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Abstract
Haglund and Loehr previously conjectured two equivalent combinatorial formu-

las for the Hilbert series of the Garsia-Haiman diagonal harmonics modules. These
formulas involve weighted sums of labelled Dyck paths (or parking functions) rel-
ative to suitable statistics. This article introduces a third combinatorial formula
that is shown to be equivalent to the first two. We show that the four statistics on
labelled Dyck paths appearing in these formulas all have the same univariate distri-
bution, which settles an earlier question of Haglund and Loehr. We then introduce
analogous statistics on other collections of labelled lattice paths contained in trape-
zoids. We obtain a fermionic formula for the generating function for these statistics.
We give bijective proofs of the equivalence of several forms of this generating func-
tion. These bijections imply that all the new statistics have the same univariate
distribution. Using these new statistics, we conjecture combinatorial formulas for
the Hilbert series of certain generalizations of the diagonal harmonics modules.

1 Introduction

A Dyck path of order n is a path in the xy-plane from (0, 0) to (n, n) consisting of n
vertical steps and n horizontal steps, each of length one, such that no step goes strictly
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below the diagonal line y = x. A labelled Dyck path is a Dyck path whose vertical
steps are labelled 1, 2, . . . , n in such a way that the labels for vertical steps in a given
column increase reading upwards. These labelled paths can be used to encode parking
functions [17, 5, 6, 23], which are functions f : {1, 2, . . . , n} → {1, 2, . . . , n} such that
|f−1({1, 2, . . . , i})| ≥ i for 1 ≤ i ≤ n.

In [11], J. Haglund and the first author introduced two pairs of statistics on labelled
Dyck paths that give a conjectured combinatorial interpretation of the Hilbert series of
the diagonal harmonics module studied by Garsia and Haiman [9]. This article introduces
a third pair of statistics on labelled Dyck paths that has the same generating function as
those considered in [11]. As a corollary, we obtain a simple bijective proof that all the
statistics being discussed have the same univariate distribution. This result settles one of
the open questions from [11].

We shall also define analogous pairs of statistics on other collections of labelled lattice
paths corresponding to generalized parking functions [24, 25]. We study the combinatorial
properties of these statistics, obtaining an explicit summation formula for their generating
function and giving bijective proofs of the equivalence of different pairs of statistics.
As before, these bijections imply that all the new statistics have the same univariate
distribution.

To motivate our combinatorial study of labelled lattice paths, this introductory section
will review the previous work of F. Bergeron, A. Garsia, J. Haglund, M. Haiman, G. Tesler,
et al. regarding the diagonal harmonics module and its connections to representation
theory, symmetric functions, Macdonald polynomials, and parking functions. This section
also discusses the generalizations of the diagonal harmonics module, which were studied
by the same authors. We conjecture that the new statistics introduced here for labelled
lattice paths inside triangles give the Hilbert series for these generalized modules. Readers
interested only in the combinatorics may safely skip much of this section, reading only
§1.4, §1.5, and §1.7.

1.1 Notation

We assume the reader is acquainted with basic facts about partitions, symmetric functions,
and representation theory, which can be found in standard references such as [22] or [21].
This section sets up the notation we will use when discussing these topics.

Definition 1. Let λ = (λ1 ≥ · · · ≥ λk) be an integer partition. If λ1 + · · · + λk = N ,
we write |λ| = N or λ ` N . We identify λ with its Ferrers diagram. Figure 1 shows the
Ferrers diagram of λ = (8, 7, 5, 4, 4, 2, 1), which is a partition of 31 having seven parts.
The transpose λ′ of λ is the partition obtained by interchanging the rows and columns of
the Ferrers diagram of λ. For example, the transpose of the partition in Figure 1 is

λ′ = (7, 6, 5, 5, 3, 2, 2, 1).

Definition 2. Let λ be a partition of N . Let c be one of the N cells in the diagram of λ.
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c

Figure 1: Diagram of a partition.

(1) The arm of c, denoted a(c), is the number of cells strictly right of c in the diagram
of λ.

(2) The coarm of c, denoted a′(c), is the number of cells strictly left of c in the diagram
of λ.

(3) The leg of c, denoted l(c), is the number of cells strictly below c in the diagram of
λ.

(4) The coleg of c, denoted l′(c), is the number of cells strictly above c in the diagram
of λ.

For example, the cell labelled c in Figure 1 has a(c) = 4, a′(c) = 2, l(c) = 3, and
l′(c) = 1.

Definition 3. We define the dominance partial ordering on partitions of N as follows. If
λ and µ are partitions of N , we write λ ≥ µ to mean that

λ1 + · · · + λi ≥ µ1 + · · ·+ µi for all i ≥ 1.

Definition 4. Fix a positive integer N and a partition µ of N . We introduce the following
abbreviations to shorten upcoming formulas:

hµ(q, t) =
∏
c∈µ

(qa(c) − tl(c)+1)

h′
µ(q, t) =

∏
c∈µ

(tl(c) − qa(c)+1)

n(µ) =
∑
c∈µ

l(c)

n(µ′) =
∑
c∈µ′

l(c) =
∑
c∈µ

a(c)

Bµ(q, t) =
∑
c∈µ

qa′(c)tl
′(c)

Πµ(q, t) =
∏

c∈µ,c 6=(0,0)

(1 − qa′(c)tl
′(c))
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In all but the last formula above, the sums and products range over all cells in the diagram
of µ. In the product defining Πµ(q, t), the northwest corner cell of µ is omitted from the
product. This is the cell c with a′(c) = l′(c) = 0; if we did not omit this cell, then Πµ(q, t)
would be zero.

Definition 5. Let K = Q(q, t) denote the field of rational functions in the variables q
and t with rational coefficients. Let Λ = Λ(K) denote the ring of symmetric functions
in countably many indeterminates xn with coefficients in K. Let ΛN denote the ring of
homogeneous symmetric functions of degree N (together with zero). We let mλ, eλ, hλ,
pλ, and sλ respectively denote the monomial symmetric function, elementary symmetric
function, complete homogeneous symmetric function, power sum symmetric function, and
Schur function indexed by the partition λ. Detailed definitions of these concepts appear
in [21].

It is well known that the collections

{mλ : λ ` N}, {eλ : λ ` N}, {hλ : λ ` N}, {pλ : λ ` N}, {sλ : λ ` N}

each constitute a K-basis for ΛN . Moreover, {en : n ≥ 1} is an algebraically independent
set, as is {hn : n ≥ 1} and {pn : n ≥ 1}.

In particular, given any K-algebra A and any function φ0 : {p1, p2, . . .} → A, there
exists a unique K-algebra homomorphism φ : Λ(K) → A extending φ0. When φ0 is the
function sending each pk to (1 − qk)pk, some authors denote φ(f) (for f ∈ Λ) by using
the plethystic notation f [X(1 − q)].

Definition 6. For each N , introduce a scalar product on ΛN by requiring that

〈sλ, sµ〉 = χ(λ = µ).

Here and below, for a logical statement A we write χ(A) = 1 if A is true, χ(A) = 0 if A
is false. If f ∈ ΛN , the coefficient of sλ in f is

f |sλ
= 〈sλ, f〉.

Definition 7. Let Sn denote the symmetric group on n letters. Let C[Sn] denote the
group algebra of Sn. Given a complex vector space V , a representation of Sn on V
is a group homomorphism A : Sn → GL(V ) from Sn to the group of invertible linear
transformations of V . The character of this representation is the function χA : Sn → C

such that χA(σ) = trace(A(σ)). Given a representation A, we can regard V as an Sn-
module. An Sn-submodule of V is an A-invariant vector subspace W of V . In symbols,
A(σ)(w) ∈ W for all σ ∈ Sn and all w ∈ W . A nonzero space V is called an irreducible
Sn-module iff its only submodules are 0 and V itself.

We recall the following well-known results from representation theory (see [22] for
more details):

(1) Every Sn-module V can be decomposed into a direct sum of irreducible Sn-modules.
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(2) The isomorphism classes of irreducible Sn-modules correspond in a natural way to
the partitions λ ` n. Thus, we may label these irreducible modules Mλ.

(3) An Sn-module V is determined (up to isomorphism) by its character χV .

(4) For any Sn-module V , the character χV belongs to the center of the group algebra
C[Sn].

(5) The characters χλ
def
= χMλ

are a vector-space basis for the center of the group
algebra.

(6) The center of the group algebra of Sn is isomorphic to the ring Λ(C)n of homogeneous
symmetric functions of degree n under an isomorphism sending χλ to sλ. This
isomorphism is called the Frobenius map.

Definition 8. Let V be an Sn-module. We can decompose V into a direct sum of
irreducible submodules, say

V =
⊕
λ`n

cλMλ (where cλ ∈ N) .

The Frobenius characteristic of V is defined by

FV =
∑
λ`n

cλsλ ∈ Λn.

Thus, FV is a homogeneous symmetric function of degree n, and the coefficient of sλ in
this function is just the multiplicity of the irreducible module Mλ in V .

A similar procedure is possible for graded Sn-modules and doubly graded Sn-modules,
which we now define.

Definition 9. Fix n ≥ 1.

(1) An Sn-module V is called a graded Sn-module if there is a direct sum decomposition

V =
⊕
h≥0

Vh,

where each Vh is an Sn-submodule of V .

(2) Let V = ⊕hVh be a graded Sn-module. Decompose each Vh into irreducible sub-
modules, say Vh = ⊕λ`nch(λ)Mλ. The Frobenius series of V is

FV (q) =
∑
h≥0

(∑
λ`n

ch(λ)sλ

)
qh =

∑
h≥0

FVh
qh.
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(3) Let V = ⊕hVh be a graded Sn-module. The Hilbert series of V is

HV (q) =
∑
h≥0

dimC(Vh)q
h.

(4) An Sn-module V is called a doubly graded Sn-module if there is a direct sum
decomposition

V =
⊕
h≥0

⊕
k≥0

Vh,k,

where each Vh,k is an Sn-submodule of V .

(5) Let V = ⊕h,kVh,k be a doubly graded Sn-module. Decompose each Vh,k into ir-
reducible submodules, say Vh,k = ⊕λ`nch,k(λ)Mλ. The Frobenius series of V
is

FV (q, t) =
∑
h≥0

∑
k≥0

(∑
λ`n

ch,k(λ)sλ

)
qhtk =

∑
h≥0

∑
k≥0

FVh,k
qhtk.

(6) Let V = ⊕h,kVh,k be a doubly graded Sn-module. The Hilbert series of V is

HV (q, t) =
∑
h≥0

∑
k≥0

dimC(Vh,k)q
htk.

Given a doubly graded Sn-module V , there is a simple way to recover the Hilbert
series of V from the Frobenius series of V . Specifically, let fλ be the dimension of the
irreducible Sn-module Mλ. A well-known theorem [22] states that fλ is the number of
standard tableaux of shape λ, which is n! divided by the product of the hook lengths of
λ. It is immediate from the definitions that

HV (q, t) = [FV (q, t)]|sλ=fλ
,

where this notation indicates that we should replace every sλ by the integer fλ.
Similarly, we can use the Frobenius series to obtain the generating function for the

occurrences of any particular irreducible Sn-module inside V . For instance, M1n is the
irreducible module that affords the sign character of Sn. Thus, to find the generating
function for the doubly graded submodule of V that carries the sign representation, we
would look at FV (q, t)|s1n , the coefficient of s1n in the Frobenius series.

1.2 Modified Macdonald Polynomials and the Nabla Operator

In this section, we define the modified Macdonald polynomials, which form another useful
basis for the ring of symmetric functions. We also define the nabla operator, a linear
operator on Λ that has many important properties. The modified Macdonald polynomials
were introduced by Garsia and Haiman [13] by modifying the definition in Macdonald’s
book [21]. The nabla operator was first introduced by F. Bergeron and Garsia [1]; see
also [2, 3].
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Theorem 10. Let α : Λ(K) → Λ(K) be the K-algebra automorphism that interchanges
the variables q and t. Abusing notation and writing f ∈ Λ(K) as f(x; q, t), we have
α(f(x; q, t)) = f(x; t, q). Let φ : Λ → Λ be the unique K-algebra homomorphism such
that φ(pk) = (1 − qk)pk. There exists a unique basis H̃µ of Λ(K), called the modified
Macdonald polynomial basis, with the following properties:

(1) φ(H̃µ) =
∑

λ≥µ cλ,µsλ for certain scalars cλ,µ ∈ K.

(2) α(H̃µ) = H̃µ′.

(3) H̃µ|s(n)
= 1.

(Here, µ ranges over all partitions, and ≥ is the dominance partial order on partitions.)
Moreover, {H̃µ : µ ` m} is a basis of Λm(K).
Some authors write the three properties in the definition using different notation, as fol-
lows:

(1) H̃µ[(1 − q)X; q, t] =
∑

λ≥µ cλ,µ(q, t)sλ(X) for certain scalars cλ,µ ∈ K.

(2) H̃µ(X; q, t) = H̃µ′(X; t, q).

(3) 〈H̃µ(X; q, t), s(n)(X)〉 = 1.

Proof. The proof for the original Macdonald polynomials can be found in [21]. For a
discussion of the modified version, see e.g. [13].

For any µ ` n, we can write

H̃µ =
∑
λ`n

K̃λ,µsλ

for unique coefficients K̃λ,µ ∈ Q(q, t). These coefficients are called the modified Kostka-
Macdonald coefficients. The following theorem of Haiman resolves a long-standing con-
jecture of Macdonald regarding these coefficients.

Theorem 11. [M. Haiman]
For every λ ` n and µ ` n, K̃λ,µ is a polynomial in q and t with nonnegative integer
coefficients.

Proof. See [13].

In advance, one only knows that K̃λ,µ is a rational function with rational coefficients.
Haiman’s proof uses sophisticated machinery from algebraic geometry. The proof provides
an explicit interpretation for the coefficients of the polynomials K̃λ,µ. These coefficients
count the multiplicities of irreducible modules in a certain doubly graded Sn-module. In
particular, the coefficients must be nonnegative integers.

We now define the nabla operator of F. Bergeron and Garsia. Some of the special
properties of this operator are developed in [1, 2, 3].
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Definition 12. The nabla operator ∇ is the unique linear operator on Λ(K) that acts
on the modified Macdonald basis as follows:

∇(H̃µ) = qn(µ′)tn(µ)H̃µ.

Equivalently, ∇ is the linear operator on Λ with eigenvalues qn(µ′)tn(µ) and corresponding
eigenfunctions H̃µ.

The next theorem, due to Garsia and Haiman, gives an explicit formula for ∇(en) =
∇(s1n) as an expansion in terms of the basis (H̃µ).

Theorem 13.

∇(en) = ∇(s1n) =
∑
µ`n

H̃µtn(µ)qn(µ′)(1 − t)(1 − q)Πµ(q, t)Bµ(q, t)

hµ(q, t)h′
µ(q, t)

.

Proof. See [9], [7], [13].

1.3 The Diagonal Harmonics Module

The formula in the last theorem has a representation-theoretical interpretation, conjec-
tured by Garsia and Haiman [9] and later proved by Haiman [13, 16]. This interpretation
involves the diagonal harmonics modules, which we now define.

Fix a positive integer n. Consider the polynomial ring

Rn = C[x1, . . . , xn, y1, . . . , yn]

in two sets of n independent variables. Rn is clearly an infinite-dimensional vector space
over C with a basis given by the set of all monomials. We make Rn into an Sn-module as
follows. Given σ ∈ Sn, define an action of σ on Rn by setting

σ · f(x1, . . . , xn, y1, . . . , yn) = f(xσ(1), . . . , xσ(n), yσ(1), . . . , yσ(n)).

This is called the diagonal action of Sn on Rn, since σ permutes the indices of the x-
variables and the y-variables in the same way.

Definition 14. Define the diagonal harmonics in Rn by

DHn =

{
f ∈ Rn :

n∑
i=1

∂h

∂xh
i

∂k

∂yk
i

f = 0 for 1 ≤ h + k ≤ n

}
.

It is easy to see that DHn is an Sn-submodule of Rn. Furthermore, DHn is a doubly
graded module: we can write

DHn =
⊕
h≥0

⊕
k≥0

Vh,k(n),
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where Vh,k(n) is the submodule of DHn consisting of zero and those polynomials f that
are homogeneous of degree h in the x-variables and homogeneous of degree k in the
y-variables.

We can now form the Frobenius series FDHn(q, t), the Hilbert series HDHn(q, t), and
the generating function for the sign character FDHn(q, t)|s1n , as discussed earlier. For
notational convenience, we will henceforth denote these three generating functions by
Fn(q, t), Hn(q, t), and RCn(q, t), respectively.

To understand the representation theory of diagonal harmonics, we would like to have
more explicit formulas for Fn(q, t), Hn(q, t), and RCn(q, t). As pointed out earlier, it is
sufficient to find a formula for the Frobenius series. Garsia and Haiman conjectured such
a formula involving the modified Macdonald polynomials [9]. The formula was proved
much later by Haiman using advanced machinery from algebraic geometry. Our next
theorem gives this formula.

Theorem 15.

Fn(q, t) =
∑
µ`n

H̃µt
n(µ)qn(µ′)(1 − t)(1 − q)Πµ(q, t)Bµ(q, t)

hµ(q, t)h′
µ(q, t)

.

Proof. See [13] and [16].

Combining this result with Theorem 13, we have

Fn(q, t) = ∇(s1n).

Definition 16. Let Dn denote the collection of Dyck paths of order n. For E ∈ Dn, define
area(E) to be the number of complete lattice cells between the path and the diagonal
y = x. Define maj(E) =

∑
(x,y)(x + y), where we sum over all points (x, y) such that the

line segments from (x − 1, y) to (x, y) and from (x, y) to (x, y + 1) both belong to E.

The following theorem of Garsia and Haiman can be used to compute the specializa-
tions Fn(q, 1) and Fn(q, 1/q) of the Frobenius series.

Theorem 17. (1) For a Dyck path D of order n, define vi(D) to be the number of
vertical steps taken by the path along the line x = i. Then

∇(en)|t=1 =
∑

D∈Dn

qarea(D)
n−1∏
i=0

evi(D),

where ej denotes an elementary symmetric function, as usual.

(2)

qn(n−1)/2∇(en)
∣∣
t=1/q

=
∑
µ`n

sµ
sµ′(1, q, q2, . . . , qn)

[n + 1]q
,

where we set [j]q = 1 + q + q2 + · · · + qj−1.
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Proof. See Theorem 1.2 and Corollary 2.5 in [9].

Recall that the Hilbert series of DHn is given by Hn(q, t) = Fn(q, t)|sλ=fλ
. Haiman’s

work also implies the following specializations of the Hilbert series.

Theorem 18.
Hn(1, 1) = (n + 1)n−1

qn(n−1)/2Hn(q, 1/q) = [n + 1]n−1
q .

Proof. See [13] and [16].

Note that the first statement just says that dim(DHn) = (n + 1)n−1. Even this
seemingly simple fact is very difficult to prove.

Next, consider RCn(q, t) = Fn(q, t)|s1n , the generating function for occurrences of the
sign character in DHn. Before Theorem 15 was proved, Garsia and Haiman [9] were able
to compute the coefficient of s1n in the conjectured character formula

∑
µ`n

H̃µtn(µ)qn(µ′)(1 − t)(1 − q)Πµ(q, t)Bµ(q, t)

hµ(q, t)h′
µ(q, t)

.

In light of Theorem 13, this coefficient is just ∇(s1n)|s1n , the entry in the lower-right
corner of the matrix representing nabla relative to the Schur basis. This coefficient is the
original version of the q, t-Catalan number, as defined by Garsia and Haiman in [9].

Definition 19. For n ≥ 1, define the original q, t-Catalan sequence by

OCn(q, t) =
∑
µ`n

t2n(µ)q2n(µ′)(1 − t)(1 − q)Πµ(q, t)Bµ(q, t)

hµ(q, t)h′
µ(q, t)

.

Theorem 20. For all n,
OCn(q, t) = ∇(s1n)|s1n .

Proof. See [9].

Of course, it is immediate from Haiman’s Theorem 15 that OCn(q, t) = RCn(q, t).
However, since this equality is very difficult to prove, it is useful to maintain separate
notation for the two expressions.

Garsia and Haiman also proved the following specializations of OCn(q, t), which ex-
plain why they called it the q, t-Catalan sequence.

Theorem 21. For all n,

OCn(1, 1) =
1

n + 1

(
2n

n

)
= Cn

qn(n−1)/2OCn(q, 1/q) =
1

[n + 1]q

[
2n

n

]
q

=
∑

D∈Dn

qmaj(D)

OCn(1, q) = OCn(q, 1) =
∑

D∈Dn

qarea(D).
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Proof. See [9].

In light of this last result, it is natural to ask if there is a purely combinatorial inter-
pretation for the bivariate sequence OCn(q, t). In other words, we would like to have a
second statistic on Dyck paths, say tstat, such that

OCn(q, t) =
∑

D∈Dn

qarea(D)ttstat(D).

Two different t-statistics were conjectured by Haglund and Haiman [10],[12]. Later, Garsia
and Haglund proved that these conjectures really do give OCn(q, t) [7]. We discuss these
statistics in the next subsection.

Similarly, we would like to have combinatorial interpretations for the Hilbert series
Hn(q, t) and the Frobenius series Fn(q, t) by introducing suitable pairs of statistics on
some collection of objects. Haglund, Haiman, and the present author conjectured such
statistics for the Hilbert series (see [11] and §1.5 below). At this time, it is an open
problem to prove that these conjectured statistics are correct.

1.4 Combinatorial Bivariate Catalan Numbers

In this section, we describe two different combinatorial versions of the bivariate Catalan
sequence. These sequences are based on two statistics proposed by Haglund [10] and
Haiman [12], respectively.

Definition 22. Let E be a Dyck path of order n.

(1) Define a bounce path derived from E as follows. The bounce path begins at (n, n)
and moves to (0, 0) via an alternating sequence of horizontal and vertical moves.
Starting at (n, n), the bounce path proceeds due west until it reaches the north step
of the Dyck path going from height n− 1 to height n. From there, the bounce path
goes due south until it reaches the main diagonal line y = x. This process continues
recursively. When the bounce path has reached the point (i, i) on the main diagonal
(i > 0), the bounce path goes due west until it is blocked by the north step of the
Dyck path going from height i−1 to height i. From there, the bounce path goes due
south until it hits the main diagonal. The bounce path terminates when it reaches
(0, 0). See Figure 2 for an example.

Suppose the bounce path derived from E hits the main diagonal at the points

(n, n), (i1, i1), (i2, i2), . . . , (is, is), (0, 0).

The bounce score for E is defined by

b(E) =

s∑
k=1

ik.

For example, in Figure 2, the bounce path for E hits the main diagonal at (14, 14),
(10, 10), (5, 5), (1, 1), and (0, 0). Thus, b(E) = 10 + 5 + 1 = 16 for this path.
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(14,14)

(10,10)

(5,5)

(1,1)

(0,0)
a(E) = 41,   b(E) = 16,   c(E) = 3.

Figure 2: A Dyck path with its derived bounce path.

(2) Define Haglund’s combinatorial Catalan number to be the bivariate generating func-
tion

Cn(q, t) =
∑

P∈Dn

qarea(P )tb(P ).

(3) For 0 ≤ i < n, define gi(E) to be the number of complete cells strictly between the
path and the main diagonal in the i’th row of the picture, where the bottom row
is row zero. Define the area vector ~g(E) to be the vector (g0(E), . . . , gn−1(E)). For
example, for the path E shown in Figure 3, we have

~g(E) = (0, 1, 2, 2, 3, 0, 0, 1, 1, 2, 1, 2, 0, 1).

Note that area(E) =
∑n−1

i=0 gi(E).

(4) We define Haiman’s statistic h by the formula

h(E) =
∑
i<j

[χ(gi(E) = gj(E)) + χ(gi(E) = gj(E) + 1)] . (1)

For example, we have h(E) = 41 for the path in Figure 3.
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3
4

area(D) = 16         dinv(D) = 41

1

1

0
2

2

i

2
1
0

10
11
12
13

g

0

i

9
8
7
6
5

1
2
2
3
0
0
1
1

Figure 3: A Dyck path and the associated vector ~g.

(5) We define Haiman’s combinatorial q, t-Catalan sequence to be

HCn(q, t) =
∑

D∈Dn

qh(D)tarea(D) (n = 1, 2, 3, . . .).

Note that we use t, not q, to keep track of area in this sequence.

Theorem 23. For all n ≥ 1,

Cn(q, t) = HCn(q, t) = OCn(q, t).

Proof. See [7, 11].

Remark 24. A variant of the bounce statistic is obtained by starting the bounce path
at (0, 0) and bouncing north and east to (n, n). This variant will be generalized in §1.7.

1.5 Combinatorial Hilbert Series

In this section, we describe two pairs of statistics on labelled Dyck paths (parking func-
tions) of order n that are conjectured to give the Hilbert series Hn(q, t) of diagonal har-
monics. These statistics were proposed by Haglund, Haiman, and the first author [11].

Definition 25. (1) Let Pn denote the set of labelled Dyck paths of order n. A typical
object P ∈ Pn consists of a path D ∈ Dn and a labelling of the vertical steps of D
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such that the labels in each column increase from bottom to top. It is convenient
to regard P as a pair of vectors

P = (~g = (g0, . . . , gn−1), ~p = (p0, . . . , pn−1)),

where ~g is the area vector for P , and ~p is obtained by reading the labels from bottom
to top. The condition that labels increase in columns is equivalent to requiring that,
for all i < n − 1, gi(D) < gi+1(D) implies pi < pi+1. See Figure 4 for an example.

i

8
7
6
5

area(P) = 16     dinv(P) = 18      dinv(D(P)) = 41

0
1
2
2
3
0
0
1
1
2
1
2
0
1

1
2
3
4
5
9
11
13
7
10
6
12
8
14

p
i

1
2
3

4
5

9

7

6

8

11
13

10

12

14

P  =

γ
i

10
11
12
13

9

3
4

2
1
0

Figure 4: A labelled Dyck path (version 1).

(2) Given P = (~g, ~p) ∈ Pn, define the area of P to be area(P ) =
∑n−1

i=0 gi. Also define

h(P ) =
∑

i<j [χ(gi(P ) = gj(P ) and pi < pj)

+χ(gi(P ) = gj(P ) + 1) and pi > pj)] .

(3) Define the first combinatorial Hilbert series by

CHn(q, t) =
∑

P∈Pn

qarea(P )tdinv(P ). (2)

(4) We now define another collection Qn of labelled Dyck paths of order n. To construct
a typical object Q ∈ Qn, we attach labels to a path D ∈ Dn according to the
following rules. Let q0q1 · · · qn−1 be a permutation of the labels {1, 2, . . . , n}. Place
each label qi in the i’th row of the diagram for D, in the main diagonal cell. There
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is one restriction: for each inner corner in the Dyck path consisting of an east step
followed by a north step, the label qi appearing due east of the north step must
be less than the label qj appearing due south of the east step. See Figure 5 for
an example. In the figure, capital letters mark the inner corners in the Dyck path.
Since 4 < 5, 6 < 12, 7 < 10, 2 < 3, 8 < 14, 11 < 13, and 1 < 2, the labelled path
shown does belong to Q14.

5

4
3

6
7

2

9
1

10

14

12

13

8
11

dmaj(Q) = 16      area’(Q) = 18     area(D(Q))=41

Q  =

G

F

E

D

C

B

A

Figure 5: A labelled Dyck path (version 2).

(5) Given a labelled path Q constructed from the ordinary Dyck path D = D(Q),
define dmaj(Q) to be b(D(Q)), the bounce statistic for D defined earlier. Also
define area′(Q) to be the number of cells c in the diagram for Q such that:

1. Cell c is strictly between the Dyck path D and the main diagonal; AND

2. The label on the main diagonal due east of c is less than the label on the main
diagonal due south of c.

In Figure 5, only the shaded cells satisfy both conditions and hence contribute to
area′(Q).

(6) Define the second combinatorial Hilbert series by

CH ′
n(q, t) =

∑
Q∈Qn

qdmaj(Q)tarea′(Q). (3)

Theorem 26. For all n ≥ 1,

CHn(q, t) = CH ′
n(q, t).
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Proof. This is proved via an explicit bijection in [11].

In §2, we will define a statistic pmaj on Pn such that the generating function

CH ′′
n(q, t)

def
=
∑

P∈Pn

qpmaj(P )tarea(P )

is also equal to CHn(q, t). Using this result and the one just quoted, one obtains bijections
that map any pair of statistics

(area, dinv), (dmaj, area′), (pmaj, area)

to any other. As a corollary, we obtain bijective proofs that all statistics in question have
the same univariate distribution. This resolves one of the open questions from [11].

Conjecture 27 (Haglund,Haiman,Loehr). For all n ≥ 1,

CHn(q, t) = Hn(q, t) = ∇(en)|sλ=fλ
.

This conjecture says that the generating function for statistics on labelled Dyck paths
gives the Hilbert series of the diagonal harmonics module.

We now describe an explicit formula for CHn(q, t) as a summation over permutations
σ ∈ Sn. First, we need some notation. Given σ = σ1σ2 · · ·σn, a descent of σ is an index
i < n such that σi > σi+1. Suppose σ has descents i1, i2, . . . , is, where i1 < i2 < · · · < is.
Then we call the lists of elements

σ1σ2 · · ·σi1 ; σi1+1 · · ·σi2 ; · · · ; σis+1 · · ·σin

the ascending runs of σ. For example, if σ = 4, 7, 1, 5, 8, 3, 2, 6, then the ascending runs
of σ are 4, 7 and 1, 5, 8 and 3 and 2, 6. We can display the runs more concisely by writing

σ = 4, 7 > 1, 5, 8 > 3 > 2, 6.

For 1 ≤ i ≤ n, define a number wi(σ) as follows. Let Rj be the ascending run of σ
containing σi. Let Rj+1 be the next ascending run of σ, if there is one. The number wi(σ)
is the number of items in Rj that are larger than σi, plus the number of items in Rj+1

that are smaller than σi if Rj+1 exists, plus one if Rj+1 does not exist (i.e., if Rj is the
last ascending run of σ). For example, given σ = 4, 7 > 1, 5, 8 > 3 > 2, 6, we obtain

(w1(σ), . . . , w8(σ)) = (2, 2, 2, 2, 1, 1, 2, 1).

Also, if v1 · · · vn is any sequence of integers, we define the usual major index statistic by

maj(v1 · · · vn) =
n−1∑
i=1

iχ(vi > vi+1).
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Theorem 28.

CHn(q, t) =
∑
σ∈Sn

qmaj(σ)

n∏
i=1

[wi(σ)]t. (4)

Proof. This formula is proved in [11]. It also follows as a special case of formula (18),
proved below.

We end this subsection with a brief discussion of the connection between parking
functions and labelled Dyck paths.

Definition 29. A parking function or preference function of order n is a function f :
{1, 2, . . . , n} → {1, 2, . . . , n} such that

|{x : f(x) ≤ i}| ≥ i for 1 ≤ i ≤ n.

Let P ′
n denote the collection of parking functions of order n.

As in [17], we think of the elements x in the domain of f as cars that wish to park
on a one-way street with parking spots labelled 1, 2, . . . , n (in that order). The number
f(x) represents the spot where car x prefers to park. In the standard parking policy, cars
1 through n arrive at the beginning of the street in increasing numerical order. Each car
drives forward to the spot f(x) it prefers. If this spot is available, the car parks there.
If not, the car continues driving forward and parks in the next available spot. It can be
shown that a function f is a parking function iff all n cars are able to park following this
policy.

We can identify a parking function f with a labelled Dyck path P as follows. Let
Si = {x : f(x) = i} be the set of cars preferring spot i. Starting in the bottom row of
an n by n grid of lattice cells, place the elements of S1 in increasing order in the first
column of the diagram, one per row. Starting in the next empty row, place the elements
of S2 in increasing order in the second column of the diagram, one per row. Continue
similarly: after listing all elements x with f(x) < i, start in the next empty row and place
the elements of Si in increasing order in column i. Finally, draw a lattice path from (0, 0)
to (n, n) by drawing vertical steps immediately left of each label, and then drawing the
necessary horizontal steps to get a connected path. It can be shown that the resulting
labelled lattice path is a labelled Dyck path iff f is a parking function. Furthermore,
given a labelled Dyck path P , we can recover the parking function f by setting f(i) = j
iff label i occurs in column j. Thus, from now on, we will identify the set of parking
functions P ′

n with the set of labelled Dyck paths Pn.

Example 30. Let n = 8, and define a function f by

f(1) = 2, f(2) = 3, f(3) = 5, f(4) = 4,

f(5) = 1, f(6) = 4, f(7) = 2, f(8) = 6.

It is easy to check that f is a parking function. The labelled path P ∈ P8 corresponding
to f is shown in Figure 6. Note that area(P ) = 9.
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Figure 6: Diagram for a parking function.

If P is the diagram for a parking function f , we can compute area(P ) as follows.
Note that the triangle bounded by the lines x = 0, y = n, and x = y contains n(n − 1)/2
complete lattice cells. Since label i occurs somewhere in column f(i), there are f(i) − 1
lattice cells inside the triangle and left of label i. These lattice cells lie outside the Dyck
path associated to f . Subtracting, we find that

area(P ) = n(n − 1)/2 −
n∑

i=1

[f(i) − 1] = n(n + 1)/2 −
n∑

i=1

f(i). (5)

For instance, in the example above we have

area(P ) = 36 − (2 + 3 + 5 + 4 + 1 + 4 + 2 + 6) = 9.

1.6 Generalizations of the Diagonal Harmonics Module

In §3, we will discuss a generalization of Conjecture 27, based on pairs of statistics for
generalized parking functions. The generalized conjecture involves modules introduced
by Garsia and Haiman [9] that are natural extensions of the diagonal harmonics modules.
We describe these modules now.

Definition 31. Fix integers m, n ≥ 1. We define the generalized diagonal harmonics
module DH

(m)
n of order m in n variables as follows. As in §1.3, let Sn act on the polynomial

ring Rn = C[x1, . . . , xn, y1, . . . , yn] via the diagonal action. Let An denote the ideal in Rn

generated by all polynomials P ∈ Rn for which

σ · P = sgn(σ)P for all σ ∈ Sn.

Let Am
n denote the ideal in Rn generated by all products P1P2 · · ·Pm, where each Pi ∈ An.

Let Jn denote the ideal in Rn generated by all polarized power sums

n∑
i=1

xh
i y

k
i (h + k ≥ 1).
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Finally, define
R(m)

n [X; Y ] = Am−1
n /JAm−1

n .

If σ ∈ Sn and f ∈ R
(m)
n [X; Y ], the diagonal action induces an action of Sn on this module,

which we denote by σ · f . Define a new action of Sn by setting

σ ? f = (sgn(σ))m−1σ · f.

DH
(m)
n is defined to be the doubly-graded module R

(m)
n [X; Y ] with this new action.

As with the original diagonal harmonics module, we would like to understand the
Frobenius series F

(m)
n (q, t), the Hilbert series H

(m)
n (q, t), and the generating function for

the sign character RC
(m)
n (q, t) of DH

(m)
n . We have the following results, analogous to

those in §1.3.
First, Haiman’s results imply that the Frobenius series of DH

(m)
n is given by

F (m)
n (q, t) = ∇m(s1n).

By Theorem 13 and the definition of nabla, we have

∇m(s1n) =
∑
µ`n

H̃µt
mn(µ)qmn(µ′)(1 − t)(1 − q)Πµ(q, t)Bµ(q, t)

hµ(q, t)h′
µ(q, t)

. (6)

As in the case m = 1, there are nice formulas for the specializations at t = 1 and t = 1/q.

Definition 32. Let D(m)
n denote the collection of lattice paths that go from (0, 0) to

(mn, n) by taking n vertical steps and mn horizontal steps and that never go below the

line x = my. Such paths are called m-Dyck paths of order n. For E ∈ D(m)
n , define

area(E) to be the number of complete lattice cells between the path and the line x = my.

Theorem 33. (1) For an m-Dyck path D of order n, define ai(D) to be the number of
vertical steps taken by the path along the line x = i. Then

∇m(s1n)|t=1 =
∑

D∈D(m)
n

qarea(D)
mn−1∏
i=0

eai(D),

where ej denotes an elementary symmetric function, as usual.

(2)

qmn(n−1)/2∇m(s1n)
∣∣
t=1/q

=
∑
µ`n

sµ
sµ′(1, q, q2, . . . , qmn)

[mn + 1]q
.

Proof. See Theorem 4.3 and Corollary 4.1 in [9].
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Formula (6) gives the Frobenius series of DH
(m)
n in terms of the symmetric functions

H̃µ. To get the Hilbert series of DH
(m)
n , we can expand H̃µ in terms of Schur functions

and replace each sλ by fλ. To get the generating function of the sign character, we extract
the coefficient of s1n in (6). What results is the following formula, which is called the n’th
bivariate Catalan number of order m:

OC(m)
n (q, t) =

∑
µ`n

t(m+1)n(µ)q(m+1)n(µ′)(1 − t)(1 − q)Πµ(q, t)Bµ(q, t)

hµ(q, t)h′
µ(q, t)

.

Haiman and the first author [12, 18, 19] defined combinatorial statistics on m-Dyck

paths whose generating functions are conjectured to give OC
(m)
n (q, t). These statistics

will be generalized to labelled m-Dyck paths in §3 to give conjectured combinatorial
interpretations for the higher-order Hilbert series H

(m)
n (q, t).

1.7 Statistics for Trapezoidal Lattice Paths

This subsection discusses combinatorial statistics introduced by the first author [20, 19]
on lattice paths contained in trapezoidal regions. These include the previously mentioned
statistics on unlabelled Dyck paths and m-Dyck paths as special cases.

Definition 34. (1) Fix integers n, k, m ≥ 0. Define a trapezoidal lattice path of type
(n, k, m) to be a lattice path that goes from (0, 0) to (k + mn, n) by taking n north
steps and k + mn east steps of length one, such that the path never goes strictly
right of the line x = k + my. Let Tn,k,m be the set of all such paths.

(2) Given a path P ∈ Tn,k,m, let gi(P ) be the number of complete lattice squares between
the path P and the line x = k + my in the i’th row from the bottom, for 0 ≤ i < n.
Define the area of P by

area(P ) =

n−1∑
i=0

gi(P ).

(3) For an integer r, set r+ = max(r, 0). Define the inversion statistic for P ∈ Tn,k,m by

h(P ) =
∑
i<j

(m − |gi − gj|)+ +
∑
i<j

χ(gi − gj ∈ {1, 2, . . . , m}) +

n−1∑
i=0

(k − gi)
+.

Alternatively, it can be shown [18, 19] that the following formula is equivalent to
the previous one:

h(P ) =
∑
i<j

m−1∑
d=0

χ(gi − gj + d ∈ {0, 1, . . . , m}) +

n−1∑
i=0

(k − gi)
+.
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(4) For P ∈ Tn,k,m, define the bounce path B(P ) associated to P as follows. A ball
starts at (0, 0) and makes alternating vertical and horizontal moves until it reaches
(k + mn, n). Call the lengths of successive vertical and horizontal moves vi and hi,
for i ≥ 0. These moves are determined as follows. At each step, the ball moves up
vi ≥ 0 units from its current position until it is blocked by a horizontal step of the
path P . The ball then moves right by hi units, where

hi = vi + vi−1 + · · ·+ vi−(m−1) + χ(i < k). (7)

In this formula, we let vi = 0 for i < 0.

Finally, the bounce score for P is the statistic

b(P ) =
∑
i≥0

ivi.

(5) Define two generating functions

HCn,k,m(q, t) =
∑

P∈Tn,k,m

qh(P )tarea(P ),

Cn,k,m(q, t) =
∑

P∈Tn,k,m

qarea(P )tb(P ).

For a detailed combinatorial study of these statistics, see [20, 19]. In particular, it is
shown there that the bounce path of P always stays inside the trapezoid with vertices
(0, 0), (0, n), (k, 0) and (k + mn, n). Also, the bounce path always reaches the upper-
right corner (k + mn, n), so that the algorithm for generating the bounce path always
terminates.

We have the following identity, which has an explicit bijective proof:

HCn,k,m(q, t) = Cn,k,m(q, t).

Furthermore, it is conjectured that

Cn,0,m(q, t) = OC(m)
n (q, t).

Example 35. (1) Let n = 6, k = 2, and m = 3. Consider the unique path P ∈ Tn,k,m

whose area vector is g(P ) = (1, 4, 4, 0, 3, 1). This path is shown in Figure 7. We
have h(P ) = 26 and area(P ) = 13.

(2) Figure 8 shows a trapezoidal path P ∈ T12,3,2 and its associated bounce path. We
have area(P ) = 60 and b(P ) = 31.

Remark 36. When k = 0 and m = 1, the set Tn,k,m is exactly the set of Dyck paths of
order n. Note that the bounce path described in this subsection starts at (0, 0) and ends
at (n, n). On the other hand, in Haglund’s original bounce path construction for Dyck
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Figure 7: A trapezoidal lattice path.
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Figure 8: A trapezoidal path and its associated bounce path.
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paths (see §1.4), the bounce path starts at (n, n) and ends at (0, 0). It is easy to see that
reflecting a Dyck path about the line y = n− x transforms one bounce path to the other
bounce path while preserving area. Hence, we have

Cn(q, t) = Cn,0,1(q, t).

In the rest of this paper, we will always compute bounce statistics using bounce paths
starting at the origin, as described in this subsection.

2 Statistics based on Parking Policies

Recall from §1.5 that there are two pairs of statistics (area, dinv) and (dmaj, area′) on
parking functions that give conjectured combinatorial interpretations for the Hilbert series
Hn(q, t) of DHn. This section introduces a third pair of statistics (pmaj, area) on parking
functions that has the same generating function as the previous two. In symbols, we have∑

Q∈Qn

qdmaj(Q)tarea′(Q) =
∑

P∈Pn

qarea(P )tdinv(P ) =
∑

P∈Pn

qpmaj(P )tarea(P ).

Letting q = 1 here shows that area, dinv and area′ have the same univariate distribution,
while letting t = 1 shows that pmaj, area, and dmaj have the same univariate distri-
bution. Hence, all five individual statistics have the same univariate distribution. This
result settles one of the open questions from [11].

Our starting point is the formula

CHn(q, t) =
∑

P∈Pn

qarea(P )tdinv(P ) =
∑
σ∈Sn

qmaj(σ)

n∏
i=1

wi(σ)−1∑
p=0

tp. (8)

It is convenient to represent this formula combinatorially. To do this, consider objects
I = (σ; u1, . . . , un), where σ ∈ Sn and ui are integers satisfying 0 ≤ ui < wi(σ). Let In

denote the collection of such objects. Define qstat(I) = maj(σ) and tstat(I) =
∑n

i=1 ui.
It is obvious from these definitions and formula (8) that

CHn(q, t) =
∑
I∈In

qqstat(I)ttstat(I). (9)

In particular, letting q = t = 1 here, we obtain

|In| = |Pn| = (n + 1)n−1. (10)

We will define a statistic pmaj on Pn and give a bijection G : In → Pn such that

qstat(I) = pmaj(G(I)) and tstat(I) = area(G(I)).

It will then follow that
CHn(q, t) =

∑
P∈Pn

qpmaj(P )tarea(P ).
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Figure 9: A labelled path with labels in increasing order.

The simplest way to define pmaj involves parking functions. Let P ∈ Pn, and let f
be the associated parking function. Recall that f(x) = j is interpreted to mean that car
x prefers spot j. Let Sj = f−1(j) be the set of cars that want to park in spot j. Let
Tj =

⋃j
k=1 Sk be the set of cars that want to park at or before spot j. The definition of a

parking function states that |Tj| ≥ j for 1 ≤ j ≤ n.
We introduce the following new parking policy. Consider parking spots 1, . . . , n in this

order. These spots will be filled with cars τ1, . . . , τn according to certain rules. The car τ1

that gets spot 1 is the largest car x in the set S1 = T1. The car τ2 that gets spot 2 is the
largest car x in T2−{τ1} such that x < τ1; if there is no such car, then x is the largest car
in T2−{τ1}. In general, the car τi that gets spot i is the largest car x in Ti−{τ1, . . . , τi−1}
such that x < τi−1; if there is no such car, then x is the largest car in Ti − {τ1, . . . , τi−1}.
Since |Ti| ≥ i, the set Ti − {τ1, . . . , τi−1} is never empty. So this selection process makes
sense. At the end of this process, we obtain a parking order τ = τ1, . . . , τn, which is a
permutation of 1, . . . , n. We let σ = σ(P ) be the reversal of τ , so that σj = τn+1−j and
τj = σn+1−j for 1 ≤ j ≤ n. Finally, we define pmaj(f) = pmaj(P ) = maj(σ(P )). Recall
that maj(σ1 · · ·σn) =

∑n−1
i=1 iχ(σi > σi+1).

Example 37. For the parking function f corresponding to the labelled path P in Figure
6, the new parking policy gives

τ = 5, 1, 7, 6, 4, 3, 2, 8.

Hence, σ = 8 > 2, 3, 4, 6, 7 > 1, 5, and so pmaj(P ) = maj(σ) = 1 + 6 = 7.

Example 38. Consider the labelled path P in Figure 9, in which the labels 1 to n appear
in order from bottom to top.

The new parking policy gives

τ = 1, 3, 2, 6, 5, 4, 8, 7.

Hence, σ = 7, 8 > 4, 5, 6 > 2, 3 > 1, and so pmaj(P ) = maj(σ) = 14. On the other hand,
drawing the bounce path for the corresponding unlabelled path (starting at (0, 0), as in
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Remark 36) gives bounces of lengths 1, 2, 3, 2. Thus, the bounce statistic for this path is
also 14.

Remark 39. As in the previous example, it is easy to see that the pmaj statistic always
reduces to the bounce statistic in the case where the labels 1 to n increase from bottom
to top. The proof, which is by induction on the number of bounces, is left to the reader.

We now define a map G : In → Pn. Let I = (σ; u1, . . . , un) ∈ In. We define G(I) to
be the function f : {1, 2, . . . , n} → {1, 2, . . . , n} such that

f(σi) = (n + 1 − i) − ui for 1 ≤ i ≤ n. (11)

Lemma 40. The function G does map into the set Pn.

Proof. By definition, wi(σ) is no greater than the length of the list σi, σi+1, . . . , σn. Hence,

0 ≤ ui < wi(σ) ≤ n + 1 − i,

which shows that
1 ≤ f(σi) ≤ n + 1 − i ≤ n.

In particular, the image of f is contained in the codomain {1, 2, . . . , n}. This inequality
also shows that the set f−1({1, 2, . . . , i}) contains at least the i elements σn, . . . , σn+1−i,
so that f is a parking function. This shows that the image of G is contained in the set
Pn.

We will see shortly that G is a weight-preserving bijection.

Example 41. Let n = 8 and let I = (σ; u1, . . . , un), where

σ = 8 > 2, 3, 4, 6, 7 > 1, 5;

w1 = 5, w2 = 5, w3 = 4, w4 = 3,

w5 = 3, w6 = 2, w7 = 2, w8 = 1;

u1 = 2, u2 = 4, u3 = 1, u4 = 1,

u5 = 0, u6 = 1, u7 = 0, u8 = 0.

Using the formula above, we have G(I) = f , where

f(1) = f(σ7) = 2, f(2) = f(σ2) = 3, f(3) = f(σ3) = 5, f(4) = f(σ4) = 4,

f(5) = f(σ8) = 1, f(6) = f(σ5) = 4, f(7) = f(σ6) = 2, f(8) = f(σ1) = 6.

The labelled path P corresponding to this f appears in Figure 6. Note that

qstat(I) = 6 = pmaj(f) and tstat(I) = 9 = area(f).
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We now define a map H : Pn → In that will turn out to be the inverse of G. Let
P ∈ Pn, and let f be the associated parking function. Construct a permutation σ, as in
the definition of pmaj, by reversing the parking permutation τ . Define

ui = n + 1 − i − f(σi) for 1 ≤ i ≤ n. (12)

Finally, set H(P ) = H(f) = (σ; u1, . . . , un).

Lemma 42. H does map Pn into the set In. Moreover,

G ◦ H = IdPn , (13)

pmaj(P ) = qstat(H(P )) and area(P ) = tstat(H(P )).

Proof. Let f ∈ Pn. As usual, we set Sj = f−1(j) and Tj = f−1({1, 2, . . . , j}). To see that
H maps into In, we need only show that 0 ≤ ui < wi(σ). Observe that σi = τn+1−i is an
element of Tn+1−i, and so 1 ≤ f(σi) ≤ n + 1 − i. Hence, ui = n + 1 − i − f(σi) always
satisfies the inequalities

0 ≤ ui ≤ n − i < n + 1 − i. (14)

We now consider several cases.

(I) σi occurs in the rightmost ascending run of σ. By definition of wi, this implies
wi(σ) = n + 1 − i. In this case, inequality (14) immediately gives the desired
conclusion 0 ≤ ui < wi(σ).

(II) σi is not in the rightmost ascending run of σ, and σ can be written

σ = · · ·σi · · ·σk > σk+1 · · ·σj · · · ,

where: σk is the last entry in the ascending run containing σi (so k ≥ i); σj and σk+1

are in the same ascending run; σj < σi; and either: (a) j = n, or (b) σj > σj+1, or
(c) σj < σj+1 and σj+1 > σi. By definition, wi(σ) = j − i. It suffices to check that
ui < wi(σ). Substituting ui = n+1− i−f(σi) and wi(σ) = j− i, it suffices to check
that f(σi) > n+1−j. If this inequality did not hold, we would have f(σi) ≤ n+1−j,
hence σi ∈ Tn+1−j. This will contradict the definition of the parking policy used to
create τ , as follows. Consider σj = τn+1−j. In subcase (a), σj = σn = τ1 = max T1.
But our assumption gives σi ∈ T1 and σi > σj , a contradiction. In subcase (b),
σj > σj+1 means that τn+1−j > τn−j, which implies that all elements of the set

Tn+1−j − {τ1, . . . , τn−j} = Tn+1−j − {σj+1, . . . , σn}

are larger than τn−j = σj+1, and σj is the largest element in this set. But σi is
also an element of this set, and it is larger than σj , a contradiction. In subcase (c),
σj < σj+1 implies that σj is the largest element in the set

Tn+1−j − {τ1, . . . , τn−j} = Tn+1−j − {σj+1, . . . , σn}

that is smaller than σj+1. But our assumption gives that σi is in this set and
satisfies σj < σi < σj+1, a contradiction. Thus, the desired inequality must hold in
all subcases.
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(III) σi is not in the rightmost ascending run of σ, and σ can be written

σ = · · ·σi · · ·σj > σj+1 · · · ,

where: σj is the last entry in the ascending run containing σi (so j ≥ i); and σi <
σj+1. These inequalities force σi < σj . By definition, wi(σ) = j − i. As in case (II),
the desired inequality ui < wi(σ) is equivalent to the inequality f(σi) > n+1− j. If
the latter inequality fails, then σi ∈ Tn+1−j. As in case (II) subcase (b), σj > σj+1

means that τn+1−j > τn−j, which implies that all elements of the set

Tn+1−j − {τ1, . . . , τn−j} = Tn+1−j − {σj+1, . . . , σn}

are larger than τn−j = σj+1, and σj is the largest element in this set. But σi is an
element of this set that is smaller than σj+1, which is a contradiction. So the desired
inequality must hold.

This completes the proof that H maps into In.
Next, the definitions of ui and G in (12) and (11) make it clear that

G ◦ H = IdPn .

It is also obvious from the definition of H that

pmaj(P ) = qstat(H(P )).

On the other hand, note that

tstat(H(P )) =
∑n

i=1 ui =
∑n

i=1(n + 1 − i) −
∑n

i=1 f(i)

= n(n + 1)/2 −
∑n

i=1 f(i) = area(P ),

where the last equality is formula (5).

Example 43. Let n = 8 and let f ∈ P8 be given by

f(1) = 2, f(2) = 3, f(3) = 5, f(4) = 4,

f(5) = 1, f(6) = 4, f(7) = 2, f(8) = 6.

As in Example 37, we compute σ = 8 > 2, 3, 4, 6, 7 > 1, 5. We then compute

u1 = 2, u2 = 4, u3 = 1, u4 = 1,

u5 = 0, u6 = 1, u7 = 0, u8 = 0.

Note that H(f) = I, where I is the object in In from Example 41. We have G(H(f)) = f
and H(G(I)) = I.
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Theorem 44. The maps G : In → Pn and H : Pn → In are bijections with H = G−1. G
and H are weight-preserving in the sense that

pmaj(P ) = qstat(H(P )) and area(P ) = tstat(H(P )); (15)

qstat(I) = pmaj(G(I)) and tstat(I) = area(G(I)). (16)

Consequently,∑
P∈Pn

qpmaj(P )tarea(P ) = CHn(q, t) =
∑

P∈Pn

qarea(P )tdinv(P ) =
∑

Q∈Qn

qdmaj(Q)tarea′(Q), (17)

and so all these statistics have the same univariate distribution.

Proof. We have already shown that G maps into Pn, H maps into In, and G ◦H = IdPn .
The last equation implies that H is an injection and G is a surjection. But we have seen
in (10) that

|In| = |Pn| = (n + 1)n−1 < ∞.

Since the sets are finite, H is automatically a surjection, G is automatically an injection,
and H = G−1. The properties in (15) were proved in the previous lemma, and (16) follows
by replacing P by G(I) and simplifying. Finally, the first equality in (17) follows from
(9) and the existence of the weight-preserving map bijection G. The other formulas for
CHn(q, t) have already been discussed. Letting q = 1 or t = 1 in (17) gives the final
assertion of the theorem.

Remark 45. It can be shown directly from the definitions of H and G that H ◦ G =
IdIn, without using the identity |Pn| = |In|. Given a labelled path of the form G(I),
where I = (σ; u1, . . . , un), one shows by backwards induction that the algorithm defining
H(G(I)) correctly recovers σn, σn−1, . . . , σ1. The argument is similar to the case analysis
in the proof of Lemma 42, and is left to the interested reader.

3 Statistics for Labelled Trapezoidal Lattice Paths

This section describes statistics for labelled trapezoidal paths, which lead to a conjectured
combinatorial interpretation for the Hilbert series of the modules DH

(m)
n .

Definition 46. Fix integers n, k, m ≥ 0.

(1) A labelled lattice path of height n consists of a lattice path having n vertical steps
labelled 1, 2, . . . , n and an unspecified number of unlabelled horizontal steps. When
drawing a labelled path, our convention is to place the label for each vertical step
in the lattice square directly right of that vertical step. We call a labelled lattice
path valid iff the labels in each column increase from bottom to top.

(2) A labelled trapezoidal path of type (n, k, m) is a valid labelled lattice path whose
underlying unlabelled path P lies in Tn,k,m. Let Pn,k,m denote the collection of all
such labelled paths.
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Figure 10: A labelled trapezoidal path.

As in the case of labelled Dyck paths, we can specify a labelled trapezoidal path P by
giving a pair of vectors

~g(P ) = (g0, g1, . . . , gn−1), ~p(P ) = (p0, p1, . . . , pn−1),

where gi(P ) is the number of area cells in the i’th row from the bottom, and pi is the
label of the vertical step in the i’th row from the bottom. It is easy to see that a vector of
n integers (g0, . . . , gn−1) corresponds to a legal path in Tn,k,m iff the following conditions
hold:

(A) g0 ∈ {0, 1, . . . , k}.

(B) gi ≥ 0 for all i.

(C) gi+1 ≤ gi + m for all i.

Moreover, the associated vector of integers ~p(P ) represents a valid labelling iff:

(D) p0, . . . , pn−1 is a permutation of 1, 2, . . . , n.

(E) For all i, if gi+1 = gi + m, then pi < pi+1.

Thus, when convenient, we may regard Pn,k,m as the set of all pairs of vectors (~g, ~p)
satisfying (A)—(E).

Example 47. Figure 10 shows a typical labelled path in P6,2,3. This object corresponds
to the vector pair

((1, 4, 4, 0, 3, 1), (3, 5, 4, 1, 6, 2)).

We have the following analogues of the area and dinv statistics.

Definition 48. (1) The area of P = (~g, ~p) ∈ Pn,k,m is defined by

area(P ) =
n−1∑
i=0

gi.

This is the number of area cells in the diagram of P , as usual.
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(2) As above, set r+ = max(r, 0) for any integer r. The inversion statistic of P is
defined by letting

h(P ) = h1(P ) + h2(P ) + h3(P ) − h4(P ), where:

h1(P ) =
∑
i<j

(m − |gi − gj |)+

h2(P ) =
n−1∑
i=0

(k − gi)
+

h3(P ) =
∑
i<j

χ(gi − gj ∈ {1, 2, . . . , m} and pi > pj)

h4(P ) =
∑
i<j

χ(gi − gj ∈ {0,−1,−2, . . . ,−(m − 1)} and pi > pj)

Equivalently, we can define

h(P ) = h2(P ) +
∑
i<j

m−1∑
d=0

χ(Ai,j,d),

where Ai,j,d is the logical statement

(gi − gj + d = 0 and pi < pj) or
(gi − gj + d ∈ {1, 2, . . . , m − 1}) or
(gi − gj + d = m and pi > pj).

The verification of this equivalence involves checking that the summands corre-
sponding to a fixed choice of i and j in h1(P )+h3(P )−h4(P ) always add up to the
corresponding summand

∑m−1
d=0 χ(Ai,j,d). This is done by considering cases based on

the value of gi − gj and whether pi > pj or pi < pj holds. These cases are checked
in Table 1.

(3) Define

CHn,k,m(q, t) =
∑

P∈Pn,k,m

qarea(P )th(P ).

Example 49. For the path

P = ((1, 4, 4, 0, 3, 1), (3, 5, 4, 1, 6, 2)).

shown in Figure 10, where n = 6, k = 2, m = 3, the values of gi − gj for i < j are:

i = 1 : −3,−3, 1,−2, 0;
i = 2 : 0, 4, 1, 3;
i = 3 : 4, 1, 3;
i = 4 : −3,−1;
i = 5 : 2.
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Value of Order of labels Contribution to Value of

z = gi − gj pi, pj h1(P ) + h3(P ) − h4(P )
∑m−1

d=0 Ai,j,d

z > m pi > pj 0 0
z > m pi < pj 0 0

1 ≤ z ≤ m pi > pj m − z + 1 m − z + 1
1 ≤ z ≤ m pi < pj m − z m − z
−m < z ≤ 0 pi > pj m − |z| − 1 m − |z| − 1
−m < z ≤ 0 pi < pj m − |z| m − |z|

z ≤ −m pi > pj 0 0
z ≤ −m pi < pj 0 0

Table 1: Checking the equivalence of the two formulas for h(P ).

Hence, we compute:

area(P ) = 13, h1(P ) = 16, h2(P ) = 4, h3(P ) = 4, h4(P ) = 2, h(P ) = 22.

Conjecture 50. For all n, m ≥ 1, we have

CHn,0,m(q, t) = H(m)
n (q, t).

In other words, the statistics for labelled paths inside the triangle with vertices (0, 0), (0, n),
and (mn, n) give a combinatorial interpretation for the Hilbert series of the generalized

diagonal harmonics module DH
(m)
n .

This conjecture has been confirmed for small values of n and m by computer, using
the formula

H(m)
n (q, t) = ∇m(s1n)|sλ=fλ

mentioned in the Introduction.

Conjecture 51. For all n, m ≥ 1, we have the specializations

qmn(n−1)/2CHn,0,m(q, 1/q) = [mn + 1]n−1
q ;

qn+mn(n−1)/2CHn,1,m(q, 1/q) = (1 + qn+1) · [mn + 2]n−1
q .

At present, there are no conjectures for the corresponding specializations when k > 1.

Conjecture 52. For all n, k, m, we have the joint symmetry

CHn,k,m(q, t) = CHn,k,m(t, q).

As evidence for this conjecture, we will prove the univariate symmetry

CHn,k,m(q, 1) = CHn,k,m(1, q).

The proof will use an analogue of the pmaj statistic, which is defined later. First, we
need to establish the analogue of the summation formula (4).
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4 Summation Formula for CHn,k,m(q, t)

In this section, we will derive a formula for the generating function CHn,k,m(q, t) as a
summation over a collection of functions (equation (18) below). This formula is the
extension of formula (4) to the cases k > 0 and m > 1.

Here are some remarks to motivate this new formula. We proved that the original
formula (4) is the common generating function for the pairs of statistics (pmaj, area) and
(area, dinv) on Dyck paths. In particular, this formula was the key ingredient in the
proof that pmaj, area, and dinv have the same univariate distribution. We will see that
formula (18) plays a similar role in proving that statistics defined on Pn,k,m have the same
distribution.

Examining the proof of (4), which appears in [11], suggests that we should look at
subcollections of Pn,k,m where the labels appearing on each “diagonal” are fixed in advance.
More precisely, suppose we are given an ordered partition S0, S1, . . . , Sk+m(n−1) of the set
of labels {1, 2, . . . , n} into pairwise disjoint subsets, some of which may be empty. Then
we can consider only those labelled paths P = (~g, ~p) in Pn,k,m such that pi ∈ Sj implies
gi = j. In other words, the set of labels in Sj must appear in rows of P that contain
exactly j area cells.

In the original formula (4), where k = 0 and m = 1, it was convenient to represent
the set partition S0, S1, . . . , as a permutation σ as follows. First, write down the word

w = | Sn | Sn−1 | · · ·S3 | S2 | S1 | S0

in which the elements of each Sj (read from left to right) appear in increasing order, and
a bar symbol is drawn between consecutive sets Sj . Now, it is easy to see that conditions
(A)—(E) imply the following properties of w when k = 0 and m = 1:

• Sj = ∅ implies Sk = ∅ for all k > j.

• The largest element of Sj is greater than the smallest element of Sj−1 whenever both
sets are nonempty.

Let σ denote w with all bar symbols erased; clearly, σ is a permutation of {1, 2, . . . , n}.
The first property says that there are never two or more consecutive bar symbols, except
possibly at the beginning of the word w. The second property says that the descents of
w occur precisely at the locations of the erased bars (occurring after the beginning of
the word). Therefore, w is recoverable from σ: given σ, we simply draw bars wherever
descents occur, and then draw extra bars at the beginning of w until there are n bars
total. Of course, the sets S0, S1, . . . are recoverable from w.

Unfortunately, the two properties above are no longer guaranteed in the case where
k > 0 or m > 1. Hence, we are led to seek another representation for the set partition
S0, S1, . . .. It is convenient to introduce functions for this purpose. Let f : {1, 2, . . . , n} →
{0, 1, . . . , k + m(n − 1)} be a function. Then we obtain a set partition of {1, 2, . . . , n} by
setting Sj = f−1({j}) for 0 ≤ j ≤ k + m(n − 1). In this notation, we wish to consider
the subcollection of paths P = (~g, ~p) in Pn,k,m such that f(pi) = gi for 1 ≤ i ≤ n. It is
convenient to introduce further notation to describe these functions.
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Definition 53. Fix n, k, m. Let f : {1, 2, . . . , n} → {0, 1, . . . , k + m(n − 1)} be any
function.

(1) Define the subcollection of labelled paths of type (n, k, m) associated to f by

Pn,k,m(f) = {P = (~g, ~p) ∈ Pn,k,m : f(pi) = gi for 1 ≤ i ≤ n}.

Note that, for certain choices of f , this subcollection may be empty.

(2) For any set T , define the usual inverse image of T under f by

f−1(T ) = {x ∈ {1, 2, . . . , n} : f(x) ∈ T}.

Also, for any integer i, define

f−1
<i (T ) = {x : x < i and f(x) ∈ T},

f−1
>i (T ) = {x : x > i and f(x) ∈ T}.

For brevity, we may write f−1(j) instead of f−1({j}), etc.

(3) Define the set partition associated to f to be the list (S0, . . . , Sk+m(n−1)), where
Sj = f−1(j) for each j.

(4) Define the word of f by

w(f) = S0 | S1 | S2 | · · · | Sk+m(n−1) |

where the elements of each Sj appear in decreasing order from left to right, followed
by a bar symbol. Consecutive bar symbols appear in the word iff some Sj is empty.
Note that this is the reversal of the word w described in the special case k = 0,
m = 1 above. Also note that f is recoverable from w(f), thanks to the bar symbols.
We may safely omit bar symbols that occur together at the far right of the word of
f .

(5) Let Fn,k,m denote the set of all functions f : {1, 2, . . . , n} → {0, 1, . . . , k+m(n−1)}.
For f ∈ Fn,k,m, define

maj(f) =

n∑
j=1

f(j)

count(f, j) = χ(f(j) ≤ k) + |f−1
<j (f(j) − m)| + |f−1

>j (f(j))|
+|f−1({f(j) − 1, . . . , f(j) − (m − 1)})|.

x0(f) =
∑
j1<j2

(m − |f(j1) − f(j2)|)+ +
n∑

j=1

(k − f(j))+

xj(f) = −|f−1
>j ({f(j), f(j)− 1, . . . , f(j) − (m − 1)})|
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Example 54. Let n = 7, k = 2, m = 2. Let the function f be given by

f(1) = 2, f(2) = 0, f(3) = 0, f(4) = 3, f(5) = 0, f(6) = 2, f(7) = 2.

The word of f is
w(f) = 5 3 2 | | 7 6 1 | 4 ||||||||||||,

where there are 12 trailing bar symbols. Also

maj(f) = 9, count(f, 1) = 3, count(f, 2) = 3, count(f, 3) = 2,

count(f, 4) = 3, count(f, 5) = 1, count(f, 6) = 5, count(f, 7) = 4,

x0(f) = 15 + 6 = 21, x1(f) = −2, x2(f) = −2, x3(f) = −1,

x4(f) = −2, x5(f) = 0, x6(f) = −1, x7(f) = 0.

The goal of the rest of this section is to establish the following formula.

Theorem 55.

CHn,k,m(q, t) =
∑

f∈Fn,k,m

qmaj(f)tx0(f)

n∏
j=1

txj(f)[count(f, j)]t. (18)

In the coming proofs, it will be convenient to use the following notation. Given a
labelled path P = (~g, ~p), we can think of P as a single list of n “tiles”

P =
g1

p1

g2

p2
· · · gn

pn
. (19)

In this notation, specifying a function f ∈ Fn,k,m is equivalent to specifying a collection

of n tiles, namely
f(i)

i
for 1 ≤ i ≤ n. The subcollection Pn,k,m(f) consists precisely of

all rearrangements of these n tiles that satisfy the restrictions (A)—(E) above. Note that
(B) and (D) are guaranteed to hold, by definition of f .

We will be interested in building the object P by putting down tiles one at a time.
Thus, it is of interest to consider “partial” objects Q satisfying (A)—(C) and (E) but not
necessarily (D).

Lemma 56. Suppose P ∈ Pn,k,m(f), so P satisfies conditions (A)—(E). Let i1, . . . , in be
the word of f with all bar symbols erased. Let S = {is, . . . , in} be any suffix of this word,

where 2 ≤ s ≤ n. Let Q be obtained from P by removing all tiles of the form
f(i)

i
for

i ∈ S. Then Q satisfies conditions (A)—(C) and (E).
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Proof. We prove the contrapositive in each case. If Q does not satisfy condition (A), then

it begins with a tile of the form
x
y

, where x > k. By definition of the word of f and S,

all the removed tiles must have had top entries x′ ≥ x. Thus, the first tile of P must have
had top entry at least x, and so P does not satisfy condition (A).

If Q does not satisfy condition (B), then P does not satisfy (B) either, since every tile
in Q is a tile in P .

Suppose Q does not satisfy condition (C), so that there are consecutive tiles
x
y

x′

y′

in Q with x′ > x + m. As before, the definitions of w(f) and S show that any tiles in
P that were between these two tiles of Q before being removed must have had top entry

x′′ ≥ x′. Hence, the tile immediately following
x
y

in P still has top entry larger than

x + m. So P does not satisfy condition (C).
Finally, suppose Q does not satisfy condition (E), so that there are consecutive tiles

x
y

x′

y′ in Q with x′ = x + m and y > y′. Let
x′′

y′′ be the tile immediately following
x
y

in P . If x′′ = x′ and y′′ = y′, then P fails condition (E) already. Otherwise, by definition
of w(f) and S, we must have x′′ ≥ x′ = x + m. Since P satisfies condition (C), we in fact
have x′′ = x + m = x′. Now, since the elements of Sx+m appear in decreasing order in

the word of f , the presence of the tile
x + m

y′ in Q is only possible if the value y′′ in the

removed tile is less than y′. But then y > y′′, so that P fails condition (E) in this case
too.

Lemma 57. Given n, k, m and f ∈ Fn,k,m, we have

|Pn,k,m(f)| =
n∏

j=1

count(f, j).

Proof. We can uniquely construct every object P ∈ Pn,k,m(f) as follows. Start with a

pool of n available tiles
f(i)

i
, for 1 ≤ i ≤ n. Let i1, . . . , in be the word of f with all bar

symbols erased. Starting with an empty list of tiles, form the object P by successively
inserting each tile

f(i1)
i1

,
f(i2)

i2
, · · · ,

f(in)
in

into the list of previously inserted tiles. At each step, the new tile may be inserted
anywhere in the existing list, provided that conditions (A), (C), and (E) hold. The
previous lemma guarantees that all objects in Pn,k,m(f) can be constructed under these
restrictions on tile insertions. Since the tiles are distinct, it is clear that there is a unique
insertion order that will produce any given object P .
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Thus, we need only count how many legal positions are available when each tile
f(j)

j
is inserted. Fix j. First, observe that the insertion order ensures that f(j) ≥ f(i) for all

previously inserted tiles
f(i)

i
. This means that conditions (C) and (E) automatically

hold for the tile
f(j)

j
and the tile immediately following it (if any). Thus, to check that

conditions (A), (C), and (E) continue to hold after the insertion of tile
f(j)

j
, we need

only check that: (i) f(j) ≤ k if
f(j)

j
is inserted in the leftmost position; or (ii) conditions

(C) and (E) hold for the pair of tiles
f(`)

`
f(j)

j
, where

f(`)
`

is the tile immediately

preceding
f(j)

j
. By condition (C), we must have f(`) ∈ {f(j), f(j) − 1, . . . , f(j) − m}.

By condition (E), if f(`) = f(j) − m, then we must also have ` < j.

Now, consider the various places where the new tile
f(j)

j
may be inserted.

• The tile may be inserted at the far left position, becoming the new first tile in the
list. By condition (A), this is allowable iff f(j) ≤ k. So, we get a contribution of
χ(f(j) ≤ k) to the position count.

• The tile may be inserted immediately after a tile of the form
f(j) − m

`
, where we

need ` < j by condition (E). By definition of w(f) and the tile insertion order, all

such tiles have already been placed when tile
f(j)

j
is being inserted. Therefore,

the number of such tiles is
|f−1

<j (f(j) − m)|.

• The tile may be inserted immediately after a tile of the form
f(j) − u

`
, where

1 ≤ u < m and ` is arbitrary. By definition of w(f) and the tile insertion order, all

such tiles have already been placed when tile
f(j)

j
is being inserted. Therefore,

the number of such tiles is

|f−1({f(j) − 1, . . . , f(j) − (m − 1)})|.

• The tile may be inserted immediately after a tile of the form
f(j)

`
, where ` is

arbitrary. However, by definition of w(f) and the tile insertion order, only those
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tiles with ` > j have been inserted prior to the insertion of tile
f(j)

j
. Therefore,

the number of such tiles is only

|f−1
>j (f(j))|.

• The new tile can only be inserted in positions of the type described in the last four
cases, thanks to condition (C).

In summary, for each j between 1 and n, the number of ways to place tile
f(j)

j
is

precisely

χ(f(j) ≤ k) + |f−1
<j (f(j) − m)| + |f−1({f(j) − 1, . . . , f(j) − (m − 1)})| + |f−1

>j (f(j))|,

which is just count(f, j). The formula in the statement of the lemma now follows from
the product rule.

Corollary 58.

CHn,k,m(q, 1) =
∑

f∈Fn,k,m

qmaj(f)
n∏

j=1

count(f, j). (20)

Proof. Note that Pn,k,m is the disjoint union of the sets Pn,k,m(f) over all f ∈ Fn,k,m. Fix
f , and consider any P ∈ Pn,k,m. We have

area(P ) =

n−1∑
i=0

gi =

n−1∑
i=0

f(pi) =

n∑
i=1

f(i) = maj(f),

since the labels pi are a permutation of 1, 2, . . . , n. Thus, all paths in Pn,k,m(f) contribute
a summand qmaj(f) to the generating function CHn,k,m(q, 1). The stated formula then
follows immediately from the previous lemma.

Example 59. Let n,k,m, and f be as in the previous example. To construct an object
P ∈ Pn,k,m(f), we should insert tiles in the following order:

0
5

0
3

0
2

2
7

2
6

2
1

3
4

An example of an object created in this way is

P =
2
6

0
3

2
7

3
4

2
1

0
5

0
2

Note that area(P ) = 9 = maj(f).
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Our next goal is to extend formula (20) to keep track of the statistic h(P ) = h1(P ) +
h2(P )+h3(P )−h4(P ). The final formula, equation (18), will be proved in two steps. The
first (easier) step involves analyzing the contribution of h1(P ) + h2(P ). The next result
shows that this quantity is constant for all objects P in a given subcollection Pn,k,m(f).

Lemma 60.

∑
P∈Pn,k,m

qarea(P )th1(P )+h2(P ) =
∑

f∈Fn,k,m

qmaj(f)tx0(f)
n∏

j=1

count(f, j). (21)

Proof. In light of formula (20) and its proof, we need only show that

h1(P ) + h2(P ) = x0(f) for all P ∈ Pn,k,m(f).

Recall that for P ∈ Pn,k,m(f), we have gi = f(pi) for all i. Also, p0, . . . , pn−1 is a
rearrangement of 1, 2, . . . , n, so we have

h2(P ) =

n−1∑
i=0

(k − gi)
+ =

n−1∑
i=0

(k − f(pi))
+ =

n∑
j=1

(k − f(j))+.

Next, recall that

h1(P ) =
∑
i<j

(m − |gi − gj|)+.

This sum extends over all ordered pairs (i, j) with 0 ≤ i < j ≤ n − 1. However, since
|gi − gj | = |gj − gi|, we could equally well sum over all unordered pairs {i, j} with 0 ≤
i, j ≤ n − 1 and i 6= j. Hence,

h1(P ) =
∑

{i1,i2}:i1 6=i2

(m − |gi1 − gi2|)+

=
∑

{i1,i2}:i1 6=i2

(m − |f(pi1) − f(pi2)|)+

=
∑

{j1,j2}:j1 6=j2

(m − |f(j1) − f(j2)|)+

=
∑
j1<j2

(m − |f(j1) − f(j2)|)+.

Combining these calculations and comparing to the definition of x0(f), we get h1(P ) +
h2(P ) = x0(f) as desired.

The next step is to analyze the value of h3(P ) − h4(P ) for P ∈ Pn,k,m(f). Consider
the partial objects

P0, P1, . . . , Pn = P
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that are constructed in Lemma 57 by inserting tiles in the order given by the word of f .
We think of each newly inserted tile as contributing a certain increment to the statistic
h3(P ) − h4(P ). More specifically, let y0 = 0 and, for 1 ≤ i ≤ n, let

yi = [h3(Pi) − h4(Pi)] − [h3(Pi−1) − h4(Pi−1)] .

Then h3(P ) − h4(P ) =
∑n

i=1 yi; note that yi is the change in the statistic h3 − h4 (which
may be positive or negative) resulting from the insertion of the i’th tile.

It will be convenient to alter the indexing scheme slightly, as follows. Suppose the i’th

tile in the insertion order is
f(j)

j
. Then define zj = yi. In words, zj is the change in the

statistic h3 − h4 due to the insertion of tile
f(j)

j
. Note that h3(P ) − h4(P ) =

∑n
j=1 zj.

We have shown, in the proof of Lemma 57, that there are exactly cj = count(f, j) valid

positions in which tile
f(j)

j
may be inserted. Temporarily number these valid positions

0, 1, . . . , cj − 1 reading from right to left. We will show later that, if the tile is placed in
the valid position numbered p, then

zj = xj(f) + p (0 ≤ p < cj). (22)

Thus, the contribution to h3 − h4 due to this particular tile insertion can be accounted
for by the polynomial

txj(f)

cj−1∑
p=0

tp = txj(f) · [count(f, j)]t,

which is a t-analogue of the number count(f, j) in (20). By the product rule for generating
functions, we conclude that

∑
P∈Pn,k,m

th3(P )−h4(P ) =
∑

f∈Fn,k,m

n∏
j=1

xj(f) · [count(f, j)]t.

Combining this with the previous analysis for area and h1 + h2, the desired formula (18)
will follow immediately.

To prove the claims in the last paragraph, we need to consider the effect of inserting tile
f(j)

j
in arbitrary positions in the current tile configuration, not just the valid positions.

We will now label each position with the change in h3 −h4 caused by inserting tile
f(j)

j
in this position, regardless of the validity of the resulting partial object.

Example 61. Continuing Example 59, consider the partial object

Q =
2
6

0
3

2
7

0
5

0
2

,
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which has h3(Q) − h4(Q) = 3. The next tile to be inserted is
2
1

. The following diagram

shows the change in h3 − h4 when we insert this tile in all possible positions. We have
also labelled which positions are valid.

2
6

0
3

2
7

0
5

0
2

validity: yes yes no yes no no
change in h3 − h4: 0 −1 −1 −2 −2 −2

Note that if we look at only the valid positions, from right to left, the changes we get are
−2, −1, and 0, which are exactly the numbers x1(f) + p for 0 ≤ p < 3 = count(f, 1).

Now, as in the previous example, assume that we choose to insert tile
2
1

immediately

after
2
7

, producing the partial object

Q′ =
2
6

0
3

2
7

2
1

0
5

0
2

,

with h3(Q
′) − h4(Q

′) = 1. The next tile to be inserted is
3
4

. The following diagram

shows the change in h3 − h4 when we insert this tile in all possible positions. We have
also labelled which positions are valid.

2
6

0
3

2
7

2
1

0
5

0
2

validity: no yes no yes yes no no
change in h3 − h4: 1 0 0 −1 −2 −2 −2

Note that if we look at only the valid positions, from right to left, the changes we get are
−2, −1, and 0, which are exactly the numbers x4(f) + p for 0 ≤ p < 3 = count(f, 4).

Let us make some observations about these examples. First, note that there are blocks
of consecutive insertion positions for which the change in h3 − h4 is the same. Each
such block (except possibly the leftmost block) consists of zero or more invalid positions
terminated by one valid position, scanning from right to left. The leftmost block may
or may not end with a valid position, depending on the value of k. Next, note that the
change in h3 −h4 for positions in the rightmost block is xj(f). As we pass from one block
to the next, scanning from right to left as always, the change in h3−h4 increases by 1 each
time. Finally, we have already proved (in Lemma 57) that the number of valid positions
is exactly count(f, j). Combining all these observations, we deduce that the claim (22)
does hold in these two examples. The next lemma shows that these observations are true
in general, and hence claim (22) always holds.
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Lemma 62. Fix n, k, m, and f ∈ Fn,k,m. Let Q be a partial object, constructed as in
the proof of Lemma 57 by inserting tiles in the order given by the word of f . Suppose

Tj =
f(j)

j
is the next tile to be inserted into Q. Label each insertion position with the

change in h3 − h4 caused by inserting the new tile in that position. Then we have the
following properties:

(1) The rightmost position is labelled xj(f).

(2) Suppose two consecutive insertion positions in Q are separated by a tile Tp =
f(p)

p
.

(a) If the position just right of Tp is an invalid position for Tj, then the position
just left of Tp has the same label as the position just right of Tp.

(b) If the position just right of Tp is a valid position for Tj, then the label of the
position just left of Tp is one more than the label of the position just right of
Tp.

(3) Hence, when scanning the count(f, j) valid insertion positions from right to left,
their labels are precisely the numbers

xj(f) + p (0 ≤ p < count(f, j)).

Proof. We begin by observing that, for any tile Tp =
f(p)

p
in the partial object Q, we

must have f(j) ≥ f(p); moreover, if f(j) = f(p), then p > j. This follows directly from
the definition of the word of f and the tile insertion order.

To prove (1), recall the definitions of h3 and h4:

h3(Q) =
∑
i1<i2

χ(gi1 − gi2 ∈ {1, 2, . . . , m} and pi1 > pi2)

h4(Q) =
∑
i1<i2

χ(gi1 − gi2 ∈ {0,−1,−2, . . . ,−(m − 1)} and pi1 > pi2)

Suppose we insert tile Tj in the far right position, after all the tiles Tp =
f(p)

p
in Q. The

change in h3 caused by this insertion is∑
Tp∈Q

χ(f(p) − f(j) ∈ {1, 2, . . . , m} and p > j) = 0,

since the observation above gives f(p) − f(j) ≤ 0. On the other hand, the change in h4

caused by the insertion is∑
Tp∈Q

χ(f(p) − f(j) ∈ {0,−1, . . . ,−(m − 1)} and p > j)
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= |f−1
>j ({f(j), f(j) − 1, . . . , f(j) − (m − 1)})|.

The last equality uses the fact that all tiles with lower entries in the set

f−1
>j ({f(j), . . . , f(j) − (m − 1)})

have already been inserted in Q before tile Tp is inserted; this again follows from the
definition of the insertion order. To summarize, the change in h3 −h4 caused by inserting
Tp at the far right is

0 − |f−1
>j ({f(j), . . . , f(j) − (m − 1)})| = xj(f),

which proves (1).
In the proof of (2), we will consider configurations where the new tile Tj is inserted

immediately right or left of an existing tile Tp. Note that passing from the configuration
· · ·TpTj · · · to · · ·TjTp · · · simply amounts to interchanging the two adjacent tiles Tp

and Tj . This interchange will only affect a single term in the formulas for h3 and h4.
Specifically, in h3, the term

t1 = χ(f(p) − f(j) ∈ {1, 2, . . . , m} and p > j)

will be replaced by the term

t2 = χ(f(j) − f(p) ∈ {1, 2, . . . , m} and j > p).

In h4, the term

t3 = χ(f(p) − f(j) ∈ {0,−1, . . . ,−(m − 1)} and p > j)

will be replaced by the term

t4 = χ(f(j) − f(p) ∈ {0,−1, . . . ,−(m − 1)} and j > p).

The net change in the statistic h3 −h4 due to the interchange is therefore (t2 − t4)− (t1 −
t3) = t2 + t3 − t1 − t4.

To prove (2a), assume that p and j are such that the position just right of Tp is an
invalid position for Tj . This situation occurs in the following two cases.

(i) We have f(p) − f(j) < −m, so that the position right of Tp is invalid because
condition (C) fails. We have t1 = t2 = t3 = t4 = 0, so the change in h3 − h4 when
we move Tj to the left of Tp is zero.

(ii) We have f(p) − f(j) = −m and p > j, so that the position right of Tp is invalid
because condition (E) fails. We have t1 = t2 = t3 = t4 = 0, so the change in h3 − h4

when we move Tj to the left of Tp is zero.

To prove (2b), assume that p and j are such that the position just right of Tp is a valid
position for Tj . This situation occurs in the following four cases.
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(iii) We have f(p) − f(j) = −m and p < j. Then t1 = t4 = 0, while t2 = 1 and t3 = 0.
Hence, the change in h3 − h4 when we move Tj to the left of Tp is +1.

(iv) We have −(m − 1) ≤ f(p) − f(j) ≤ −1 and p > j. Then t1 = t4 = 0, while t2 = 0
and t3 = 1. Hence, the change in h3 − h4 when we move Tj to the left of Tp is +1.

(v) We have −(m − 1) ≤ f(p) − f(j) ≤ −1 and p < j. Then t1 = t4 = 0, while t2 = 1
and t3 = 0. Hence, the change in h3 − h4 when we move Tj to the left of Tp is +1.

(vi) We have f(p) − f(j) = 0, which forces p > j by definition of w(f) and the tile
insertion order. Then t1 = t2 = 0, while t3 = 1 and t4 = 0. Hence, the change in
h3 − h4 when we move Tj to the left of Tp is +1.

Note that the cases (i)—(vi) are exhaustive, since the tile insertion order rules out the
possibility that f(p) − f(j) > 0. This completes the proof of (2).

To prove (3), note that (1) shows the rightmost position has label xj(f). Reading the
positions from right to left, (2a) implies that there will be a block of positions with label
xj(f), consisting of zero or more invalid positions followed by one valid position. By (2b),
the next position to the left will have label xj(f) + 1. Then (2a) implies that there is
another block of positions labelled xj(f) + 1, consisting of zero or more invalid positions
followed by one valid position. This process continues until all valid positions have been
encountered. We saw in the proof of Lemma 57 that the number of valid positions is
exactly count(f, j). Note that the leftmost block of positions may or may not end with
a valid position, depending on k. This ambiguity does not affect the correctness of the
present argument, since we stop as soon as the last (leftmost) valid position has been
scanned. (This is illustrated by the two preceding examples, where the leftmost position
is valid in one case and invalid in the other.)

This lemma, together with the discussion preceding it, completes the proof of formula
(18). We leave to the reader the task of showing that this formula reduces to formula
(4) from [11] in the case m = 1, k = 0. This is merely a matter of notation translation,
keeping in mind that the permutation σ corresponds to the reversal of the word of f .

5 Univariate Symmetry of CHn,k,m(q, t)

This section generalizes the constructions of §2 to labelled trapezoidal paths of type
(n, k, m). We obtain another combinatorial interpretation of the right side of formula
(18) in which t keeps track of area and q keeps track of a new statistic pmaj. As in §2,
we can conclude that the ordered pairs of statistics (area, h) and (pmaj, area) have the
same bivariate distribution on labelled paths. Therefore, all three statistics have the same
univariate distribution. Unfortunately, the arguments given here are not strong enough
to prove the conjectured joint symmetry of CHn,k,m(q, t).
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5.1 Combinatorial Model of the Generating Function

We begin by introducing a simple combinatorial model for the formula (18).

Definition 63. (1) Given n, k, m, and f ∈ Fn,k,m, define the right limit of j relative
to f by

Rj(f) = |f−1
>j ({f(j), . . . , f(j) − (m − 1)})| = |xj(f)|,

and define the left limit of j relative to f by

Lj(f) = xj(f) + count(f, j) − 1.

Formula (18) can then be rewritten

CHn,k,m(q, t) =
∑

f∈Fn,k,m

qmaj(f)tx0(f)

n∏
j=1

p=Lj(f)∑
p=−Rj(f)

tp.

(2) Fix n, k, and m. Define an intermediate object of type (n, k, m) to be a pair

I = (f ; u1, u2, . . . , un),

where f ∈ Fn,k,m and where uj are integers such that −Rj(f) ≤ uj ≤ Lj(f) for all
j. Denote the collection of such intermediate objects by In,k,m.

(3) Define the intermediate q-statistic for I to be

qstat(I) = maj(f) =

n∑
j=1

f(j).

Define the intermediate t-statistic for I to be

tstat(I) = x0(f) +
n∑

j=1

uj.

It is obvious from the definition of the intermediate objects and statistics that

∑
I∈In,k,m

qqstat(I)ttstat(I) =
∑

f∈Fn,k,m

qmaj(f)tx0(f)
n∏

j=1

p=Lj(f)∑
p=−Rj(f)

tp = CHn,k,m(q, t).

Theorem 64. There exists a bijection F : Pn,k,m → In,k,m such that

area(P ) = qstat(F (P )) and h(P ) = tstat(F (P )) for all P ∈ Pn,k,m.
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Proof. The bijection F is based on the tile insertion process from the last section (see
Lemma 57). If P = (~g, ~p) is a labelled path, we define f ∈ Fn,k,m by setting f(pi) = gi,
and we define uj to be the change in the statistic h3 − h4 caused by the insertion of the

tile
f(j)

j
. We then set F (P ) = (f ; u1, . . . , un). Lemma 62 shows that each uj satisfies

the required inequalities
−Rj(f) ≤ uj ≤ Lj(f).

The discussion in the last section shows that area(P ) = qstat(F (P )) and h(P ) =
tstat(F (P )). The map F−1 is defined similarly: given I = (f ; u1, . . . , un), the func-
tion f tells us which tiles to use, and the numbers uj tell us where to insert each tile to
reconstruct P . Lemma 62 shows that there exists a unique valid insertion position for

tile
f(j)

j
that causes a change of uj in the statistic h3 − h4, so that F−1 is well-defined.

Thus F is a bijection.

Corollary 65.
|In,k,m| = |Pn,k,m| for all n, k, m. (23)

Proof. This is immediate from the existence of the bijection F : Pn,k,m → In,k,m.

Example 66. Let us compute F (P ), where P is the path given in tile notation by

P =
2
6

0
3

2
7

3
4

2
1

0
5

0
2

and (n, k, m) = (7, 2, 2). First, examination of the tiles in P gives

f(1) = 2, f(2) = 0, f(3) = 0, f(4) = 3, f(5) = 0, f(6) = 2, f(7) = 2.

Recall that w(f), count(f, j), etc., were computed before in Example 54. To find the
numbers uj, we build up P by inserting tiles in the order given in Example 59. For
instance, Example 61 discusses the last two steps of the tile insertion. From that example,
we see that u1 = −2 and u4 = −1. Similar analysis of the earlier tile insertions shows
that

u5 = 0, u3 = 0, u2 = −2, u7 = 2, u6 = 3.

We conclude that
F (P ) = (f ;−2,−2, 0,−1, 0, 3, 2).

The reader should consult Example 54 to confirm that −Rj(f) ≤ uj ≤ Lj(f) for 1 ≤ j ≤ 7.

Our goal in the rest of this section is to describe another bijection G : In,k,m → Pn,k,m

such that tstat maps to area. The definition of the new statistic pmaj on labelled paths
is engineered so that qstat maps to pmaj under G. Indeed, we will use the equation
pmaj(P ) = qstat(G−1(P )) as the definition of pmaj. Except in the case m = 1 and k = 0
considered earlier, the pmaj statistic does not seem to have a particularly simple direct
definition (not relying on the bijection G).
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5.2 Generalized Parking Functions

It is convenient to introduce the notion of generalized parking functions, which give an al-
ternate notation for describing labelled trapezoidal paths. Some combinatorial properties
of generalized parking functions were studied by C. Yan in [24, 25].

Definition 67. Fix integers n ≥ 1, k ≥ 0, and m ≥ 1.

(1) Let TZn,k,m denote the region bounded by the lines x = 0, y = 0, x = k + my, and
y = n. Number the rows of this region 1 to n, starting at the bottom. Number the
columns in each row of this region 1, 2, 3, . . . from left to right. Define

B(i) = k + m(i − 1) + 1.

Note that a labelled lattice path with n labels stays within the region TZn,k,m iff
the label in row i appears in one of the columns 1, 2, . . . , B(i) for 1 ≤ i ≤ n.

(2) Given any function g with domain {1, 2, . . . , n}, set

Sj(g) = g−1(j) and Ti(g) = g−1({1, 2, . . . , i}) =

i⋃
j=1

Sj(g).

(3) A generalized parking function or generalized preference function of type (n, k, m) is
a function g : {1, 2, . . . , n} → {1, 2, . . . , B(n)} such that

|TB(i)(g)| ≥ i for 1 ≤ i ≤ n.

Let P ′
n,k,m denote the collection of parking functions of type (n, k, m).

Lemma 68. There exists a bijection D0 between functions g : {1, 2, . . . , n} → {1, 2, . . .}
and valid labelled lattice paths of height n starting at the origin and ending with a vertical
step. This bijection yields a bijection D : P ′

n,k,m → Pn,k,m between generalized parking
functions and labelled trapezoidal paths.

Proof. Let g be any function mapping {1, 2, . . . , n} into the positive integers. Starting in
the bottom row of the region {(x, y) : x ≥ 0, 0 ≤ y ≤ n}, place the elements of S1(g)
in increasing order in the first column of the diagram, one per row. Starting in the next
empty row, place the elements of S2(g) in increasing order in the second column of the
diagram, one per row. Continue similarly: after listing all elements x with g(x) < i,
start in the next empty row and place the elements of Si in increasing order in column i.
Finally, draw a lattice path starting at (0, 0) by drawing vertical steps immediately left
of each label, and then drawing the necessary horizontal steps to get a connected path.
D0(g) is defined to be the resulting labelled path.

The inverse of D0 is defined as follows. Let P be any valid labelled lattice path of
height n starting at the origin and ending with a vertical step. For 1 ≤ j ≤ n, define g(j)
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to be the number of the column in which label j appears. This construction obviously
gives an inverse to D0, hence D0 is a bijection.

Now, consider a function g and its associated path P = D0(g). Note that each row in
the diagram of P contains exactly one label. We claim that |Tx(g)| ≥ i iff the label ` in
row i of P appears in one of the columns 1, 2, . . . , x. We prove the contrapositive of each
direction. First, assume that label ` appears in some column z > x. By definition of D0,
there can be at most i − 1 numbers c such that g(c) < z. In particular, the size of Tx(g)
is at most i − 1. Conversely, assume that |Tx(g)| < i. In the construction of P , we will
have exhausted all numbers c with g(c) ≤ x before reaching row i. Thus, the label ` in
row i must satisfy g(`) > x, so it appears in a column z > x. This proves the claim.

Letting x = B(i) in the claim for 1 ≤ i ≤ n, we see that g belongs to P ′
n,k,m iff

the associated path D0(g) belongs to Pn,k,m. (Technically, we may need to add some
horizontal steps to the path D0(g) at the top level y = n to get a path in Pn,k,m ending
at (k + mn, n). These extra steps are obviously harmless.) Hence, restricting D0 to the
set of generalized parking functions gives the desired bijection D : P ′

n,k,m → Pn,k,m.

From now on, we will identify the set of generalized parking functions P ′
n,k,m with the

set of labelled trapezoidal paths Pn,k,m.

Example 69. For the labelled trapezoidal path P ∈ P6,2,3 shown in Figure 10, the
associated parking function g is

g(1) = 12, g(2) = 17, g(3) = 2,

g(4) = 5, g(5) = 2, g(6) = 12.

Remark 70. It is easy to get a recurrence for labelled trapezoidal paths by removing
the steps in the first column and their associated labels. If there are ` ≥ 0 vertical steps
in this column, the associated increasing sequence of labels can be chosen in

(
n
`

)
ways.

What remains in the upper-right part of the diagram is a labelled trapezoidal path of
height n − ` with the same value of m and a new base length of k + m` − 1. Setting
P (n, k, m) = |Pn,k,m|, we obtain the recurrence

P (n, k, m) =
n∑

`=0

(
n

`

)
P (n − `, k + m` − 1, m)

with initial conditions
P (n, k, m) = 0 if n < 0 or k < 0;

P (0, k, m) = 1 for all k ≥ 0, m ≥ 1.

From this recurrence, it is easily verified by induction that

P (n, k, m) = (k + 1) · (mn + k + 1)n−1.

These calculations (and other more general ones) appear in [25].
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Lemma 71. Let P ∈ Pn,k,m correspond to the generalized parking function g. Then

area(P ) = n(k + 1) + mn(n − 1)/2 −
n∑

i=1

g(i). (24)

Proof. It is easy to see that the region TZn,k,m contains nk+mn(n−1)/2 complete lattice
cells. Since label i occurs somewhere in column g(i), there are g(i)− 1 lattice cells inside
the region TZn,k,m and left of label i. These lattice cells lie outside the labelled path
associated to g. Subtracting, we find that

area(P ) = kn + mn(n − 1)/2−
n∑

i=1

[g(i) − 1] = n(k + 1) + mn(n − 1)/2−
n∑

i=1

g(i). (25)

For instance, in the example above we have

area(P ) = 63 − (12 + 17 + 2 + 5 + 2 + 12) = 13.

5.3 Formal Bounce Paths

Before defining the map G, we need to prove a few technical facts about bounce paths.
The basic idea is that a bounce path can be constructed from any sequence of vertical
moves vj by using the usual rule to determine the horizontal moves hj.

§1.7 discussed the bouncing algorithm that assigns to each trapezoidal path P ∈ Tn,k,m

its associated bounce path B(P ). Recall that B(P ) consists of a sequence of alternating
vertical and horizontal moves, which we will denote here as vj(P ) and hj(P ). Each
vertical move vj(P ) was determined from the path P (and the partial bounce path already
constructed), while the horizontal move hj(P ) was calculated from the formula

hj(P ) =
m−1∑
i=0

vj−i(P ) + χ(j < k). (26)

In the last paragraph, a given path P ∈ Tn,k,m was used to construct the lists of
numbers vj(P ) and hj(P ). Suppose, instead, that we are given only a list of numbers
vj that does not necessarily come from executing the bouncing algorithm on a path P .
Then we can still create a “formal bounce path” from the list vj by using a formula like
(26) to define numbers hi in terms of n, k, m, and the vj’s. The precise construction is
as follows.

Definition 72. Fix integers n ≥ 1, k ≥ 0, and m ≥ 1. Suppose {vj : j ∈ Z} is an indexed
family of nonnegative integers satisfying the following conditions:

(a) For all j < 0, vj = 0.

(b) There exists j∗ ≥ 0 such that vj∗ > 0 and v` = 0 for all ` > j∗.
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j 0 1 2 3 4
vj 3 0 3 1 0
hj 4 4 3 4 1

Table 2: The vertical and horizontal moves of a formal bounce path.

(c)
∑j∗

j=0 vj = n.

We introduce the following notation.

(1) Let J = max(j∗ + (m − 1), k − 1).

(2) For 0 ≤ j ≤ J , let

hj =

m−1∑
i=0

vj−i + χ(j < k). (27)

(3) For 0 ≤ j ≤ J , let

Hj =

j∑
i=0

hi and Vj =

j∑
i=0

vi.

It will be convenient to set H−1 = h−1 = V−1 = 0.

(4) Let Q = Q({vj}) be a path constructed as follows. Q starts at the origin and makes
alternating vertical moves and horizontal moves. For 0 ≤ j ≤ J , Q moves up vj

units from its current position and then right hj units. We refer to this move as
the “j’th bounce.” After the j’th bounce, Q has reached coordinates (Hj , Vj). Q is
called the formal bounce path associated to the sequence {vj}.

Example 73. Let (n, k, m) = (7, 2, 2). Suppose we are given v0 = 3, v1 = 0, v2 = 3,
v3 = 1, and vj = 0 for all other j. Here, j∗ = 3 and J = max(3 + 1, 1) = 4. Table 2 shows
the vertical moves and horizontal moves for the formal bounce path Q({vj}).

The path Q = Q({vj}) is shown in Figure 11. Observe that Q happens to lie in the
trapezoid TZn,k,m, and Q ends exactly at the upper-right corner (k+mn, n) of this trape-
zoid. We have B(Q) = Q, i.e., the bounce path associated to Q is Q itself. Furthermore,
the vertical moves vj(Q) of this bounce path are precisely the numbers vj that we were
originally given.

Example 74. Let (n, k, m) = (4, 0, 2). Suppose we are given v0 = 1, v1 = 0, v2 = 0,
v3 = 3, and vj = 0 for all other j. Here, j∗ = 3 and J = max(3 + 1, 0) = 4. Table 3 shows
the vertical moves and horizontal moves for the formal bounce path Q({vj}).

The path Q = Q({vj}) is shown in Figure 12. As before, Q lies in the trapezoid
TZn,k,m, and ends exactly at the upper-right corner (k + mn, n) of this trapezoid. The
vertical moves vj(Q) of the bounce path B(Q) are

v0(Q) = 1, v1(Q) = 0, v2(Q) = 3, v3(Q) = 0.

the electronic journal of combinatorics 11 (2004), #R68 49



Figure 11: A formal bounce path.

j 0 1 2 3 4
vj 1 0 0 3 0
hj 1 1 0 3 3

Table 3: The vertical and horizontal moves of another formal bounce path.

Figure 12: Another formal bounce path.
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This is almost the same as the original sequence vj , except that the element v2 = 0 has
disappeared. This occurred because the corresponding horizontal move h2 was zero.

The phenomenon in the two examples above is typical. We will show that the path
Q = Q({vj}) is always a valid trapezoidal path. Furthermore, under the additional
condition that hj > 0 for 0 ≤ j ≤ J , the vertical moves vj(Q) for the bounce path B(Q)
are precisely the original numbers vj . Hence, in this situation, the list vj can be recovered
from the path Q by performing the bouncing algorithm.

Lemma 75. Let n, k, m, and {vj} be given as in Definition 72. Let hj, Vj, Hj, and
Q = Q({vj}) be given as in that definition. Then:

(1) For 0 ≤ j ≤ J , we have

Hj = min(k, j + 1) +

j∑
i=0

min(m, j + 1 − i)vi.

(2) For 0 ≤ j ≤ J , we have
Hj ≤ k + mVj ,

with equality iff j ≥ k − 1 and vj−i = 0 for 0 ≤ i < m − 1.

(3) Q is a path from (0, 0) to (k +mn, n) that always stays inside the trapezoid TZn,k,m.

(4) The path Q reaches the right edge of the trapezoid TZn,k,m after the j’th bounce iff
j ≥ k − 1 and vj−i = 0 for 0 ≤ i < m − 1.

(5) Assume that hj > 0 for 0 ≤ j ≤ J . Then B(Q) = Q and vj(Q) = vj for 0 ≤ j ≤ J ,
so that the original list {vj} can be recovered by performing the bouncing algorithm
on Q.

Proof. To prove (1), use (27) to compute

Hj =

j∑
u=0

hu =

j∑
u=0


χ(u < k) +

u∑
i=u−(m−1)

vi




= min(k, j + 1) +

j∑
i=0

vi

j∑
u=0

χ(u − (m − 1) ≤ i ≤ u)

= min(k, j + 1) +

j∑
i=0

min(m, j + 1 − i)vi.

To justify the last equality, fix i with 0 ≤ i ≤ j. If 0 ≤ i ≤ j − (m − 1), then there are
exactly m choices of the index u for which χ(u − (m − 1) ≤ i ≤ u) = 1, namely u = i,
u = i+1, · · · , u = i+(m− 1). In this case, j +1− i ≥ m, so that min(m, j +1− i) = m.
On the other hand, if j − (m− 1) < i ≤ j, then there are exactly j + 1 − i choices of the
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index u for which χ(u − (m − 1) ≤ i ≤ u) = 1, namely u = i, u = i + 1, · · · , u = j. In
this case, j + 1 − i < m, so that min(m, j + 1 − i) = j + 1 − i.

Now, we use (1) to compute

Hj = min(k, j + 1) +

j∑
i=0

min(m, j + 1 − i)vi ≤ k + m

j∑
i=0

vi = k + mVj .

Equality is attained here iff min(k, j + 1) = k and vi = 0 for all i such that min(m, j +
1− i) = j + 1− i < m. In other words, equality is attained iff j ≥ k − 1 and vj−i = 0 for
0 ≤ i < m − 1, giving (2).

Recall that the right boundary of the trapezoid TZn,k,m is the line x = k + my. Q lies
inside this trapezoid iff all the points (Hj, Vj) lie weakly left of this line, for 0 ≤ j ≤ J .
This is exactly what the inequality in (2) asserts. Also, equality holds in (2) for some
j iff (Hj, Vj) lies exactly on the line x = k + my. The definition of J guarantees that
equality holds in (2) for j = J and that VJ = n. Hence, Q ends at the upper-right corner
(k + mn, n). We have now proved (3) and (4).

To prove (5), let 0 ≤ j ≤ J . We can assume by induction on j that vi(Q) = vi and
hi(Q) = hi for all i with 0 ≤ i < j. In particular, just before the j’th bounce, both Q
and B(Q) are at coordinates (Hj−1, Vj−1). Where does Q go from here? By definition of
Q, Q goes up vj ≥ 0 units and then over hj units. Now, by the definition of the bouncing
algorithm in §1.7, B(Q) also goes up vj units, since it is blocked there by a horizontal step
of Q. This step must exist because of the assumption that hj > 0. Therefore, vj(Q) = vj .
Comparing formulas (26) and (27) and using the induction hypothesis, it is immediate
that hj(Q) = hj also. This completes the induction.

5.4 The Map G : In,k,m → Pn,k,m

We are now ready to define the map G from intermediate objects to generalized parking
functions. Let I = (f ; u1, . . . , un) be an intermediate object in In,k,m. For all integers j,
let Sj = f−1(j) and vj = |f−1(j)| = |Sj|. Note that, for 0 ≤ j ≤ k +m(n− 1), Sj consists
of the vj labels appearing in the j’th descending block of the word of f . Let j∗ be the
largest value of j for which vj > 0. It is clear that the sequence {vj : j ∈ Z} satisfies
conditions (a), (b), and (c) in Definition 72.

We will define G(I) in three steps.

• First, draw the formal bounce path Q = Q({vj}) associated to the sequence {vj}.

• Second, attach labels to the path Q. Place the vj labels in Sj in the cells to the right
of the vj vertical segments in the j’th vertical move of the path Q, in increasing
order from bottom to top. Let g0 be the function associated to this labelled lattice
path via D−1

0 .

• Third, define a function g by

g(i) = g0(i) − ui for 1 ≤ i ≤ n, (28)
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Figure 13: Labelled path diagram for g0.

and set G(I) = g.

In terms of labelled paths, the diagram for g is obtained from the diagram of g0 as
follows. For each label i in the diagram of g0, move the label |ui| cells to the right if
ui < 0, or ui cells to the left if ui ≥ 0. Then reorder the rows of the diagram to produce
a valid configuration of labels (in which labels in a given column increase from bottom to
top, and for r < s, the labels in column r appear in lower rows than the labels in column
s). This construction explains why we called Rj(f) and Lj(f) the right and left limits of
j relative to f .

Example 76. Let (n, k, m) = (7, 2, 2), and let I = (f ;−2,−2, 0,−1, 0, 3, 2) ∈ In,k,m,
where

f(1) = 2, f(2) = 0, f(3) = 0, f(4) = 3, f(5) = 0, f(6) = 2, f(7) = 2.

Let us compute G(I). By looking at f , we find that

v0 = 3, v1 = 0, v2 = 3, v3 = 1, vj = 0 for other j.

The unlabelled path Q = Q({vj}) is shown in Figure 11. The corresponding labelled path
is shown in Figure 13. The arrows in this figure show the motion of the labels caused by
the numbers uj.

Applying D−1
0 , we compute

g0(1) = 9, g0(2) = 1, g0(3) = 1, g0(4) = 12, g0(5) = 1, g0(6) = 9, g0(7) = 9.

By (28), we get

g(1) = 11, g(2) = 3, g(3) = 1, g(4) = 13, g(5) = 1, g(6) = 6, g(7) = 7.

The labelled path diagram for g is shown in Figure 14. This figure can be obtained
from the previous one by moving labels as indicated by the arrows, and then rearranging
the rows as explained above. Note that g and g0 are indeed generalized parking functions
of type (n, k, m).
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Figure 14: Labelled path diagram for g.

Lemma 77. Let I = (f ; u1, . . . , un) ∈ In,k,m, and let Q and g0 be computed from I as
indicated above.

(1) Q is a path from (0, 0) to (k + mn, n) that always stays inside TZn,k,m. Hence, g0

is a parking function of type (n, k, m).

(2) For 0 ≤ j ≤ J , the horizontal moves hj of Q satisfy hj > 0.

(3) The function f can be uniquely recovered from g0.

(4) For 1 ≤ x ≤ n, we have
g0(x) = 1 + Hf(x)−1.

Proof. Statement (1) is immediate from Lemma 75(3) and Lemma 68.
To prove (2), we suppose that hj = 0 for some j with 0 ≤ j ≤ J and derive a

contradiction. First note that the existence of the object I = (f ; u1, . . . , un) ∈ In,k,m

implies that count(f, i) > 0 for 1 ≤ i ≤ n, by definition of ui. By (27), the assumption
hj = 0 forces j ≥ k and

vj = vj−1 = · · · = vj−(m−1) = 0.

Assume that j∗ ≤ j ≤ J . Since vj∗ > 0, the last condition forces j∗ + m ≤ j ≤ J . But
we also have j ≥ k, so that J ≥ max(j∗ + m, k). This contradicts the definition of J .
Therefore, 0 ≤ j < j∗. Since vj∗ > 0, there exists some ` > j with v` > 0. Choose the
minimal ` with this property; note that ` > k since j ≥ k, and we have

v`−1 = · · · = v`−m = 0.

Next, choose i to be the maximum element of the nonempty set f−1(`). Recall that

count(f, i) = χ(f(i) ≤ k) + |f−1
<i (f(i) − m)| + |f−1

>i (f(i))|
+|f−1({f(i) − 1, . . . , f(i) − (m − 1)})|.

By our choice of i and `, we get count(f, i) = 0, which is a contradiction.
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Now we can prove that f is uniquely recoverable from g0. Given g0, draw the path Q
corresponding to g0 and perform the bouncing algorithm to compute the vertical moves
vj(Q). By Lemma 75(5) and part (2), we have vj(Q) = vj for 0 ≤ j ≤ J . In particular,
vj(Q) = vj for 0 ≤ j ≤ j∗. So, we can recover the numbers vj = |f−1({j})| from g0. The
labels attached to the j’th vertical move of Q are the elements of f−1(j), so we can now
recover f itself. Of course, it is possible that vj = 0 for some j; in this case, f−1(j) = ∅.

To prove (4), consider the labelled path diagram for g0. In that diagram, all the labels
in the set Sj = f−1(j) occur in the column numbered 1 + Hj−1, since the j’th vertical
move of Q is drawn just to the left of this column, beginning at (Hj−1, Vj−1). By definition
of D−1

0 , we must have g0(x) = 1 + Hj−1 whenever f(x) = j, i.e.,

g0(x) = 1 + Hf(x)−1 for 1 ≤ x ≤ n.

The next lemma shows that G does map into the set Pn,k,m.

Lemma 78. For each I ∈ In,k,m, g = G(I) is a parking function of type (n, k, m).

Proof. We must check that g(i) > 0 for all i and that

|TB(i)(g)| ≥ i for 1 ≤ i ≤ n.

Recall the following definitions:

Rj(f) = |f−1
>j ({f(j), . . . , f(j) − (m − 1)})| = −xj(f);

Lj(f) = xj(f) + count(f, j) − 1;

count(f, j) = χ(f(j) ≤ k) + |f−1
<j (f(j) − m)| + |f−1

>j (f(j))|
+|f−1({f(j) − 1, . . . , f(j) − (m − 1)})|.

Comparing these formulas, we see that

Lj(f) = |f−1
<j ({f(j) − 1, . . . , f(j) − m})| − χ(f(j) > k). (29)

Recall that g0 was constructed from the formal bounce path Q = Q({vi}), where vi =
|f−1(i)| and

hi = vi + vi−1 + · · ·+ vi−(m−1) + χ(i < k) for 0 ≤ i ≤ J. (30)

Let 1 ≤ j ≤ n. If f(j) ≥ 1, we may take i = f(j)−1 in (30). Comparing to formula (29),
we find that

Lj(f) ≤ vf(j)−1 + · · ·+ vf(j)−m ≤ hf(j)−1. (31)

If f(j) = 0, then (31) holds trivially since h−1 = 0. Thus, (31) holds for all j with
1 ≤ j ≤ n.

Now, since Rj(f) ≥ −uj ≥ −Lj(f) by definition of uj, we have

g(j) = g0(j) − uj ≥ g0(j) − Lj(f) = 1 + Hf(j)−1 − Lj(f) ≥ 1.
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The last inequality follows since Lj(f) ≤ hf(j)−1 ≤ Hf(j)−1.
Recall that B(i) = k + m(i − 1) + 1, so B(1) ≤ B(2) ≤ · · · . Let w1, w2, . . . , wn be

the permutation of 1, 2, . . . , n obtained from the word of f by erasing all bar symbols. To
check that |TB(i)(g)| ≥ i for all i, it suffices to show that g(wi) ≤ B(i) for all i, for this
will imply that

{w1, . . . , wi} ⊂ TB(i)(g).

Fix i0 ∈ {1, 2, . . . , n}, and set j0 = f(wi0). By definition of the word of f , we can write
i0 = r + t, where

r = |{x : f(x) < j0}| = Vj0−1 and t = |{x : f(x) = j0 and x ≥ wi0}|.

Now consider two cases.
Case 1: Hj0−1 6= k + mVj0−1. Let us construct a new formal bounce path Q′ from a

sequence {v′
j : j ∈ Z}, as follows. Set v′

j = vj for 0 ≤ j < j0, and set v′
j = 0 for all other j.

Let Q′ = Q({v′
j}), and let h′

j be the horizontal moves of Q′. (Here, n′ =
∑

j<j0
vj .) Using

Lemma 75(2) and the assumption Hj0−1 6= k+mVj0−1, it is easy to see that J ′ ≥ j0. From
(27), we have h′

j = hj for −1 ≤ j < j0, so H ′
j = Hj for −1 ≤ j < j0. On the other hand,

h′
j0 = 0 + vj0−1 + · · ·+ vj0−(m−1) + χ(j0 < k).

Lemma 75(2), applied to Q′ with j = j0 ≤ J ′, states that H ′
j0 ≤ k+mV ′

j0. In other words,
Hj0−1 + h′

j0
≤ k + mr, which yields

1 + Hj0−1 + h′
j0 ≤ 1 + k + m(r + 1 − 1) = B(r + 1).

Case 2: Hj0−1 = k + mVj0−1. In this case, lemma (75) says that vj0−1 = · · · =
vj0−(m−1) = 0 and j0 − 1 ≥ k − 1, hence j0 ≥ k. So, if we define h′

j0
by the same equation

h′
j0 = 0 + vj0−1 + · · · + vj0−(m−1) + χ(j0 < k)

used above, then h′
j0

= 0. So we trivially have Hj0−1 + h′
j0
≤ k + mr, and

1 + Hj0−1 + h′
j0
≤ B(r + 1)

in this case as well.
Recalling that f(wi0) = j0 and using Lemma 77(4), we now compute

g(wi0) = g0(wi0)−uwi0
≤ g0(wi0)+Rwi0

(f) = 1+Hj0−1+f−1
>wi0

({j0, j0−1, . . . , j0−(m−1)}).

Now, using the definition of t,

f−1
>wi0

({j0, j0 − 1, . . . , j0 − (m − 1)}) = t − 1 + f−1
>wi0

({j0 − 1, . . . , j0 − (m − 1)})
≤ t − 1 + vj0−1 + · · · + vj0−(m−1) + χ(j0 < k)

= t − 1 + h′
j0,

and so

g(wi0) ≤ t − 1 + (1 + Hj0−1 + h′
j0

) ≤ B(r + 1) + (t − 1) ≤ B(r + t) = B(i0),

as desired.
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Lemma 79. For each I = (f ; u1, . . . , un) ∈ In,k,m, we have area(G(I)) = tstat(I).

Proof. Let g0 and g = G(I) be defined as above. It is shown in §3.3 of [20] that the area
of the bounce path corresponding to g0 is precisely x0(f). Let C denote the constant
n(k + 1) + mn(n − 1)/2. Using Lemma 71 for g and for g0, we get

area(g) = C −
n∑

i=1

g(i) = C −
n∑

i=1

g0(i) +

n∑
i=1

ui

= area(g0) +

n∑
i=1

ui = x0(f) +

n∑
i=1

ui

= tstat(I).

5.5 The map G−1 : Pn,k,m → In,k,m

We now define a map H : Pn,k,m → In,k,m that will turn out to be the inverse of G. The
basic idea is to use a labelled path P ∈ Pn,k,m to recover the symbols in the word of
f (including bars) from left to right. As w(f) is being reconstructed, we obtain partial
information about f and g0 that is used to continue the reconstruction process. When
the full word has been found, we know f and g0. We then define

ui = g0(i) − g(i), (32)

where g is the parking function corresponding to P , and set H(P ) = (f ; u1, . . . , un).
Comparing (32) to (28) makes it clear that G ◦H = IdPn,k,m

. It is less clear that H ◦G is
also an identity map, and that H does map into In,k,m. The former will follow from the
latter by a pigeonhole-type argument, as in the m = 1 case worked out earlier.

A key observation is the following “prefix property” of w(f): if j is any label, then
the quantities

xj(f), count(f, j), Lj(f), Rj(f)

can all be computed using only the symbols preceding j (including bars) in the word of
f . This observation is immediate from the definitions of these quantities and the word
of f . In particular, here we use the fact that the elements of each set f−1(i) appear in
decreasing order in w(f).

We now give the detailed definition of H . Let P ∈ Pn,k,m be a given labelled path, and
let g = g(P ) be the corresponding generalized parking function. We compute H(P ) using
the algorithm given below. The algorithm uses variables pw(f), pf , and pg0 to represent
partially reconstructed versions of w(f), f , and g0, respectively. The observation in the
previous paragraph says that if j occurs in pw(f) at some step, then we can compute
xj(f) = xj(pf), etc., and the answer obtained is independent of how pw(f) is extended
in later steps to w(f). Note that every time we add a label j to pw(f), the definitions of
w(f) and g0 allow us to deduce the values of f(j) and g0(j). Thus, pf and pg0 can now
be defined for input j. The following example illustrates this process.
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Example 80. Let (n, k, m) = (7, 2, 2). Suppose that we are given the following partial
reconstruction of the word of f :

pw(f) = 5 3 2 | | 7.

From this prefix of w(f), we can deduce that v0 = 3, v1 = 0, and v2 ≥ 1. We can further
deduce that h0 = H0 = 4, h1 = 4, and H1 = 8. Therefore, regardless of the value of v2 or
h2, Lemma 77(4) gives

pg0(5) = 1, pg0(3) = 1, pg0(2) = 1, pg0(7) = 9.

Moreover,
pf(5) = 0, pf(3) = 0, pf(2) = 0, pf(7) = 2.

The domain of definition for pf and pg0 is currently {2, 3, 5, 7}.
Now suppose that we are told the next symbol in w(f) is 6. Then we can conclude

that v2 ≥ 2, that pg0(6) = 9, and that pf(6) = 2.

Figure 15 gives the algorithm defining H . It is obvious from this algorithm and the
prefix property of w(f) that the required inequalities

−Rj(f) ≤ uj ≤ Lj(f)

all hold. To see that H(P ) does belong to In,k,m, we must still prove that the algorithm
produces a function f ∈ Fn,k,m, i.e., that 0 ≤ f(x) ≤ k + m(n − 1) for 1 ≤ x ≤ n. We
must also show that the algorithm always terminates and that it never encounters the
error condition.

Lemma 81. If P ∈ Pn,k,m, then the algorithm defining H(P ) never declares an error.

Proof. The proof is by induction on the value of the variable v. First, assume v = 0.
Suppose that the processing of label x causes an error. Note that pg0(x) = 1, since the
bounce path starts in the first column. On the other hand, g(x) ≥ 1, so that ux =
pg0(x) − g(x) ≤ 0. But the error occurred because ux > Lx(pf), where Lx(pf) = 0 by
(29). This is a contradiction.

Next, assume by induction that v = j > 0 and that the algorithm has executed the
loop iterations for v = 0, 1, . . . , j − 1 with no error. Suppose that the algorithm declares
an error in the loop iteration for v = j while processing label x. Then, in particular, label
x was not added to pw(f) in the previous iteration when v = j − 1. So, in iteration j − 1
we must have had ux < −Rx(pf). Using Lemma 77(4) and expanding the definitions,
this says that

Hj−2 + 1 − g(x) < −|pf−1
>x({j − 1, . . . , j − m})|. (33)

Multiplying by −1 and noting that all quantities are integers, we can rewrite this as

−Hj−2 − 1 + g(x) ≥ |pf−1
>x({j − 1, . . . , j − m})| + 1. (34)

the electronic journal of combinatorics 11 (2004), #R68 58



Algorithm for H: Input: a labelled path P ∈ Pn,k,m.

1. Initialize pw(f) be the empty word. Let pf and pg0 be undefined for every input.
Initialize a variable v to be 0. Let g = D−1(P ) be the parking function associated
to the labelled path P .

2. While pw(f) does not contain all the labels from 1 to n, perform the following steps.

(a) Loop through all labels x ∈ {1, 2, . . . , n} that do not yet appear in pw(f), from
largest to smallest. For each such label x, perform the following step.

Temporarily assume that the next symbol in pw(f) is x. Use this as-
sumption to compute pg0(x) using the formal bouncing rules. Set ux =
pg0(x) − g(x).

• If ux > Lx(pf), declare an error condition and abort the algorithm.

• If ux < −Rx(pf), assert that f(x) > v and discard the assumption
that the next symbol in pw(f) is x. At this point, reset pg0(x) and ux

to be undefined again.

• Otherwise, we must have −Rx(pf) ≤ ux ≤ Lx(pf). In this case, assert
that f(x) = v. Retain the assumption that the next symbol in pw(f)
is x, and retain the values of pg0(x) and ux already computed. Define
pf(x) = v.

(b) We have now (greedily) determined all values x for which f(x) = v. Append a
bar symbol at the end of pw(f), and increment v by 1.

3. Add the appropriate number of trailing bar symbols to the end of pw(f), so that
the total number of bars is k + m(n − 1) + 1. We now know w(f) and f and g0.
The output of the algorithm is the object

H(P ) = (f ; u1, . . . , un),

where ui = g0(i) − g(i) for 1 ≤ i ≤ n.

Figure 15: Definition of H .
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Next, the assumption that x caused an error in iteration j means that ux > Lx(pf) in
iteration j. Translating the definitions gives

Hj−1 + 1 − g(x) > |pf−1
<x({j − 1, . . . , j − m})| − 1 + χ(j ≤ k). (35)

Adding the last two inequalities, we conclude that

hj−1 > |pf−1({j − 1, . . . , j − m})| + χ(j < k + 1). (36)

(To justify the simplification of the right side, observe that we cannot have pf(x) ∈
{j − 1, . . . , j − m}; otherwise the algorithm would not be considering label x during
iteration j.) But, on the other hand, the definition of the bounce path gives

hj−1 = |pf−1({j − 1, . . . , j − m})| + χ(j − 1 < k), (37)

which contradicts the preceding inequality and completes the induction proof. Note that
the prefix property of the word of f is needed to ensure that certain quantities appearing
in the equations above do not change from one iteration to the next.

Lemma 82. Let P ∈ Pn,k,m. Suppose that, at some stage of the algorithm defining H(P ),
pw(f) contains exactly i numbers, where 0 ≤ i ≤ n − 1. Then pw(f) contains at most
k + mi bar symbols.

Proof. We use induction on the length ` of pw(f). The result obviously holds when pw(f)
is the empty word. Suppose that the result holds when pw(f) has length ` ≥ 0. Let pw(f)
have i numbers and b bar symbols. If b < k + mi and the algorithm appends a number
next, then the result still holds since b < k + m(i + 1). If b < k + mi and the algorithm
appends a bar symbol next, then the result still holds since b + 1 ≤ k + mi. We are
reduced to the case where b = k + mi. It suffices to show that, in this case, the next
symbol appended by step 2 of the algorithm will be a number, not a bar.

To prove this, we establish a number of claims.
Claim 1: If i > 0 and y is the rightmost label in pw(f), then pw(f) has at least m bar

symbols following y. Proof: If, instead, there were s < m bar symbols after y, consider
the prefix p′ with y and these s bar symbols erased. This shorter prefix has i − 1 ≥ 0
numbers and k +mi−s > k +m(i−1) bar symbols in it, which contradicts the induction
hypothesis.

For the next few claims, assume x is a label not already appearing in pw(f). Let us
tentatively append x to pw(f) to obtain a new partial word pw′(f), as in step 2 of the
algorithm defining H . Then pf(x) = b, since there are b bars preceding x in the word of
f .

Claim 2: Vb−1 = i. Recall that Vb−1 = |{x : pf(x) ≤ b − 1}|. The claim is clear when
i = 0, since x is the first number in pw′(f) and pf(x) = b > b − 1. If i > 0, claim 1
shows that pw(f) ends in a bar symbol. So, the i − 1 numbers y preceding x in pw′(f)
must satisfy pf(y) ≤ b − 1. The numbers following x (and x itself) have function values
at least b, so claim 2 follows.
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Claim 3: b−1 ≥ k−1 and vb−1−u = 0 for 0 ≤ u < m−1. We have b−1 = k+mi−1 ≥
k − 1. If i = 0, so that x is the first number in pw′(f), then we certainly have vb−1−u = 0
for all u ≥ 0. If i > 0, claim 1 shows that pw(f) ends in m (or more) bar symbols. It
again follows that vb−1−u = 0 for 0 ≤ u < m − 1.

Claim 4: pg0(x) = b + 1. Recalling that pf(x) = b, Lemma 77(4) gives pg0(x) =
1 + Hb−1. Next, Lemma 75(2) and claim 3 show that Hb−1 = k + mVb−1. Combining this
with claim 2, we get pg0(x) = 1 + k + mi = b + 1.

Now we can prove the earlier assertion that the next symbol appended to pw(f) by
the algorithm will be a number, not a bar. By claim 1, the last symbol (if any) generated
by the algorithm was a bar symbol. So, without loss of generality, we can assume the
algorithm is at the beginning of step 2(a).

To get a contradiction, suppose that all labels considered in this iteration of step 2(a)
are rejected. This happens iff ux < −Rx(pf) for all unusued labels x. Now, by definition
of Pn,k,m, |TB(i+1)(g)| ≥ i + 1. So there exist at least i + 1 labels x ∈ {1, . . . , n} such that

g(x) ≤ B(i + 1) = 1 + k + mi = b + 1.

Choose such an x that does not already appear in pw(f). Consider what happens when
step 2(a) tentatively appends this x to pw(f) to give pw′(f). We have pg0(x) = b + 1 by
claim 4, and so

ux = pg0(x) − g(x) ≥ b + 1 − (b + 1) = 0.

But the assumption that x was rejected means that

ux < −Rx(pf) ≤ 0.

We obtain the contradiction ux < 0 and ux ≥ 0.

Corollary 83. Let P ∈ Pn,k,m.

(1) When executing the algorithm defining H(P ), all n labels in {1, 2, . . . , n} are even-
tually added to pw(f). Consequently, the algorithm always terminates.

(2) If f is the function produced by the algorithm defining H(P ), then

f(x) ∈ {0, 1, . . . , k + m(n − 1)} for 1 ≤ x ≤ n.

Consequently, H is a well-defined map from Pn,k,m to In,k,m.

Proof. To prove (1), suppose that the algorithm only adds i < n labels to pw(f). After
the i’th label is appended, each subsequent iteration of step 2 of the algorithm will add
one more bar symbol to pw(f). Eventually, there will be more than k + mi bar symbols,
contradicting the previous lemma. Thus, all n labels are eventually added to pw(f), at
which point the algorithm exits the loop in step 2 and terminates after step 3.

To prove (2), consider the value of pw(f) just before the n’th label x is appended to it.
This prefix of w(f) contains i = n−1 labels. By the lemma, the number of bars in pw(f)
is at most k +m(n− 1). Since f(x) is always the number of bars preceding x in w(f), we
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have f(x) ≤ k+m(n−1). For the same reason, we have f(y) ≤ k+m(n−1) for all labels
y preceding x in w(f). So, the image of f is contained in {0, 1, . . . , k + m(n − 1)}. This
also shows, incidentally, that step 3 of the algorithm defining H makes sense. We observed
earlier that the numbers uj produced by the algorithm satisfy the required inequalities.
Hence, we finally conclude that H is a well-defined map from Pn,k,m to In,k,m.

As remarked earlier, it is clear that G ◦ H = IdPn,k,m
. Our final theorem says that H

is the two-sided inverse for G.

Theorem 84. The maps G : In,k,m → Pn,k,m and H : Pn,k,m → In,k,m are bijections with
H = G−1. For P ∈ Pn,k,m, define pmaj(P ) = qstat(H(P )). Then:

pmaj(P ) = qstat(H(P )) and area(P ) = tstat(H(P )); (38)

qstat(I) = pmaj(G(I)) and tstat(I) = area(G(I)). (39)

Consequently,∑
P∈Pn,k,m

qpmaj(P )tarea(P ) =
∑

I∈In,k,m

qqstat(I)ttstat(I) =
∑

P∈Pn,k,m

qarea(P )th(P ) = CHn,k,m(q, t),

(40)
and so all these statistics have the same univariate distribution.

Proof. We have already shown that G maps into Pn,k,m, H maps into In,k,m, and G◦H =
IdPn,k,m

. The last equation implies that H is an injection and G is a surjection. But
Corollary 65 showed that

|In,k,m| = |Pn,k,m| < ∞.

Since the sets are finite, H is automatically a surjection, G is automatically an injection,
and H = G−1. The properties in (39) follow from Lemma 79 and the very definition of
pmaj, and (38) follows by replacing I by H(P ) and simplifying. The equalities in (40)
follow from the existence of the weight-preserving bijections G and F . Letting q = 1 or
t = 1 in (40) gives the final assertion of the theorem.
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