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Abstract

The asymptotics of the order of a random permutation have been widely studied.
P. Erdös and P. Turán proved that asymptotically the distribution of the logarithm
of the order of an element in the symmetric group Sn is normal with mean 1

2(log n)2

and variance 1
3(log n)3. More recently R. Stong has shown that the mean of the order

is asymptotically exp(C
√

n/ log n + O(
√

n log log n/ log n)) where C = 2.99047 . . ..
We prove similar results for the asymptotics of the degree of the splitting field of a
random polynomial of degree n over a finite field.

1 Introduction

We consider the following problem. Let Fq denote a finite field of size q and consider the
set Pn(q) of monic polynomials of degree n over Fq. What can we say about the degree
over Fq of the splitting field of a random polynomial from Pn(q)? Because we are dealing
with finite fields and there is only one field of each size, it is well known that the degree
of the splitting field of f(X) ∈ Pn(q) is the least common multiple of the degrees of the
irreducible factors of f(X) over Fq. Thus the problem can be rephrased as follows.

Let λ be a partition of n (denoted λ ` n) and write λ in the form
[
1k12k2...nkn

]
where

λ has ks parts of size s. We shall say that a polynomial is of shape λ if it has ks irreducible
factors of degree s for each s. Let w(λ, q) be the proportion of polynomials in Pn(q) which
have shape λ. If we define m(λ) to be the least common multiple of the sizes of the parts
of λ, then the degree of the splitting field over Fq of a polynomial of shape λ is m(λ). The
average degree of a splitting field is given by

En(q) :=
∑
λ`n

w(λ, q)m(λ).
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An analogous problem arises in the symmetric group Sn. A permutation in Sn is of type
λ =

[
1k12k2...nkn

]
if it has exactly ks cycles of length s for each s, and its order is then

equal to m(λ). If w(λ) denotes the proportion of permutations in Sn which are of type
λ, then the average order of a permutation in Sn is equal to

En :=
∑
λ`n

w(λ)m(λ).

We can think of m(λ) as a random variable where λ ranges over the partitions of n and
the probability of λ is w(λ, q) and w(λ) in the respective cases.

Properties of the random variable m(λ) (and related random variables) under the
distribution w(λ) have been studied by a number of authors, notably by Erdös and Turán
in a series of papers [1, 2, 3] and [4]. In particular, the main theorem of [3] shows that in
this case the distribution of log m(λ) is approximated by a normal distribution with mean
1
2
(log n)2 and variance 1

3
(log n)3 in a precise sense. In our notation the theorem reads as

follows. For each real x define

Ψn(x) :=

{
λ ` n | log m(λ) ≤ 1

2
(log n)2 +

x√
3
(log n)3/2

}
.

Then for each x0 > 0:

∑
λ∈Ψn(x)

w(λ) → 1√
2π

∫ x

−∞
e−t2/2dt as n → ∞ uniformly for x ∈ [−x0, x0] .

In particular, the mean of the random variable logm(λ) is asymptotic to 1
2
(log n)2, but

this does not imply that log En (the log of the mean of m(λ)) is asymptotic to 1
2
(log n)2

and indeed it is much larger. The problem of estimating En was raised in [4], and the
first asymptotic expression for log En was obtained by Goh and Schmutz [6]. The result
of Goh and Schmutz was refined by Stong [9] who showed that

log En = C

√
n

log n
+ O

(√
n log log n

log n

)
,

where C = 2.99047... is an explicitly defined constant.
The object of the present paper is to prove analogous theorems for the random variable

m(λ) under the distribution w(λ, q). Actually, it turns out that these theorems hold for
several important classes of polynomials which we shall now describe. Consider the classes:

• M1(q): the class of all monic polynomials over Fq. In this class the number of
polynomials of degree n is qn for each n ≥ 1.

• M2(q): the class of all monic square-free polynomials over Fq. In this class the
number of polynomials of degree n is (1 − q−1)qn for each n.
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• M3(q): the class of all monic square-free polynomials over Fq whose irreducible
factors have distinct degrees. In this class the number of polynomials of degree n
is a(n, q)qn where, for each q, a(n, q) → a(q) :=

∏
k≥1(1 + ik(q)q

−k) exp(−1/k) as
n → ∞ where ik(q) is the number of monic irreducible polynomials of degree k over
Fq (see [7] Equation (1) with j = 0).

For x > 0 define

Φn(x) :=

{
λ ` n |

∣∣∣∣log m(λ) − 1

2
(log n)2

∣∣∣∣ > x√
3
(log n)3/2

}
.

Then for each of the classes of polynomials described above we have a weak analogue of
the theorem of Erdös and Turán quoted above, and an exact analogue of Stong’s theorem.

Theorem 1 Fix one of the classes Mi(q) described above. For each λ ` n, let w(λ, q)
denote the proportion of polynomials in this class whose factorizations have shape λ. Then
there exists a constant c0 > 0 (independent of the class) such that for each x ≥ 1 there
exists n0(x) such that∑

λ∈Φn(x)

wi(λ, q) ≤ c0e
−x/4 for all q and all n ≥ n0(x). (1)

In particular, almost all f(X) of degree n in Mi(q) have splitting fields of degree exp((1
2
+

o(1))(log n)2) over Fq as n → ∞.

Theorem 2 Let C be the same constant as in the Goh-Schmutz-Stong theorem. Then
in each of the classes described above the average degree En(q) of a splitting field of a
polynomial of degree n in that class satisfies

log En(q) = C

√
n

log n
+ O

(√
n log log n

log n

)
uniformly in q.

2 Properties of w(λ, q)

First consider the value of w(λ, q) for each of the three classes. Let is = is(q) denote the
number of monic irreducible polynomials of degree s over Fq. Then (see, for example, [8])
we have qs =

∑
d|s did so a simple argument shows that

qs

s
≥ is ≥ qs

s
(1 + 2q−s/2)−1.

Let λ ` n have the form
[
1k1...nkn

]
. Since Pn(q) contains qn polynomials, and there are(

is+k−1
k

)
ways to select k irreducible factors of degree s, we have

w(λ, q) =
1

qn

n∏
s=1

(
is + ks − 1

ks

)
=

n∏
s=1

q−sks

(
is + ks − 1

ks

)
in M1(q).
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Similarly, since there are (1− q−1)qn polynomials of degree n in M2(q), and there are
(

is
k

)
ways to select k distinct irreducible factors of degree s, in this case we have

w(λ, q) =
1

(1 − q−1)qn

n∏
s=1

(
is
ks

)
=

1

(1 − q−1)

n∏
s=1

q−sks

(
is
ks

)
in M2(q).

Finally, since there are a(n, q)qn polynomials of degree n in M3(q) and each of these
polynomials has at most one irreducible factor of each degree, we get

w(λ, q) =
1

a(n, q)qn

n∏
s=1

(
1

ks

)
iks
s =

1

a(n, q)

n∏
s=1

q−sks

(
1

ks

)
iks
s in M3(q)

when each part in λ has multiplicty ≤ 1, and w(λ, q) = 0 otherwise. As is well known
we also have

w(λ) =
1

1k12k2...nknk1!k2!...kn!
.

We shall use the notation Πn to denote the set of all partitions of n, Πn,k to denote the
set of partitions

[
1k12k2 ...nkn

]
in which each ki < k and Π′

n,k to denote the complementary
set of partitions.

It is useful to note that in M1(q) and M2(q) we have w(λ, q) → w(λ) as q → ∞.
However, this behaviour is not uniform in λ. Indeed for each of these two classes the ratio
w(λ, q)/w(λ) is unbounded above and below for fixed q if we let λ range over all partitions
of n and n → ∞. This means we have to be careful in deducing our theorems from the
corresponding results for w(λ). In M3(q), we have w(λ, q) = 0 whenever λ ∈ Π′

n,2, and a
simple computation shows that a(n, q)w(λ, q) → w(λ) as q → ∞ whenever λ ∈ Πn,2.

Lemma 3 There exists a constant a0 > 0 such that

1 ≤ 1

1 − q−1
≤ a0 and 1 ≤ 1

a(n, q)
≤ a0

for all n ≥ 1 and all prime powers q > 1.

Proof. The first inequality is satisfied whenever a0 ≥ 2, so it is enough to prove that
the set of all a(n, q) has a strictly positive lower bound.

We shall use results from [7, Theorems 1 and 2]. In our notation [7] shows that
a(q) increases monotonically with q starting with a(2) = 0.3967 . . ., and that for some
absolute constant c we have |a(n, q) − a(q)| ≤ c/n for all n ≥ 1. In particular, a(n, q) ≥
a(q)−c/n ≥ a(2)−c/n. Thus a(n, q) ≥ 1

2
a(2) > 0 for all q whenever n > n0 := b2c/a(2)c.

On the other hand, as we noted above, in M3(q), a(n, q)w(λ, q) → w(λ) as q → ∞
whenever λ ∈ Πn,2 and is 0 otherwise. Thus

a(n, q) =
∑
λ∈Πn

a(n, q)w(λ, q) →
∑

λ∈Πk,2

w(λ) = b(n), say, as q → ∞.
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Evidently, b(n) > 0 (it is the probability that a permutation in Sn has all of its cycles of
different lengths). Define b0 := min {b(n) |n = 1, 2, ..., n0}. Then the limit above shows
that there exists q0 such that a(n, q) ≥ 1

2
b0 whenever n = 1, 2, ..., n0 and q > q0.

Finally, choose a0 ≥ 2 such that 1/a0 is bounded above by 1
2
a(2), 1

2
b0 and all a(n, q)

with n = 1, 2, ..., n0 and q ≤ q0. This value of a0 satisfies the stated inequalities.
We next examine some properties of the w(λ, q) which we shall need later. In what

follows, if λ :=
[
1k1...nkn

] ∈ Πn and µ :=
[
1l1 ...mlm

] ∈ Πm, then the join λ ∨ µ denotes
the partition of m + n with ks + ls parts of size s. We shall say that λ and µ are disjoint
if ksls = 0 for each s.

Lemma 4 Let a0 be a constant satisfying the conditions in Lemma 3. Then for each
class Mi(q) we have w(λ ∨ µ, q) ≤ a0w(λ, q)w(µ, q) for all λ and µ. On the other hand,
if λ and µ are disjoint, then w(λ ∨ µ, q) ≥ a−2

0 w(λ, q)w(µ, q).
We also have w(λ ∨ µ) ≤ w(λ)w(µ), with equality holding when λ and µ are disjoint.

Proof. First note that in each of the classes, w(λ∨µ, q) is 0 if either w(λ, q) or w(µ, q)
is 0. Suppose neither of the latter is 0 and put r := w(λ ∨ µ, q)/w(λ, q)w(µ, q).

First consider the class M1(q). Then r can be written as a product of terms of the
form (

is + ks + ls − 1

ks + ls

)
/

(
is + ks − 1

ks

)(
is + ls − 1

ls

)
.

The numerator of this ratio counts the number of ways of placing ks + ls indistinguishable
items in is distinguishable boxes. The denominator counts the number of ways of doing
this when ks of the items are of one type and ls are another, and so is at least as great as
the numerator. Hence we conclude that r ≤ 1 < a0 in this case. Moreover, when λ and
µ are disjoint then each term is equal to 1 and so r = 1 ≥ a−2

0 . This proves the claim for
the class M1(q). Taking limits as q → ∞ also gives a proof of the final statement.

Now consider the class M2(q). In this case r/(1 − q−1) can be written as a product
of terms of the form (

is
ks + ls

)
/

(
is
ks

)(
is
ls

)
.

The numerator counts the number of ways to choose ks + ls out of is items, whilst the
denominator is at least as large as

(
is
ks

)(
is−ks

ls

)
which counts the number of ways to choose

ks+ ls items when ks are of one type and ls are another type. This shows that each term is
at most 1 and so r ≤ (1− q−1) ≤ a0 as required. Again, in this case, when the partitions
are disjoint, each term is equal to 1 and so r = 1 − q−1 ≥ a−2

0 . This proves the claim for
the class M2(q), and the proof for the class M3(q) is similar (in this case w(λ ∨ µ, q) is
0 unless λ and µ are disjoint).

Lemma 5 For all partitions of the form [sk] and all q we have

w(
[
sk
]
, q) ≤ a0

k + 1

(2s)k

in each of the classes Mi(q).
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Proof. Fix q and k and define

vs :=
q−sk

k!

k∏
j=0

(
qs

s
+ j

)
.

Since is ≤ qs/s we have w(
[
sk
]
, q) ≤ a0vs for each of the three classes. We also note that

v1 =
1

k!

k−1∏
j=0

(1 + j/q) ≤ 1

k!

k−1∏
j=0

(1 + j/2) =
k + 1

2k
.

Finally since

vs+1/vs = q−k
k−1∏
j=0

qs+1/(s + 1) + j

qs/s + j
≤ q−k

k−1∏
j=0

qs

s + 1
=

(
s

s + 1

)k

,

we obtain w(
[
sk
]
, q) ≤ a0vs ≤ a0s

−kv1 so the result follows.

Lemma 6 Let λ =
[
1k1...nkn

]
be a partition of n. The following are true for each of the

classes Mi(q).
(a) If each ks ≤ k for some fixed integer k > 0, then w(λ, q) ≤ a0e

2k(k−1)w(λ).
(b) There exists a constant c1 such that, if each ks ≤ 1, then w(λ, q) ≥ c1w(λ).

Proof. (a) For each of the classes we have

w(λ, q) ≤ a0

n∏
s=1

1

qsks

1

ks!
(is + ks − 1)ks.

Using the bound is ≤ qs/s we obtain

w(λ, q) ≤ a0

n∏
s=1

1

sksks!

(
1 +

s(ks − 1)

qs

)ks

≤ a0w(λ) exp

(
n∑

s=1

sks(ks − 1)q−s

)
.

Since
∑∞

s=1 sq−s ≤∑∞
s=1 s2−s = 2, this proves (a).

(b) Similarly, for partitions with no two parts of the same size we have (for any of the
classes)

w(λ, q) ≥
n∏

s=1

1

qsks
iks
s ≥

n∏
s=1

1

sksks!

(
1

1 + 2q−s/2

)ks

≥ w(λ) exp

(
−2

n∑
s=1

ksq
−s/2

)

so the lower bound follows with c1 := exp
(−2

∑∞
s=1 2−s/2

)
= 0.007999.

Recall that the set Πn,k consists of all partitions of n in which each part has multiplicity
< k, and Π′

n,k consists of the remaining partitions.
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Lemma 7 For all classes Mi(q), and all n and q

∑
λ∈Π′

n,k

w(λ, q) ≤ a2
0

k + 1

2k−1
whenever k ≥ 2.

Similarly ∑
λ∈Π′

n,k

w(λ) ≤ k + 1

2k−1
whenever k ≥ 2.

Proof. Each λ ∈ Π′
n,k can be written in the form [sk] ∨ µ for some µ ` n − ks in at

least one way. Hence using Lemmas 4 and 5 we obtain

∑
λ∈Π′

n,k

w(λ, q) ≤
n/k∑
s=1

∑
µ`n−ks

w([sk] ∨ µ, q) ≤ a0

n/k∑
s=1

w([sk], q)
∑

µ`n−ks

w(µ, q)

= a0

n/k∑
s=1

w([sk], q) ≤ a2
0

∞∑
s=1

k + 1

(2s)k
≤ a2

0

k + 1

2k−1
.

This proves the stated inequality. The corresponding inequality for w(λ) is similar.

3 Proof of Theorem 1

Since Φn(x) and Ψn(x)\Ψn(−x) are complementary sets for x > 0, and the error function
is even, the theorem of Erdös and Turán quoted in the Introduction shows that for fixed
x > 0:

Wn(x) :=
∑

λ∈Φn(x)

w(λ) → η(x) as n → ∞,

where

η(x) :=
1√
2π

{∫ −x

−∞
e−t2/2dt +

∫ ∞

x

e−t2/2dt

}
=

2√
2π

∫ ∞

x

e−t2/2dt.

A simple integration by parts shows (see, for example, [5, Chap. 7]) that

η(x) <
2e−x2/2

√
2πx

for x > 0.

Thus, for x ≥ 1, there exists n0(x) > 0 such that Wn(x) < e−x2/2 whenever n > n0(x).
Define Φn,k(x) := Φn(x) ∩ Πn,k and Φ′

n,k(x) := Φn(x) ∩ Π′
n,k. Now using Lemma 6 we

have, for each of the classes Mi(q), that

Wn,k(x, q) :=
∑

λ∈Φn,k(x)

w(λ, q) ≤ a0e
2k(k−1)

∑
λ∈Φn,k(x)

w(λ) ≤ a0e
2k(k−1)Wn(x).
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On the other hand Lemma 7 shows that for k ≥ 1:

W ′
n,k(x, q) :=

∑
λ∈Φ′

n,k(x)

w(λ, q) ≤
∑

λ∈Π′
n,k(x)

w(λ, q) ≤ a2
0

k + 1

2k−1
< 8a2

0e
−(k+1)/2.

Thus for x ≥ 1, k ≥ 1 and n ≥ n0(x) we have∑
λ∈Φn(x)

w(λ, q) = Wn,k(x, q) + W ′
n,k(x, q) < a0e

2k(k−1)e−x2/2 + 8a2
0e

−(k+1)/2.

If x ≥ 2, then we can choose k := bx/2c and obtain

e2k(k−1)e−x2/2 + 8a0e
−(k+1)/2 < e−x + 8a0e

−x/4 < (1 + 8a0)e
−x/4,

uniformly in x. Thus taking c0 := a0(1 + 8a0) we obtain (1) for x ≥ 2. However, by
adjusting the value of c0 if necessary we can ensure that the inequality (1) is also valid
for x with 1 ≤ x < 2. Then the inequality is valid for all x ≥ 1.

Finally, we prove the last assertion of the theorem. Given any ε > 0 and δ > 0, choose
x ≥ 1 so that c0e

−x/4 < δ, and then choose n1 ≥ n0(x) so that x < ε
√

3 log n1. Now (1)
shows that for all n ≥ n1 the proportion of f(X) of degree n in Mi(q) which have splitting
fields whose degree lies outside of the interval

[
exp((1

2
− ε)(log n)2), exp((1

2
+ ε)(log n)2)

]
is bounded by c0e

−x/4 < δ. This is equivalent to what is stated.

4 Proof of Theorem 2

We start by proving an upper bound for En(q). Define

Ẽn := max {Em |m = 1, 2, ..., n} .

(It seems likely that Ẽn = En but we have not been able to prove this.)

Lemma 8 There exists a constant c2 > 0 such that, in each of the classes Mi(q), En(q) ≤
c2Ẽn for all q and all n.

Proof. Let k ≥ 2 be the least integer such that

a2
0

∞∑
s=1

(k + 1)s

(2s)k−1
≤ 1/2.

We shall define c2 := 2a0e
2k(k−1).
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We shall prove the lemma by induction on n. Note that E1(q) = 1 ≤ c2 = c2Ẽ1.
Assume n ≥ 2 and that Em(q) ≤ c2Ẽm for all m < n. Now Lemma 4 shows that

E ′
n,k(q) :=

∑
λ∈Π′

n,k

w(λ, q)m(λ) ≤
n/k∑
s=1

∑
µ`n−ks

w(
[
sk
] ∨ µ, q)m(

[
sk
] ∨ µ)

≤ a0

n/k∑
s=1

sw(
[
sk
]
, q)

∑
µ`n−ks

w(µ, q)m(µ)

= a0

n/k∑
s=1

sw(
[
sk
]
, q)En−ks(q).

Thus using Lemma 5, the choice of k and the induction hypothesis, we obtain

E ′
n,k(q) ≤ a2

0

n/k∑
s=1

(k + 1)s

(2s)k−1
c2Ẽn−ks ≤ 1

2
c2Ẽn

because the sequence
{

Ẽn

}
is monotonic. On the other hand, Lemma 6 shows

En,k(q) :=
∑

λ∈Πn,k

w(λ, q)m(λ)

≤ a0e
2k(k−1)

∑
λ∈Πn,k

w(λ)m(λ) ≤ a0e
2k(k−1)En ≤ 1

2
c2Ẽn

by the choice of c2. Hence

En(q) = En,k(q) + E ′
n,k(q) ≤ c2Ẽn

and the induction step is proved.

To complete the proof of the theorem we must prove a lower bound for En(q). Let
Λn denote the set of partitions π of the form:

(i) π is a partition of some integer m with n− r < m ≤ n where r is the smallest
prime >

√
n;

(ii) the parts of π are distinct and each is a multiple of a different prime >
√

n.
Note that if the parts of π are k1r1, ..., ktrt where r1, ..., rt are distinct primes >

√
n then

w(π)m(π) ≥∏i ri/ (kiri)
1 1! =

∏
i 1/ki.

Consider the partitions of n which can be written in the form π∨ω where π ∈ Λn and
ω ∈ Πn−|π|. In Sect. 3 of [9] (see especially the bottom of page 3) Stong notes (in our
notation) that since π and ω are disjoint:

En ≥
∑
π∈Λn

∑
ω`n−|π|

w(π ∨ ω)m(π ∨ ω)

≥
∑
π∈Λn

w(π)m(π)
∑

ω`n−|π|
w(ω) =

∑
π∈Λn

w(π)m(π).
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He then proves that the last sum is greater than En exp
(
−O

(√
n log log n

log n

))
.

Similarly, using Lemma 4 we obtain

En(q) ≥
∑
π∈Λn

∑
ω`n−|π|

w(π ∨ ω, q)m(π ∨ ω)

≥ a−2
0

∑
π∈Λn

w(π, q)m(π)
∑

ω`n−|π|
w(ω, q) = a−2

0

∑
π∈Λn

w(π, q)m(π).

Since each π ∈ Λn has all its parts of different sizes, Lemma 6 shows that w(π, q) ≥ c1w(π),
and so from the result due to Stong quoted above

En(q) ≥ a−2
0 c1

∑
π∈Λn

w(π)m(π) ≥ En exp

(
−O

(√
n log log n

log n

))
.

The lower bound in our theorem now follows from Stong’s theorem.
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