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Abstract

Bisztriczky introduced the multiplex as a generalization of the simplex. A poly-
tope is multiplicial if all its faces are multiplexes. In this paper it is proved that the
flag vectors of multiplicial polytopes depend only on their face vectors. A special
class of multiplicial polytopes, also discovered by Bisztriczky, is comprised of the
ordinary polytopes. These are a natural generalization of the cyclic polytopes. The
flag vectors of ordinary polytopes are determined. This is used to give a surpris-
ingly simple formula for the h-vector of the ordinary d-polytope with n + 1 vertices
and characteristic k: hi =

(k−d+i
i

)
+ (n − k)

(k−d+i−1
i−1

)
, for i ≤ d/2. In addition, a

construction is given for 4-dimensional multiplicial polytopes having two-thirds of
their vertices on a single facet, answering a question of Bisztriczky.

1 Introduction

Convex polytopes arise in many areas of mathematics and its applications. Of great
interest are their combinatorial aspects, and, in particular, the numbers of faces of convex
polytopes. In this area, the biggest result was the characterization of the f -vector (the
sequence of face numbers) of simplicial convex polytopes in 1980 by Billera and Lee [5]
and Stanley [12]. Simplicial polytopes are those for which every proper face is a simplex.
For nonsimplicial polytopes we have seen no such success. Contributing to our failure is
the lack of constructions of polytopes with sufficiently varied facial structures.

In [6] Bisztriczky introduced the multiplex as a generalization of the simplex. There is
a d-dimensional multiplex with v vertices for each v ≥ d + 1. Multiplexes share many of
the nice properties of simplices; in particular they are self-dual and every face and every
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quotient of a multiplex is a multiplex. It is natural, therefore, to study the combinatorics
of multiplicial polytopes, polytopes whose faces are multiplexes. All polygons are mul-
tiplexes, so all 3-dimensional polytopes are multiplicial. The story begins, therefore, in
dimension 4. This is also where the open problems on face numbers of general polytopes
begin.

In [7] Bisztriczky introduced a fascinating class of multiplicial polytopes, called ordi-
nary polytopes. Multiplexes and ordinary polytopes have been further studied in [8] and
[3]. This paper continues the study of f -vectors and flag vectors of multiplicial polytopes.
In addition, we give a construction of multiplicial 4-polytopes with large facets.

We turn now to the necessary definitions and background theorems.

Definition 1.1 ([6]) A d-dimensional multiplex is a polytope with an ordered list of
vertices, x0, x1, . . . , xn, with facets F0, F1, . . . , Fn given by

Fi = conv{xi−d+1, xi−d+2, . . . , xi−1, xi+1, xi+2, . . . , xi+d−1},
with the conventions that xi = x0 if i < 0, and xi = xn if i > n.

Theorem 1.1 ([6])

1. For every d and n with n ≥ d ≥ 2, there exists a d-dimensional multiplex Md,n with
n + 1 vertices.

2. Every multiplex is self-dual.

3. Every face and every quotient of a multiplex is a multiplex.

4. The number of i-dimensional faces of Md,n is
(

d+1
i+1

)
+ (n − d)

(
d−1

i

)
.

By definition the combinatorial type of Md,n is completely determined by d and n. If
d = n, of course, the multiplex is the simplex.

In the study of nonsimplicial polytopes, the f -vector does not carry enough com-
binatorial information. We are interested in incidences of faces as well. A chain of
faces, ∅ ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fr ⊂ P is an S-flag if S = {dim F1, dim F2, . . . , dim Fr}.
The number of S-flags of a polytope P is written fS(P ), and the length 2d vector
(fS(P ))S⊆{0,1,...,d−1} is the flag vector of P . The flag vector restricts to the f -vector by
considering only the singleton sets S. The flag vector of the multiplex is a familiar object.

Theorem 1.2 ([3]) The multiplex Md,n has the same flag vector as the (d−2)-fold pyra-
mid over the (n − d + 3)-gon. The common flag vector is given by

fS =

(
d + 1

s1 + 1, s2 − s1, . . . , sr − sr−1, d − sr

)
(1)

×
[
1 +

n − d

(d + 1)d(d − 1)

r∑
j=1

(sj + 1)(sj+1 − sj)(sj+1 − 1)

]
,

where S = {s1, s2, . . . , sr}, s1 < s2 < · · · < sr, and sr+1 = d.
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2 Results for general multiplicial polytopes

There are two natural classes of polytopes that could be called “multiplicial”. One might
call a polytope multiplicial if all of its proper faces are multiplexes. However, a multiplex
is really a polytope endowed with a special ordering of its vertices. It is natural to take
the ordering into account when defining multiplicial, and Bisztriczky indeed does this.
We will use both concepts in this paper.

Definition 2.1 A polytope P is (weakly) multiplicial if and only if every proper face of
P is a multiplex.

Definition 2.2 A polytope P is order-multiplicial if and only if for some ordering v0,
v1, . . . , vn of the vertices of P , every proper face of P is a multiplex with the induced
ordering of its vertices.

Let Pd be the set of d-polytopes in Rd. Let fS : Pd → N be the function that gives the
number of S-flags of P for a d-polytope P . In particular fi is the function that gives the
number of i-faces of P . Write f �

S for the restriction of the S-flag function to multiplicial
polytopes. For a multiplicial polytope, the flag vector of each proper face depends only
on its number of vertices. This leads to the following result.

Theorem 2.1 Fix d ≥ 2, and let S be a nonempty subset of {0, 1, . . . , d − 1} with maxi-
mum element t. There exist rational numbers a and b such that f �

S = af �
t + bf �

0,t.
For S = {s1, s2, . . . , sr}, with s1 < s2 < · · · < sr = t,

a =

(
sr + 1

s1 + 1, s2 − s1, . . . , sr − sr−1

)

×
[
1 − 1

sr(sr − 1)

r−1∑
j=1

(sj + 1)(sj+1 − sj)(sj+1 − 1)

]
,

and

b =

(
sr + 1

s1 + 1, s2 − s1, . . . , sr − sr−1

)

×
[

1

(sr + 1)sr(sr − 1)

r−1∑
j=1

(sj + 1)(sj+1 − sj)(sj+1 − 1)

]
.

Proof. We first observe that the statement holds trivially for |S| = 1. For |S| ≥ 2,
we use the formula for the flag vectors of multiplexes (see Theorem 1.2). Suppose S =
{s1, s2, . . . , sr}, with s1 < s2 < · · · < sr, and write sr+1 = d. For the d-multiplex Md,n

with n + 1 vertices, fS(Md,n) = aS,d + bS,d(n + 1) = aS,d + bS,df0(M
d,n), where

aS,d =

(
d + 1

s1 + 1, s2 − s1, . . . , sr − sr−1, d − sr

)

×
[
1 − 1

d(d − 1)

r∑
j=1

(sj + 1)(sj+1 − sj)(sj+1 − 1)

]
,
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and

bS,d =

(
d + 1

s1 + 1, s2 − s1, . . . , sr − sr−1, d − sr

)

×
[

1

(d + 1)d(d − 1)

r∑
j=1

(sj + 1)(sj+1 − sj)(sj+1 − 1)

]
.

Now fix d ≥ 2, and let S be a subset of {0, 1, . . . , d − 1} with |S| ≥ 2 and maximum
element t. Let P be a multiplicial d-polytope. Every t-face F of P is a t-dimensional
multiplex, so fS\{t}(F ) = aS\{t},t + bS\{t},tf0(F ). Then

fS(P ) =
∑

F t-face of P

fS\{t}(F )

=
∑

F t-face of P

aS\{t},t + bS\{t},tf0(F )

= aS\{t},tft(P ) + bS\{t},tf0,t(P ).

2

Theorem 2.2 For each S ⊆ {0, 1, . . . , d− 1}, the function f �
S is a linear combination of

the constant function f �
∅ (P ) = 1 and the face number functions f �

i , 0 ≤ i ≤ d − 2.

Proof. We have already shown that every f �
S is in the linear span of

{f �
∅ , f �

0 , f �
1 , . . . , f �

d−1, f
�
0,1, f

�
0,2, . . . , f

�
0,d−1}. Now we show that every f �

0,t is in the linear
span of {f �

∅ , f �
0 , f �

1 , . . . , f �
d−1}. Of course, Euler’s formula enables us to drop f �

d−1.
The proof is by downward induction on t. We check first that it holds for t = d − 1.

For a multiplicial d-polytope P and any (d− 1)-face F of P , f0(F ) = fd−2(F ), since F is
a multiplex. Then

f0,d−1(P ) =
∑

F (d − 1)-face of P

f0(F )

=
∑

F (d − 1)-face of P

fd−2(F ) = fd−2,d−1(P ) = 2fd−2(P ).

Now assume for all k > t, f �
0,k is in the span of {f �

∅ , f �
0 , f �

1 , . . . , f �
d−1}. Since all t-

faces of a multiplicial polytope are multiplexes, we get (as in the t = d − 1 case) f �
0,t =

f �
t−1,t. Now the generalized Dehn-Sommerville equations say that ft−1,t − ft−1,t+1 + · · ·+

(−1)d−1−tft−1,d−1 = (1− (−1)d−t)ft−1. (This results from applying Euler’s formula to the
quotient of the polytope P by each (t−1)-face.) By Theorem 2.1 each f �

t−1,k is in the span
of {f �

0 , f �
0,k}, so by the induction hypothesis, f �

t−1,k is in the span of {f �
∅ , f �

0 , f �
1 , . . . , f �

d−1}
for all k ≥ t + 1, so f �

t−1,t = f �
0,t is also in this linear span. 2
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Corollary 2.3 The linear span of the flag vectors of all multiplicial d-polytopes is of
dimension at most d.

Computation shows that the dimension is in fact d for d ≤ 37, with the ordinary poly-
topes (see next section) providing a set of spanning flag vectors. Note that the induction
argument in the proof of the theorem does not yield an attractive formula for the flag
numbers in terms of the face numbers.

3 Flag vectors of ordinary polytopes

Of special interest among order-multiplicial polytopes are the ordinary polytopes, discov-
ered by Bisztriczky [7]. Given an ordered set V = {x0, x1, . . . , xn}, a subset Y ⊆ V is
called a Gale subset if between any two elements of V \ Y there is an even number of
elements of Y . A polytope P with ordered vertex set V is a Gale polytope if the set of
vertices of each facet is a Gale subset.

Definition 3.1 ([7]) An ordinary polytope is a Gale polytope such that each facet is a
multiplex with the induced order on the vertices.

For background on ordinary polytopes, see [3, 7, 8]. Three-dimensional ordinary poly-
topes are quite different from those in higher dimensions, so we will exclude them from
consideration. Higher-dimensional ordinary polytopes provide a natural combinatorial
generalization of cyclic polytopes, which have played such an important role in the com-
binatorial study of simplicial polytopes.

Theorem 3.1 ([7]) Let P be an ordinary d-polytope with ordered vertices x0, x1, . . . ,
xn. Assume n ≥ d ≥ 4.

1. If d is even, then P is cyclic.

2. If d is odd, then there exists an integer k (d ≤ k ≤ n) such that the vertices sharing
an edge with x0 are exactly x1, x2, . . . , xk, and the vertices sharing an edge with xn

are exactly xn−1, xn−2, . . . , xn−k.

From now on we will restrict our attention to ordinary polytopes of odd dimension,
d = 2m + 1 ≥ 5. The integer k guaranteed by this theorem is called the characteristic
of the ordinary polytope. The three parameters d, k, and n completely determine the
combinatorial structure of the ordinary polytope, which is denoted P d,k,n. When k = d,
the ordinary polytope is a multiplex. When k = n, the ordinary polytope is a cyclic
polytope.

Dinh ([8]) gives an inductive geometric construction of P d,k,n starting with the cyclic
polytope P d,k,k. He derives from this construction formulas for the face numbers fi in
terms of d, k, and n. We extend this method to obtain formulas for the flag numbers f0,t

similar to Dinh’s f -vector formulas.
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Dinh successively introduces a new vertex xn to produce the ordinary polytope P d,k,n

as conv(P d,k,n−1 ∪ {xn}). He identifies and counts two classes of faces. A new i-face of
P d,k,n is an i-dimensional face of P d,k,n that does not contain an i-face of P d,k,n−1. An
i-face of P d,k,n−1 destroyed by xn is an i-face of P d,k,n−1 not contained in an i-face of
P d,k,n. The other faces of P d,k,n−1 are preserved as faces in P d,k,n, either intact or with
the vertex xn added in the affine span.

Proposition 3.2 ([8]) The new i-faces of P d,k,n are all simplices. The number of them
is

αi(d, k) =

bi/2c∑
j=i−m

2N(k − 1, j, i) − N(k − 2, j, i),

where

N(s, t, u) =

(
u − t

t

)(
s − u + t

u − t

)
+

(
u − 1 − t

t

)(
s − u + t

u − 1 − t

)
.

When i ≤ m this simplifies to αi(d, k) =
(

k−1
i

)
+

(
k−2
i−1

)
.

Theorem 3.3 The new i-faces of P d,k,n and the destroyed i-faces of P d,k,n−1 are all sim-
plices. For 0 ≤ i ≤ 2m = d− 1, the number of new i-faces minus the number of destroyed
i-faces, ci(d, k) = fi(P

d,k,n) − fi(P
d,k,n−1), is given by

ci(d, k) =
m−1∑
j=0

(
m + 1

i − j

)(
k − m − 2

j

)
.

When i ≤ m − 1 this simplifies to ci(d, k) =
(

k−1
i

)
.

Dinh [8] first computed the quantities ci(d, k), but he gave a more complicated expres-
sion. His description of the new and destroyed faces, however, lends itself to the technique
used to count the faces of cyclic polytopes in [10]. After some manipulation, this yields
the relatively nice form stated here. It would be good to have a bijective proof of the
formula.

We also need the f -vectors of the cyclic polytopes. (See [10].)

Proposition 3.4 Let m = bd/2c. The cyclic d-polytope with k + 1 vertices has f -vector
given by

fi = φi(d, k) =
m∑

j=0

[(
j

d − 1 − i

)
+

(
d − j

d − 1 − i

)](
k − d + j

j

)

−χ(d even)

(
m

2m − 1 − i

)(
k − m

m

)

When i ≤ m − 1 this simplifies to φi(d, k) =
(

k+1
i+1

)
.

Here are the f -vectors of the ordinary polytopes, as computed by Dinh.
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Theorem 3.5 ([8]) Let n ≥ k ≥ d = 2m + 1 ≥ 5. The number of i-dimensional faces of
the ordinary polytope P d,k,n is

fi(P
d,k,n) = φi(d, k) + (n − k)ci(d, k),

Here are the analogous formulas for the flag numbers f0,i.

Theorem 3.6 For n ≥ k ≥ d = 2m + 1 ≥ 5 and 1 ≤ i ≤ d − 1,

f0,i(P
d,k,n) = (i + 1)φi(d, k)

+ (n − k)[(i + 1)ci(d, k) + φi−1(d − 1, k − 1) − αi(d, k)].

Proof. To get the number of incidences of vertices and i-faces for P d,k,n, start with
f0,i(P

d,k,n−1), add the number of vertices on each new i-face, subtract the number of
vertices on each destroyed i-face, and add one for each preserved i-face that now contains
the new vertex xn. All the new and destroyed faces are simplices, and the net gain in
i-faces is ci, so the contribution to the change in f0,i from the new and destroyed faces is
(i + 1)ci. It remains to consider the preserved i-faces that now contain vertex xn.

Lemma 3.7 The number of i-faces of P d,k,n containing the vertex xn is
φi−1(d−1, k−1), the number of (i−1)-faces of the cyclic (d−1)-polytope with k vertices.

Proof of lemma: From the definition of ordinary polytope, it is clear that reversing the
ordering of the vertices produces the same polytope. So the number of i-faces of P d,k,n

containing the vertex xn is the same as the number of i-faces of P d,k,n containing the
vertex x0. In Dinh’s inductive construction of P d,k,n from P d,k,n−1, none of the new i-
faces contain x0, and none of the destroyed i-faces contain x0. So the number of i-faces of
P d,k,n containing the vertex x0 is the same as the number of i-faces of the cyclic polytope
P d,k,k containing the vertex x0. The i-faces of P d,k,k containing x0 are in one-to-one
correspondence with the (i−1)-faces of the link of vertex x0 in P d,k,k. By Gale’s evenness
condition for the facets of the cyclic polytope, the link of vertex x0 in the cyclic d-polytope
with k + 1 vertices is the cyclic (d − 1)-polytope with k vertices. End of proof of lemma

All the new i-faces of P d,k,n contain the vertex xn, so the number of preserved i-faces
that now contain vertex xn is φi−1(d − 1, k − 1) − αi. Since the cyclic polytope P d,k,k is
simplicial, f0,i(P

d,k,k) = (i + 1)fi(P
d,k,k) = (i + 1)φi(d, k). Thus

f0,i(P
d,k,n) = f0,i(P

d,k,n−1) + (i + 1)ci + φi−1(d − 1, k − 1) − αi

= f0,i(P
d,k,k) + (n − k)[(i + 1)ci + φi−1(d − 1, k − 1) − αi]

= (i + 1)φi(d, k) + (n − k)[(i + 1)ci + φi−1(d − 1, k − 1) − αi].
2

The numbers αi, ci and φi are independent of n. So for fixed d and k, the flag vectors
of the polytopes P d,k,n lie on a line.
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4 Toric h-vectors

We turn now to the toric h-vectors of ordinary polytopes. In the characterization of
f -vectors of simplicial polytopes [5, 12], a crucial role was played by the h-vector, the
image under a certain linear map of the f -vector. The h-vector can be interpreted as
the sequence of homology ranks of the toric variety associated to the polytopes. In
this sense (using intersection homology) the h-vector is also defined for nonsimplicial
polytopes, but it depends on the flag vector, not just the f -vector. (See [4] for formulas
in terms of the flag vector.) Following Stanley [13] we define the toric h-vector (and
g-vector) of any polytope (or Eulerian poset), first encoding the h-vector and g-vector as

polynomials: h(P, t) =
∑d

i=0 hit
d−i and g(P, t) =

∑bd/2c
i=0 git

i, with the relations g0 = h0

and gi = hi − hi−1 for 1 ≤ i ≤ d/2. Then the h-vector and g-vector are defined by the
recursion

1. g(∅, t) = h(∅, t) = 1, and

2. h(P, t) =
∑

G face of P
G 6= P

g(G, t)(t− 1)d−1−dimG.

The toric h-vectors of ordinary polytopes have a very simple form.

Theorem 4.1 For n ≥ k ≥ d = 2m + 1 ≥ 5 and 1 ≤ i ≤ m,

hi(P
d,k,n) =

(
k − d + i

i

)
+ (n − k)

(
k − d + i − 1

i − 1

)
.

Proof. It follows from Theorem 1.2 that the g-polynomial of the multiplex Md,n is the
same as the g-polynomial of the (d − 2)-fold pyramid over the (n − d + 3)-gon. This is
the same as the g-polynomial of the (n − d + 3)-gon itself, so g(Md,n, t) = 1 + (n − d)t.
So for any multiplicial d-polytope P with n + 1 vertices,

h(P, t) =
∑

G face of P
G 6= P

g(G, t)(t − 1)d−1−dim G

= (t − 1)d + (n + 1)(t − 1)d−1

+
d−1∑
i=1

∑
G face of P
dimG = i

(1 + (f0(G) − 1 − i)t)(t − 1)d−1−i

= (t − 1)d + (n + 1)(t − 1)d−1 +
d−1∑
i=1

fi(P )(t− 1)d−1−i(1 − (i + 1)t)

+
d−1∑
i=1

∑
G face of P
dimG = i

f0(G) t(t − 1)d−1−i.
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So for any multiplicial d-polytope P with n + 1 vertices,

h(P, t) = (t − 1)d + (n + 1)(t − 1)d−1 +

d−1∑
i=1

fi(P )(t− 1)d−1−i

+

d−1∑
i=1

(f0i(P ) − (i + 1)fi(P )) t(t − 1)d−1−i.

Now for P an ordinary polytope, substitute

n + 1 = (k + 1) + (n − k)

fi(P ) = φi(d, k) + (n − k)ci(d, k)

f0i(P ) − (i + 1)fi(P ) = (n − k)[φi−1(d − 1, k − 1) − αi(d, k)]

The result is

h(P d,k,n, t) = (t − 1)d + (k + 1)(t − 1)d−1 +

d−1∑
i=1

φi(d, k)(t − 1)d−1−i

+ (n − k)

[
(t − 1)d−1 +

d−1∑
i=1

ci(d, k)(t − 1)d−1−i

+

d−1∑
i=1

[φi−1(d − 1, k − 1) − αi(d, k)]t(t − 1)d−1−i

]

= h(P d,k,k) + (n − k)

[
d−1∑
i=0

ci(d, k)(t − 1)d−1−i

+

d−1∑
i=1

[φi−1(d − 1, k − 1) − αi(d, k)]t(t − 1)d−1−i

]
.

The functions ci(d, k), φi−1(d − 1, k − 1), and αi(d, k) have simple expressions when i is
small relative to d. This enables us to compute the high degree terms of h(P d,k,n). Let
A = (h(P d,k,n) − h(P d,k,k))/(n − k), that is,

A =
d−1∑
i=0

ci(d, k)(t − 1)d−1−i +
d−1∑
i=1

[φi−1(d − 1, k − 1) − αi(d, k)]t(t − 1)d−1−i.

Let Aj be the coefficient of tj in A. To compute Aj for j ≥ m + 1, note that deg(t −
1)d−1−i ≥ j if and only if i ≤ d − 1 − j, and deg t(t − 1)d−1−i ≥ j if and only if i ≤ d − j.
Thus

Aj =

d−1−j∑
i=0

(−1)d−1−i−j

(
d − 1 − i

j

)
ci(d, k)

+

d−j∑
i=1

(−1)d−i−j

(
d − 1 − i

j − 1

)
[φi−1(d − 1, k − 1) − αi(d, k)].
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For j ≥ m+1 and i ≤ d−1−j, i ≤ d−m−2 = m−1, so we need ci(d, k) only for i ≤ m−1.
For j ≥ m + 1 and i ≤ d− j, i ≤ d−m− 1 = m, so we need φi−1(d− 1, k − 1)− αi(d, k)
only for i ≤ m. For i ≤ m − 1, ci(d, k) =

(
k−1

i

)
. For 1 ≤ i ≤ m, φi−1(d − 1, k − 1) =

(
k
i

)
and αi(d, k) =

(
k−1

i

)
+

(
k−2
i−1

)
, so φi−1(d − 1, k − 1) − αi(d, k) =

(
k−2
i−2

)
.

Thus we get the coefficient Aj for j ≥ m + 1,

Aj = (−1)d−1−j

d−1−j∑
i=0

(−1)i

[(
d − 1 − i

j

)(
k − 1

i

)
+

(
d − 2 − i

j − 1

)(
k − 2

i − 1

)]
.

An induction proof shows that Aj =
(

k−j−1
d−j−1

)
for j ≥ m + 1.

Now let i ≤ m; then d − i ≥ m + 1, so

hi(P
d,k,n) − hi(P

d,k,k) = hd−i(P
d,k,n) − hd−i(P

d,k,k)

= (n − k)

(
k − d + i − 1

i − 1

)
.

Since hi(P
d,k,k) =

(
k−d+i

i

)
for i ≤ m,

hi(P
d,k,n) =

(
k − d + i

i

)
+ (n − k)

(
k − d + i − 1

i − 1

)
. 2

The form of this h-vector begs for a combinatorial explanation. The h-vectors of sim-
plicial polytopes have a combinatorial interpretation in terms of shellings of the polytopes
[10]. There is no known extension of this combinatorial interpretation to arbitrary (non-
simplicial) polytopes. However, we have recently developed the connection between the
h-vector and a particular shelling of the ordinary polytope, and have found a bijective
proof of Theorem 4.1 [2].

Among all d-polytopes with n + 1 vertices, the minimum h-vector has hi = n − d + 1
for all i, 1 ≤ i ≤ d − 1; this is the h-vector of the multiplex. The maximum h-vector
(for d odd) has hi =

(
n−d+i

i

)
for 1 ≤ i ≤ (d − 1)/2; this is the h-vector of the cyclic

polytope. The ordinary polytopes provide a nice distribution of h-vectors between these
two extremes. Note that the g-vector satisfies the relation gi(P

d,k,n) = hi(P
d,k−1,n−1).

5 Multiplicial Polytopes with a Large Facet

The facets of ordinary d-polytopes are small: each has at most 2d−2 vertices. Bisztriczky
raised the question of whether there exist order-multiplicial polytopes with a large propor-
tion of the vertices on a single facet. The corresponding question for weakly multiplicial
polytopes is trivial, since the pyramid over a multiplex is a weakly multiplicial polytope
(but is not generally an order-multiplicial polytope). We give here a construction of
order-multiplicial 4-polytopes having two-thirds of their vertices on one facet.

Theorem 5.1 For every integer q ≥ 5, there is an order-multiplicial 4-polytope with q
vertices having a facet containing d(2q + 2)/3e vertices.
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Proof. First note that the result is obtained for q = 5 and q = 6 by multiplexes
(the simplex, and the double pyramid over a square, respectively). So assume q ≥
7. We show in detail the construction for q ≡ 1 (mod 3), and then give the modi-
fications for the other congruence classes. So let q ≡ 1 (mod 3), q ≥ 7. Let n =
(2q + 1)/3. Let M3,n be a 3-dimensional multiplex with vertices labeled by the integers
{0, 1, 2, . . . , q − 1} \ {3j : 1 ≤ j ≤ (q − 2)/3}, with the standard (<) order. Let Q0 be a
pyramid over the 3-multiplex with apex labeled 3, Q0 = P (M3,n). Now Q0 is (weakly)
multiplicial, but not order-multiplicial. We perform some subdivisions on Q0 to achieve
order-multipliciality. The polytope Q0 has three kinds of facets: the multiplex M3,n itself,
simplices, and pyramids over quadrilateral faces of M3,n. The multiplex and the simplices
are multiplexes in the induced order; the pyramids in general are not. Note that the
“first” two pyramidal facets are multiplexes in the induced order; their vertex sets are
{0, 1, 3, 4, 5} and {1, 2, 3, 5, 7} (or, rather, {1, 2, 3, 5, 6}, if q = 7).

We pair up the remaining pyramidal facets and add a new vertex beyond each pair.
For each i, 0 ≤ i ≤ (q− 10)/3, let Fi be the convex hull of {2+3i, 4+3i, 7+3i, 8+3i, 3},
and let Gi be the convex hull of {4 + 3i, 5 + 3i, 8 + 3i, 10 + 3i, 3} (or, rather, Gi =
{4 + 3i, 5 + 3i, 8 + 3i, 9 + 3i, 3}, if i = (q − 10)/3). Note that these two facets share the
2-face with vertex set {4 + 3i, 8 + 3i, 3}. Choose a point beyond Fi and Gi and beneath
all other facets of Q0, and label it 6 + 3i. Let Qi+1 be the convex hull of Qi with the new
vertex 6 + 3i. By [1], the facets of Qi+1 consist of the facets of Qi, except Fi and Gi, and
eight additional facets, with vertex sets {2+ 3i, 4+ 3i, 6+3i, 3}, {2+ 3i, 6+ 3i, 7+ 3i, 3},
{6 + 3i, 7 + 3i, 8 + 3i, 3}, {2 + 3i, 4 + 3i, 6 + 3i, 7 + 3i, 8 + 3i}, {4 + 3i, 5 + 3i, 6 + 3i, 3},
{5+3i, 6+3i, 10+3i, 3}, {6+3i, 8+3i, 10+3i, 3}, and {4+3i, 5+3i, 6+3i, 8+3i, 10+3i}.
(Here, 10+3i should be replaced by 9+3i in each set, if i = (q−10)/3.) After performing
this operation for all i, 0 ≤ i ≤ (q − 10)/3, all the pyramidal facets of Q0 are replaced
by collections of simplices (necessarily multiplexes), and by pyramidal facets that are
now multiplexes with the induced order. Thus the resulting polytope, P = Q(q−10)/3+1 is
an order-multiplicial polytope. The polytope Q0 has n + 2 vertices, and (q − 10)/3 + 1
vertices have been added. The polytope P has exactly q vertices. Of those q vertices,
n + 1 = (2q + 4)/3 = d(2q + 2)/3e are vertices of the original base facet M3,n.

For q ≡ 2 (mod 3) (q ≥ 8), let n = (2q − 1)/3. We proceed as before with Q0 =
P (M3,n), adding vertices labeled 6 + 3i for 0 ≤ i ≤ (q − 11)/3 for each facet pair Fi, Gi.
Finally we choose a point beyond the “last” facet F , which is a simplex with vertex set
{q−4, q−3, q−1, 3}, and beneath all other facets, and label it q−2. Let P be the convex
hull of Q(q−11)/3+1 with the new vertex q − 2. The facets of P consist of the facets of
Q(q−11)/3+1, except F , and four additional facets, all of which are simplices. The resulting
polytope P is an order-multiplicial polytope with exactly q vertices. Of those q vertices,
n + 1 = (2q + 2)/3 = d(2q + 2)/3e are vertices of the original base facet M3,n.

If q ≡ 0 (mod 3) (q ≥ 9), let n = 2q/3. The polytope Q0 = P (M3,n) has an odd
number of pyramidal facets. We proceed as before, adding vertices labeled 6 + 3i for
0 ≤ i ≤ (q − 12)/3 for each facet pair Fi, Gi. The last pyramidal facet F has vertex
set {q − 7, q − 5, q − 2, q − 1, 3}. Choose a point beyond F and beneath all other facets
of Q(q−12)/3+1, and label it q − 3. Let P be the convex hull of Q(q−12)/3+1 with the
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new vertex q − 3. The facets of P consist of the facets of Q(q−12)/3+1, except F , and
five additional facets, with vertex sets {q − 7, q − 5, q − 3, 3}, {q − 7, q − 3, q − 2, 3},
{q − 5, q − 3, q − 1, 3}, {q − 3, q − 2, q − 1, 3}, and {q − 7, q − 5, q − 3, q − 2, q − 1}. The
resulting polytope P is an order-multiplicial polytope with exactly q vertices. Of those q
vertices, n + 1 = (2q + 3)/3 = d(2q + 2)/3e are vertices of the original base facet M3,n.

2

For q ≥ 7, q 6≡ 0 (mod 3), the f -vector of this multiplicial 4-polytope is

f(P ) =

(
q,

⌊
13q − 43

3

⌋
, 6q − 26,

⌊
8q − 34

3

⌋)

and f02 = b(56q − 242)/3c. For q ≥ 9, q ≡ 0 (mod 3), the f -vector is

f(P ) =

(
q,

13q − 45

3
, 6q − 27,

8q − 36

3

)

and f02 = (56q − 252)/3. The h-vector is h = (1, q − 4, 2q − 12, q − 4, 1), unless q ≡ 1
(mod 3), in which case it is h = (1, q − 4, 2q − 11, q − 4, 1).

6 Conclusion

We hope that multiplicial polytopes can be used to further our understanding of the set
of all flag vectors of polytopes. Ordinary polytopes seem particularly important because
they generalize cyclic polytopes, which have played a major role in the study of simplicial
polytopes (see [5, 9, 10, 11]). From the viewpoint of flag vectors, the restriction to odd
dimensions is unfortunate. However, even-dimensional polytopes can be generated by
taking vertex figures of the odd-dimensional ordinary polytopes. The resulting polytopes
are multiplicial.
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[9] Branko Grünbaum. Convex Polytopes, Second Edition, Springer-Verlag, New York,
2003.

[10] P. McMullen and G. C. Shephard, Convex polytopes and the upper bound conjecture,
Cambridge Univ. Press, London, 1971.

[11] Jörg Rambau and Francisco Santos. The generalized Baues problem for cyclic poly-
topes. I. European J. Combin., 21 (2000), 65–83.

[12] Richard P. Stanley, The number of faces of simplicial convex polytopes, Adv. Math.
35 (1980), 236–238.

[13] Richard P. Stanley. Generalized H-vectors, intersection cohomology of toric vari-
eties, and related results. In Commutative algebra and combinatorics (Kyoto, 1985),
volume 11 of Adv. Stud. Pure Math., pages 187–213, Amsterdam-New York, 1987.
North-Holland.

the electronic journal of combinatorics 11 (2004), #R65 13


