independent random variables, uniformly distributed inG, andS is the set
{s1, . . . , sk}.

We begin with the development of tail bounds for the variableλ2(X(G, S)); Corollary 3 will
follow.
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Theorem 2. LetG be a finite group,ε > 0, D =
∑

ρ∈ bG dρ, andk = (2 ln 2/ε)2[log D + b + 1].
Then

Pr[λ2(X(G, S)) > ε] ≤ 2−b ,

wheres1, . . . , sk are independent random variables, uniformly distributed inG, andS is the set
{s1, . . . , sk}.

Proof. For an elementa =
∑

g ag · g ∈ C[G] and a representationρ, let â(ρ) =
∑

g agρ(g).

Definings to be the formal sum1/(2k) · ∑k
i=1(si + s−1

i ) ∈ C[G], observe that the normalized
adjacency matrixA of the graphX(G, S) is precisely the operator̂s(R) expressed in the basis
{1 · g | g ∈ G} of C[G]. We consider the decomposition ofR into irreducible representa-
tions given by Equation (1); as discussed above, this corresponds to an orthogonal direct sum
decomposition ofC[G] into spaces invariant under eachR(g). Observe that the eigenvalue1
corresponds to the appearance of the trivial representation inC[G]. It suffices, then, to bound the
spectrum of̂s(R) when restricted to the nontrivial representations appearing in the decomposi-
tion: specifically,λ2(X(G, S)) = maxρ6=1 ‖ŝ(ρ)‖, this maximum extended over all nontrivial
irreducible representations ofG. Letρ be a nontrivial irreducible representation ofG and define
ai = 1/2 · (si + s−1

i ) ∈ C[G]; thens = 1/k · ∑ ai and eacĥai(ρ) = 1/2 · [ρ(si) + ρ(si)
−1] is

self-adjoint asρ(s−1
i ) = ρ(si)

−1 = ρ(si)
∗. Since‖âi(ρ)‖ ≤ 1, definepi = 1/2 · (1 + ai) and

observe that̂pi(ρ) is a positive operator satisfyinĝpi(ρ) ≤ 1.
Recalling thatR contains a single copy of the trivial representation and observing that the

operator
∑

g R(g) has rank 1 (indeed, in the basis above, each entry in the corresponding matrix
is a 1), we conclude thatEg∈G[ρ(g)] = 0 · 1 for nontrivial ρ. HenceE[p̂i(ρ)] = 1

2
1 and, by

Proposition 1,

Pr

[
1

k

∑
i

p̂i(ρ) 6∈
[
1 − ε

2
1,

1 + ε

2
1

]]
≤ 2dρ exp

(
− kε2

4 ln 2

)
= 2dρ exp

(− ln(2)[log D + b + 1]
)

=
dρ

D
2−b .

Finally, Pr[λ2(X(G, S)) > ε] = Pr
[∃ρ ∈ Ĝ \ {1}, 1

k

∑k
i=1 âi(ρ) 6∈ [−ε1, ε1]

]
so that

Pr[λ2(X(G, S)) > ε] = Pr

[
∃ρ ∈ Ĝ \ {1}, 1

k

k∑
i=1

p̂i(ρ) 6∈
[
1 − ε

2
1,

1 + ε

2
1

]]

≤
∑
ρ∈ bG

dρ

D
2−b = 2−b .

Remark. An even simpler proof, relying on no representation theory, can be given by writing
C[G] = T ⊕ N , whereT is the one-dimensional eigenspace spanned by the uniform vector∑

g g andN is the orthogonal complement ofT . By the reasoning above, the average of the
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operatorsR(g) on the spaceN is zero and the proof may proceed by applying the tail bound
(Proposition 1) overN . This results in the boundk = ((2 ln 2)/ε)2(log |G| + b + 1).

Observe that ifX is a random variable taking values in the interval[0, 1] for whichPr[X >
ε] ≤ δ, thenE[X] ≤ (1 − δ)ε + δ ≤ ε + δ. In particular, selecting a functionδ(D) tending
to zero for whichlog(δ−1) = o(log D) and applying the bound above withε′ = ε(1 − δ)
andk′ = [(2 ln 2)/ε′]2(log D − log(εδ) + 1), we obtain the following corollary that implies
Theorem 1 above.

Corollary 3. For everyε > 0 there is a functionk = k(D) =
[

2 ln 2
ε

+ o(1)
]2

log D so that for
all finite groupsG,

E
[
λ2(X(G, S))

] ≤ ε ,

wheres1, . . . , sk are independent random variables, uniformly distributed inG, S is the set
{s1, . . . , sk}, andD =

∑
ρ∈ bG dρ.

Remark. This improves upon Theorem 1 both by reducing the leading constant (from
4e/ε2 ≈ 10.87/ε2 to (2 ln 2/ε)2 ≈ 1.93/ε2) and replacing thelog |G| term with log D. Re-
call that

∑
ρ d2

ρ = |G|, whenceD =
∑

ρ dρ ≤ |G|, and that for groups with large irreducible

representationsD can grow as slowly asO(
√|G|) (e.g., the affine groupsZ∗

p n Zp).
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