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Abstract

Consider random regular graphs of order n and degree d = d(n) ≥ 3. Let
g = g(n) ≥ 3 satisfy (d−1)2g−1 = o(n). Then the number of cycles of lengths up to g
have a distribution similar to that of independent Poisson variables. In particular,
we find the asymptotic probability that there are no cycles with sizes in a given set,
including the probability that the girth is greater than g. A corresponding result is
given for random regular bipartite graphs.

1 Introduction

Let H be a fixed graph. The asymptotic distribution of the number of subgraphs of a
random graph isomorphic to H has been studied in various places such as by Ruciński [9]
for the random graph model G(n, p) and Janson [4] for the model G(n, m). In this paper
we consider the distribution in a random d-regular graph. (Here, and henceforth in the
paper, “random” refers to the uniform distribution on the set of all labelled graphs in the
specified class.)
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Many properties of random d-regular graphs on n vertices are known (see Bollobás [2]
or Wormald [11] for details). For d fixed or growing slowly as a function of n, such a
graph looks like a tree in the neighbourhood of almost all vertices; the expected number
of cycles of any fixed length is small, and for any fixed graph H with more edges than
vertices, the expected number of subgraphs isomorphic to H tends to 0 as n → ∞. Thus,
for subgraph enumeration questions, the most “interesting” subgraphs are the cycles. For
this reason we consider only cycles in this paper. The girth of the graph is an interesting
property which can be determined if enough is known about cycles. Our results apply
for d, and the girth, both growing as functions of n, up to the point that small biconnected
subgraphs with more than one cycle begin to proliferate.

Define Xr = Xr(n) to be the number of cycles of length r in a random d-regular
graph of order n. In [1], it was shown that the variables Xr for 3 ≤ r ≤ g are asymp-
totically distributed as independent Poisson variables with means (d − 1)r/2r, provided
d ≤ √

2 log n − 1 with g fixed (and independently in [10] for fixed d). In this paper we
allow d = d(n) and g = g(n) to increase with n, provided only that

(d − 1)2g−1 = o(n). (1.1)

We will show that, in a certain sense, the asymptotic behaviour as independent Poisson
variables remains. In particular, our result implies the asymptotic probability that the
girth is greater than g. (Note that this result reaches to approximately one quarter of the
theoretical upper bound (2 + o(1)) logd−1 n on the girth of a d-regular graph.)

Assumption (1.1) can be motivated as follows. If (1.1) is satisfied, then only a vanishing
fraction of d-regular graphs have two cycles of length at most g which share an edge, and
the converse is also true. This makes (1.1) a natural boundary for our method, as will
become apparent. We suspect, but did not prove, that it is also a boundary for our results
in the sense that our main theorems are not true if (1.1) is violated.

The asymptotic distribution of the number of cycles of greater length was determined
by Garmo [3], though not to the same accuracy, and not in a form that implies results
about the girth.

Let C = {c1, c2, . . . , ct} be a nonempty subset of {3, 4, . . . , g}. For a random regular
graph G of order n and degree d, define MC(G) = (m1, m2, . . . , mt), where mi is the
number of cycles of length ci in G for 1 ≤ i ≤ t. For 3 ≤ i ≤ g, define

µi =
(d − 1)ci

2ci
. (1.2)

Our main results are the following two theorems. The first gives the asymptotic
distribution, while the second gives the probability at 0.

Theorem 1 Let S be a set of nonnegative integer t-tuples. Then, as n → ∞, the proba-
bility that MC(G) ∈ S is

(
1 + o(1)

)( ∑
(m1,m2,...,mt)∈S

t∏
i=1

e−µiµmi
i

mi!

)
+ o(1).
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Note that, apart from the error terms, this is what holds for t independent Poisson
variables with means µ1, µ2, . . . , µt respectively.

In the special case where S = {(0, 0, . . . , 0)}, we can leave off the additive error term.

Theorem 2 The probability that a random d-regular graph of order n has no cycles of
length ci for 1 ≤ i ≤ t is

exp

(
−

t∑
i=1

µi + o(1)

)

as n → ∞.

Corollary 1 For (d − 1)2g−1 = o(n), the probability that a random d-regular graph has
girth greater than g is

exp

(
−

g∑
r=3

(d − 1)r

2r
+ o(1)

)

as n → ∞.

Since (1.1) implies that d = o(n1/5), we can take the total number of d-regular graphs
from [7] or [8] to obtain the following.

Corollary 2 For (d−1)2g−1 = o(n), the number of d-regular graphs of order n with girth
greater than g is

(nd)!

(nd/2)! 2nd/2(d!)n
exp

(
−

g∑
r=1

(d − 1)r

2r
+ o(1)

)

as n → ∞.

To prove the main theorems we first show that the cycles whose lengths are in C are
rarely more numerous than a certain bound and rarely share edges with each other even
though sharing of vertices is common. Then we use a switching argument to estimate the
distribution of the number of cycles when it is below that bound.

2 Bounding the numbers and overlaps of short cycles

In this section G denotes a random d-regular graph on n vertices and N(n, d) denotes the
total number of such graphs.

For 1 ≤ i ≤ t, define Ri = bmax{2µi, log n}c. Let R = RC(n, d) be the set of d-regular
graphs of order n such that the number of cycles of length ci is at most Ri for 1 ≤ i ≤ t,
and furthermore that no cycle whose length is in C shares an edge with a different cycle
whose length is at most g. First we show that R includes almost all d-regular graphs of
order n.

We will make use of the following, which follows readily from McKay [5, Theorem
2.10].
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Theorem 3 For any d and n such that N(n, d) 6= 0, let J ⊆ E(Kn). Then, with [x]m
denoting the falling factorial and ji the number of edges in J incident with vertex i.

(a) if |J | + 2d2 ≤ nd/2 then

P(J ⊆ E(G)) ≤
∏n

k=1[d]jk

2|J |[nd/2 − 2d2]|J |
;

(b) if 2|J | + 4d(d + 1) ≤ nd/2 then

P(J ⊆ E(G)) ≥
∏n

k=1[d]jk

2|J |[nd/2 − 1]|J |

(
n − 2d − 2

n + 2d

)|J |
.

We can now estimate E(Xr) and Var(Xr) for r ∈ C where d and g satisfy (1.1). Note
that (1.1) implies that r = O(log n) and d = O(n1/5); this will ensure that both parts of
Theorem 3 apply whenever |J | = O(r).

Let J be the edge set of an r-cycle. Then jk = 2 for exactly r values of k, and otherwise
it is 0. So by Theorem 3,

P(J ⊆ E(G)) =
(d − 1)r

nr

(
1 + O(rd/n)

)
. (2.1)

Hence, since [n]r = nr
(
1 + O(r2/n)

)
,

E(Xr) =
(d − 1)r

2r

(
1 + O(r(r + d)/n)

)
. (2.2)

Next we estimate E(X2
r ) in order to find Var(Xr). Letting C denote the collection of

all r-cycles in Kn (considered as sets of edges),

E(X2
r ) =

∑
C1∈C

∑
C2∈C

P(C1 ∪ C2 ⊆ G). (2.3)

Partition the pairs (C1, C2) into three classes C1, C2, C3 as follows:

• (C1, C2) ∈ C1 if and only if C2 ∩ C1 = ∅,
• (C1, C2) ∈ C2 if and only if C2 ∩ C1 6= ∅ and C2 6= C1,

• (C1, C2) ∈ C3 if and only if C2 = C1.

Note that Theorem 3(a) implies that

P(J ⊆ E(G)) ≤
(

d − 1

n

)|J | (
1 + O(d|J |/n)

)
, (2.4)
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when jk 6= 1 for all k, since then [d]jk
≤ d(d − 1)jk−1.

For C1, since |C2 ∪ C1| = 2r we have immediately from (2.4) that∑
(C1,C2)∈C1

P(C1 ∪ C2 ⊆ G) ≤ E(Xr)
2
(
1 + O(r(r + d)/n)

)
. (2.5)

The contribution from C3 is trivially∑
(C1,C2)∈C3

P(C1 ∪ C2 ⊆ G) = E(Xr). (2.6)

It remains to consider C2. This is rather more delicate. For later use we will generalize
this calculation to allow C1 and C2 to have possibly different lengths, r and s respectively,
with r ∈ C and 3 ≤ s ≤ g. Classify the graphs H = C1 ∪ C2 according to the number of
components p and edges j in the intersection graph H ′ =

(
V (C1)∩V (C2), E(C1)∩E(C2)

)
.

We proceed by bounding the number of possible isomorphism types of H , which has
r+s−p−j vertices and r+s−j edges. Number and orient the components of H ′ in order
of their appearance in C1. The sizes of these components can be chosen in

(
p+j−1
p−1

)
ways

(the number of ordered partitions of j into p nonzero summands). The starting positions
of these components in C1 and C2 (relative to the position of the first component) can
be chosen in at most

(
r−1
p−1

)
and

(
s−1
p−1

)
ways, respectively, but we also have a factor of

2p−1(p − 1)! because the order and orientation of the components in C2 can be different.
In summary, the number of isomorphism types of H for given p, j is at most(

p + j − 1

p − 1

)(
r − 1

p − 1

)(
s − 1

p − 1

)
2p−1(p − 1)! ≤ (2g3)p−1

(p − 1)!2
.

Each can occur in G in O(nr+s−p−j) possible positions, each with probability

O(1)
(
(d − 1)/n

)r+s−j
, by Theorem 3(a). Therefore,

∑
(C1,C2)∈C2

P(C1 ∪ C2 ⊆ G) ≤ O(1)
∑
j,p≥1

(2g3)p−1

(p − 1)!2
nr+s−p−j

(
d − 1

n

)r+s−j

(2.7)

= O

(
(d − 1)r+s−1

n

)
, (2.8)

where we have used (1.1) to infer that g3 = o(n).
Combining (2.3), (2.5) (2.6) and (2.7),

Var(Xr) = E(Xr) + O
(
(r(r + d))/n

)
E(Xr)

2.

It now follows, from Chebyshev’s inequality applied separately to each Xr for r ∈ C, that

P(Xci
> Ri for some 3 ≤ i ≤ t) = o(1). (2.9)

Moreover, summing (2.7) over r ∈ C, 3 ≤ s ≤ g, we find that the probability that any
cycle whose length is in C shares an edge with a different cycle of length at most g is

O
(
(d − 1)2g−1/n

)
= o(1). (2.10)

Applying (2.9) and (2.10), we have
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Lemma 1 N(d, n) =
(
1 + o(1)

)|R|.

3 Switchings

Let R(m1, . . . , mt) denote the subset of R such that the number of cycles of length ci is
mi, for 1 ≤ i ≤ t. In view of the definition of R, we make the restrictions 0 ≤ mi ≤ Ri for
the rest of this section. Put N(m1, . . . , mt) = |R(m1, . . . , mt)|. We will investigate the
relative values of N(m1, . . . , mt) by means of a switching argument similar to that used
in [8]. Define C+ = C ∪ {3, 4, . . . , bg/2c}.

Let Q = (dn)1/2 and δ = (dn)−1/2. The proof of the following lemma is deferred until
later, as it relies on a special case of the result we will use it to prove. Fortunately, this
does not create a circular argument, since the special case we will need is one where the
lemma is vacuously true.

Lemma 2 A random G in R(m1, . . . , mt) has at most Q edges contained in cycles whose
length is in C+ \ C, with probability at least 1 − δ.

Lemma 3
N(m1, . . . , mt)

|R| = (1 + o(1))

t∏
i=1

e−µiµmi
i

mi!
. (3.1)

Proof: Let G0 ∈ R(m1, . . . , mt) with some mj > 0, and set r = cj . Define a forward
r-switching applied to G0 as follows. Choose a cycle Z = (v0, v1, . . . , vr−1) of length r.
Define ei = (vi, vi+1) for 0 ≤ i ≤ r−1, where subscripts are interpreted modulo r (as they
will be henceforth without comment). Also choose r oriented edges {e′i = (wi, ui+1) | 0 ≤
i ≤ r − 1} not incident with vertices in Z or with each other. Delete these 2r edges and
add the 2r new edges {(vi, wi), (vi, ui) | 0 ≤ i ≤ r − 1}. This must be done in such a way
that no cycles other than Z whose length is in C may be either created or destroyed, so
that the result is a d-regular graph G1 in the set R(m1, . . . , mj−1, mj−1, mj+1, . . . , mt).

Let F denote the average number of ways to apply a forward r-switching to G0 if G0 is
chosen at random. As a naive upper bound, after choosing Z in mj ways, we can choose
each e′i in nd ways. Thus

F ≤ mj(nd)r. (3.2)

To investigate the sharpness of (3.2), consider the following conditions for all i, i′. When
we speak of the distance between two edges, we mean the length of the shortest path that
starts with a vertex of one of the edges and ends with a vertex of the other.
(a) e′i does not lie in a cycle whose length is in C+;
(b) the distance from e′i to ei is at least g;
(c) the distance from e′i to e′i′ is at least g/2;
(d) the distance from wi to ui is at least g.
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We claim that any choice of e′1, . . . , e
′
r satisfying (a)–(d) gives a valid forward r-

switching. Cycles other than Z whose length is in C can only be destroyed if they contain
some e′i (not some ei, by the definition of R), so condition (a) implies that no such cycles
are destroyed. No cycles of length g or less are created either, as the following argument
shows. Such a cycle Z ′ would consist of some nontrivial paths in G0 ∩ G1 connected by
new edges. These paths in G0∩G1 must have length at least g/2 for the following reasons.
If they start and finish on Z, apply the definition of R. If they start on Z and finish on
W = {w0, . . . , wr−1, u0, . . . , ur−1} (or vice-versa), apply (b). If they start and finish on W ,
apply (a) or (c). Thus, Z ′ can include only one nontrivial path in G0 ∩ G1 or it would
be too long. The remaining part of Z ′ must be an edge (vi, wi) or (vi, ui), eliminated by
condition (b), or a path of the form wiviui, eliminated by condition (d). Since no cycles
of length g or less are created, the additional requirement on R that cycles of length in
C cannot share an edge with cycles of length at most g is also preserved.

We can bound the average number of choices (out of (nd)r) eliminated by (a)–(d), for
a random G0 ∈ R(m1, . . . , mt). By Lemma 2, condition (a) eliminates

O(δ)(nd)r + O(r)Q(nd)r−1 + O(r)
(
(d − 1)g + log3 n)

)
(nd)r−1

choices, since
∑

ciRi = O((d − 1)g + log3 n)). Conditions (b) and (d) each eliminate
O(r)(d − 1)g(nd)r−1. Condition (c) eliminates O(r2)(d − 1)g/2(nd)r−1, which is smaller.
Comparing these to (3.2), we have

F = mj(nd)r

(
1 + O

(
δ +

rQ + r(d − 1)g + r log3 n

nd

))
. (3.3)

For G1 ∈ R(m1, . . . , mj−1, mj−1, mj+1, . . . , mt), define a backward r-switching applied
to G1 as follows. (This will be the “inverse” operation of a forward switching.) Choose
r mutually non-incident oriented 2-paths uiviwi (0 ≤ i ≤ r − 1), where the 2r possible
cyclic orderings including reversal are equivalent. Remove the 2r edges of all the paths
and insert the edges {ei = (vi, vi+1), e

′
i = (wi, ui+1) | 0 ≤ i ≤ r − 1}. This creates an

r-cycle Z = (v0, v1, . . . , vr−1), but it is not permitted to create or destroy any other cycles
whose length is in C. In fact, the resulting graph G0 must be in R(m1, . . . , mt).

Let B denote the average number of ways to apply a backward r-switching to G1 if
G1 is chosen at random. As a naive upper bound, we can choose each oriented 2-path in
nd(d − 1) ways, which achieves each cyclic ordering 2r times. Hence,

B ≤
(
nd(d − 1)

)r

2r
. (3.4)

To investigate the sharpness of (3.4), consider the following conditions for all i and 1 ≤
k ≤ g/2:
(a) the edges (vi, wi) and (vi, ui) do not lie in any cycles whose length is in C+;
(b) the distance between the 2-paths uiviwi and ui+1vi+1wi+1 is at least g;
(c) the distance between vertices vi and vk is at least g − k + 1.
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We claim that conditions (a)–(c) are together enough to ensure that the backward
r-switching is valid. Condition (a) ensures that no cycle whose length is in C is destroyed.
Furthermore, except for Z, no cycle of length g or less is created as the following argument
shows. Such a cycle Z ′ would consist of nontrivial paths in G0 ∩ G1, portions of Z, and
edges (wi, ui+1). Potential such paths in G0 ∩G1 have length at least g/2 by (a) and (c),
so there can be only one such path. The remaining part of Z ′ is either an edge (wi, ui+1),
which is eliminated by condition (b), or a segment of k edges of Z, which is eliminated by
condition (c). Since no cycles of length g or less are created, in particular we do not create
one that shares an edge with another. Thus the switching satisfies all the requirements.

We can bound the number of choices (out of (nd(d− 1))r) eliminated by (a)–(c) for a
random G1 ∈ R(m1, . . . , mj − 1, . . . , mt). Condition (a) eliminates

O(δ)(nd(d − 1))r + O(r)(nd(d − 1))r−1(d − 1)
(
(d − 1)g + log3 n + Q

)
choices, by the same argument as for condition (a) of the forward switchings. Condition
(b) eliminates O(r)(nd(d− 1))r−1(d − 1)g+1 choices. Finally, condition (c) eliminates

O(r)(nd(d − 1))r−1

bg/2c∑
k=1

(d − 1)g−k+2 = O(r)(nd(d− 1))r−1(d − 1)dg/2e+1,

which is smaller. Comparing these to (3.4), we have

B =

(
nd(d − 1)

)r

2r

(
1 + O

(
δ +

rQ + r(d − 1)g + r log3 n

nd

))
. (3.5)

From (3.3) and (3.5), it follows that

N(m1, . . . , mt)

N(m1, . . . , mj−1, mj − 1, mj+1, . . . , mt)
(3.6)

=
B

F
=

(d − 1)r

2rmj

(
1 + O

(
δ +

rQ + r(d − 1)g + r log3 n

nd

))
. (3.7)

The values of δ and Q, together with the fact that
∑

i cimi = O((d − 1)g + log3 n), allow
us to apply (3.6) repeatedly to obtain

N(m1, . . . , mt)

N(0, . . . , 0)
= (1 + o(1))

t∏
i=1

µmi
i

mi!
, (3.8)

where the error term depends only on n. Summing over 0 ≤ mi ≤ Ri for each i, with
crude tail estimates, gives the lemma.

In view of Lemma 1, this is very close to Theorem 1, but we have still to prove
Lemma 3. This will rely on some crude bounds on the probability that there are very
many short cycles, for which we begin with the following technical lemma.
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Lemma 4 Let S1, S2, . . . , Sq be finite sets of size at most k, with q finite. Define W =⋃q
i=1 Si, and, for each w ∈ W , Ww =

⋃{Si | w /∈ Si}. Then at least half the elements
w ∈ W have the property that 1 ≤ |W \ Ww| ≤ 2k.

Proof: Note that W \ Ww consists of all the elements v such that w lies in every Si

that v lies in. Let E be the set of pairs (v, w) of distinct elements of W such that
w ∈ ⋂{Si | v ∈ Si} for each v. Each element of W can appear as v in at most k− 1 pairs
in E, since the sets have size at most k, and so |E| ≤ (k − 1)|W |. Therefore, the average
number of times each element of W appears as w in a pair is at most k−1, so the average
size of |W \ Ww| is at most k. The result follows.

Theorem 4 Let k = k(n) ≥ 3 and d = d(n) ≥ 3 satisfy k(d − 1)k−1 = o(n). Let
M = M(n) = 20Ak(d − 1)k with A = A(n) > c for some constant c > 1. Then the
probability that a random d-regular graph of order n has exactly M edges which lie on
cycles of length at most k is less than

(
e5(A−1)A−5A

)(d−1)k

= e−5(d−1)k

(e/A)M/4k

for sufficiently large n.

Proof: Write D = (d − 1)k. Let X(G) be the number of edges of G that lie on cycles
of length at most k, and let Gm be the set of d-regular graphs of order n such that
X(G) = m. Also let Nm = |Gm|.

We will use a standard switching argument. Let G ∈ Gm for m > 1. For each edge e,
let f(e) = X(G) − X(G − e) = m − X(G − e).

Choose an edge e = (v, w) such that 1 ≤ f(e) ≤ 2k. By Lemma 4, e can be chosen in
at least m/2 ways. Now choose an edge e′ = (v′, w′), of distance at least k−1 from e, such
that f(e′) ≤ 2k. Using Lemma 4 again, e′ can be chosen in at least nd/2−m/2−O(D) ≥
nd/4−O(D) ways. Now remove e, e′ and insert either the two edges (v, v′), (w, w′) or the
two edges (v, w′), (v′, w). In total, this switching operation can be performed in at least

1
4
mnd(1 + o(1)) (3.9)

ways. Let G′ be the resulting graph. Since f(e), f(e′) ≤ 2k, we have X(G′) ≥ m−4k. We
also have X(G′) ≤ m, where equality is possible since the two new edges may lie together
on some cycle of length at most k. (Edges of G lying on short cycles in G′ must also lie
on short cycles in G due to the distance between e and e′, and so do not contribute to
X(G) − X(G′).)

Now let G′ be any d-regular graph of order n. To perform an operation inverse to the
switching defined above, we need to first choose a path of length at most k + 1 subject
to some restrictions. (The inverse operation removes the first and last edges of the path
and inserts two new edges.) The number of such paths is at most

ndD. (3.10)
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Now count the pairs (G, G′) such that G′ results by a switching from G and G′ ∈
Gm−4k ∪· · ·∪Gm−1∪Gm. Considering that all the switchings from G land in the required
place, (3.9) and (3.10) imply that

Nm ≤ (4 + o(1))D

m

4k∑
i=0

Nm−i,

which implies that

Nm ≤ 5D

m

4k∑
i=1

Nm−i (3.11)

if m ≥ 21D and n is large enough (since the o(1) is independent of m).
One of the ways (3.11) can be used to bound Nm for large m is to notice that it implies

Nm ≤ 20kD

m
max

1≤i≤4k
Nm−i.

If m > 20kAD with A > c > 1, we can apply this inequality repeatedly while the
coefficient is at least 1. This gives

Nm ≤ (20kD)`

m0m1 · · ·m`−1
Nm`

for some sequence m = m0 > m1 > · · · > m` such that mi − mi+1 ≤ 4k for all i and
20kD − 4k ≤ m` ≤ 20kD − 1. It is easy to see that the weakest bound occurs when

mi − mi+1 = 4k for all i. Using Stirling’s formula, this gives Nm ≤ (
e5(A−1)A−5A

)D
Nm`

.
This gives the required bound since Nm`

≤ N(d, n).

Proof of Lemma 2: In the case that C+ \C is empty, the lemma is vacuously true, so
the proof of Lemma 3 is valid when C is replaced by C+. This implies that R(m1, . . . , mt)
is a fraction at least

(1 + o(1))
t∑

i=1

e−µi min
{
1, µRi

i /Ri!
}

= exp
(−O(1)(d − 1)g/g − O(1) log2 n

)
(3.12)

of all d-regular graphs. Now apply Theorem 4 with M > Q and k = bg/2c to find the
probability p(M) in the space of all d-regular graphs that exactly M edges lie in cycles of
length at most k. Using (1.1), we have that e/A → 0. Hence

p(M) = exp
(−ω(n)(dn)1/2/k

)

for some ω(n) → ∞. Hence, by (3.12), the probability restricted to R(m1, . . . , mt) is

exp
(−ω(n)(dn)1/2/k + O(1)(d − 1)g/g + O(1) log2 n

)
.
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From (1.1) we know that the first term dominates the others, and so the restricted prob-
ability is

exp
(−1

2
ω(n)(dn)1/2/k

)
= O(e−n1/3

),

which is smaller than δ even if summed over M > Q.

Theorem 1 now follows from Lemmas 1, 2 and 3. To prove Theorem 2, note that the
additive o(1) term in Theorem 1 comes only from those d-regular graphs of order n that
are not in R. There are no such graphs without cycles whose lengths are in C, by the
definition of R, so the additive o(1) term is 0 in that case.

4 Bipartite Regular Graphs

The same analysis can be done with the same method for the case of random bicoloured
regular graphs, assuming that n and all cycle lengths are even. The only significant
difference is that switchings must preserve the colour classes.

The results are almost the same. Define µ′
i = (d − 1)ci/ci. Then Theorems 1 and 2

hold with µ′
i replacing µi. (Similarly, in the proofs, R′

i = bmax{2µ′
i, log n}c.) The results

corresponding to Corollaries 1 and 2 are as follows, where the total number of bipartite
regular graphs comes from [6].

Corollary 3 Let n and g be even, and (d − 1)2g−1 = o(n). Then the probability that a
random d-regular bipartite graph has girth greater than g is

exp

(
−

g/2∑
s=2

(d − 1)2s

2s
+ o(1)

)

as n → ∞.

Corollary 4 Under the same conditions, the number of d-regular bipartite graphs of order
n with girth greater than g is

(nd/2)!

(d!)n
exp

(
−

g/2∑
s=1

(d − 1)2s

2s
+ o(1)

)

as n → ∞.
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