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Abstract

We first show how a special case of Jackson’s 8φ7 summation immediately gives
Warnaar’s q-analogue of the sum of the first n cubes, as well as q-analogues of
the sums of the first n integers and first n squares. Similarly, by appropriately
specializing Bailey’s terminating very-well-poised balanced 10φ9 transformation and
applying the terminating very-well-poised 6φ5 summation, we find q-analogues for
the respective sums of the first n quarts and first n quints. We also derive q-
analogues of the alternating sums of squares, cubes and quarts, respectively.

1 Introduction

Garrett and Hummel [2] recently gave a combinatorial proof of a q-analogue of the classical
formula for the sum of the first n cubes. While the classical formula

n∑
k=1

k3 =

(
n + 1

2

)2

(1.1)

is very simple and thus particularly attractive, the q-analogue of [2] has the form

n∑
k=1

qk−1

(
1 − qk

1 − q

)2(
1 − qk−1

1 − q2
+

1 − qk+1

1 − q2

)
=

[
n + 1

2

]2

q

. (1.2)

Here [
n
k

]
q

=

k∏
j=1

1 − qn+1−j

1 − qj
(1.3)
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denotes the q-binomial coefficient. The identity in (1.2) is called a q-analogue of (1.1)
since it reduces to the latter by the simple limit q → 1.

In their paper Garrett and Hummel asked for a simpler q-analogue of the sum of
cubes (1.1). Further, in view of the fact that there are several classical results for sums
of other powers of integers, they suggested it would be natural to develop q-analogues of
those theorems. Shortly after, as an immediate response to Garrett and Hummel’s first
question, Warnaar [4] proposed the following identity,

n∑
k=1

q2n−2k (1 − qk)2(1 − q2k)

(1 − q)2(1 − q2)
=

[
n + 1

2

]2

q

, (1.4)

which he derived using a simple telescoping argument.
In this paper, we take up on Garrett and Hummel’s second question. In particular,

we provide q-analogues of the classical sums of quarts

n∑
k=1

k4 =
1

30
n(n + 1)(2n + 1)(3n2 + 3n − 1), (1.5)

and of quints
n∑

k=1

k5 =
1

12
n2(n + 1)2(2n2 + 2n − 1), (1.6)

respectively. We also give some q-analogues for alternating sums. We obtain our results
(which we deem attractive) by employing specific identities for very-well-poised basic
hypergeometric series, in conjunction with suitable specializations of the parameters.

Our paper is organized as follows. In Section 2 we recall some definitions and important
identities we need from the theory of basic hypergeometric series. In Section 3 we show
how Jackson’s very-well-poised balanced 8φ7 summation can be directly specialized to
recover Warnaar’s result (1.4). We also give q-analogues of sums of consecutive integers
and squares and q-analogues of alternating sums of consecutive squares. In Section 4, we
suitably specialize Bailey’s terminating very-well-poised balanced 10φ9 transformation and
apply the terminating very-well-poised 6φ5 summation on one side of the identity to obtain
a little “master identity”, see Lemma 1. This identity is then specialized in different ways
by which we obtain the desired q-analogues of sums of consecutive quarts and quints, and
further, q-analogues of alternating sums of cubes and quarts. We complete our exposition
by speculating about q-analogues of sums of higher integer powers.

We would like to thank Martin Rubey for drawing our attention to [4] (which was the
starting point of the present paper), and for stimulating discussions.

2 Preliminaries from basic hypergeometric series

A standard reference for basic hypergeometric series is Gasper and Rahman’s text [3].
Let q be a complex parameter (called the “base”). Since the identities considered in

this paper are all terminating (i.e., involve finite sums), we do not require any restriction
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on q (such as |q| < 1). For a complex parameter a and nonnegative integer k, the q-shifted
factorial is defined as

(a; q)k :=
k∏

j=1

(1 − aqj−1).

Empty products are defined to be one, so (a; q)0 = 1. For brevity of notation, we write

(a1, . . . , am; q)k = (a1; q)k . . . (am; q)k.

The q-binomial coefficient was already defined in (1.3).
The basic hypergeometric r+1φr series is defined as

r+1φr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]
:=

∞∑
k=0

(a1, . . . , ar+1; q)k

(q, b1, . . . , br; q)k

zk. (2.1)

The r+1φr series terminates if one of the upper parameters, say ar+1, is of the form q−n for
a nonnegative integer n. In this case the series in (2.1) reduces to a sum of n + 1 terms.

The classical theory of basic hypergeometric series contains several important summa-
tion and transformation formulas involving r+1φr series. Many of these summation the-
orems require that the parameters satisfy the condition of being either balanced and/or
very-well-poised. An r+1φr basic hypergeometric series is called balanced if b1 · · · br =
a1 · · ·ar+1q and z = q. An r+1φr series is well-poised if a1q = a2b1 = · · · = ar+1br and
is very-well-poised if in addition a2 = −a3 = q

√
a1. Note that this choice of a2 and a3

entails that the factor
1 − a1q

2k

1 − a1

appears in a very-well-poised series. The parameter a1 is usually referred to as the special
parameter of such a series.

We are ready to state some important theorems for very-well-poised series we need in
this paper. We start with the most general theorem and then specialize down to simpler
identities.

Bailey’s transformation formula [3, Appendix (III.28)] for terminating very-well-poised
balanced 10φ9 series stands on the top of the classical (Bailey) hierarchy of identities for
basic hypergeometric series. It contains a number of important transformations and
summations as special case. It reads as follows:

10φ9

[
a, q

√
a,−q

√
a, b, c, d, e, f, λaqn+1/ef, q−n√

a,−√
a, aq/b, aq/c, aq/d, aq/e, aq/f, efq−n/λ, aqn+1; q, q

]

=
(aq, aq/ef, λq/e, λq/f ; q)n

(aq/e, aq/f, λq/ef, λq; q)n

× 10φ9

[
λ, q

√
λ,−q

√
λ, λb/a, λc/a, λd/a, e, f, λaqn+1/ef, q−n√

λ,−√
λ, aq/b, aq/c, aq/d, λq/e, λq/f, efq−n/a, λqn+1; q, q

]
,

(2.2)

where λ = qa2/bcd.
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If in (2.2) we let d = aq/c (thus λ = a/b) and suitably relabel parameters (e 7→ c,
f 7→ d) we obtain Jackson’s summation formula [3, Appendix (II.22)] for a terminating
very-well-poised balanced 8φ7 series.

8φ7

[
a, q

√
a,−q

√
a, b, c, d, a2qn+1/bcd, q−n√

a,−√
a, aq/b, aq/c, aq/d, bcdq−n/a, aqn+1; q, q

]
=

(aq, aq/bc, aq/bd, aq/cd; q)n

(aq/b, aq/c, aq/d, aq/bcd; q)n

.

(2.3)
Finally, we list the terminating very-well-poised 6φ5 summation [3, Appendix (II.22)],

obtained from (2.3) by letting d → ∞.

6φ5

[
a, q

√
a,−q

√
a, b, c, q−n√

a,−√
a, aq/b, aq/c, aqn+1; q,

aq1+n

bc

]
=

(aq, aq/bc; q)n

(aq/b, aq/c; q)n
. (2.4)

3 Sums of q-integers, q-squares and q-cubes

Most likely, Garrett and Hummel initially derived their q-analogue of the sum of cubes
by assuming the closed form side to be a squared q-binomial coefficient, and taking dif-
ferences. Since[

k + 1
2

]2

q

−
[
k
2

]2

q

= qk−1

(
1 − qk

1 − q

)2(
1 − qk−1

1 − q2
+

1 − qk+1

1 − q2

)
, (3.1)

the identity (1.2) follows immediately by summing both sides of (3.1) over k from 1 to
n. Warnaar’s “achievement” in [4] was to determine that after multiplying the squared
q-binomial coefficient by a suitable power of q, the differences factor nicely into quotients
of linear factors.

We show in the following how Jackson’s very-well-poised 8φ7 summation can be directly
specialized to recover Warnaar’s result (1.4). Our approach has the advantage that it
yields also several other results at the same time. Furthermore, by placing the subject
in the appropriate q-hypergeometric hierarchy, we are naturally led to the derivation of
higher order identities in Section 4.

In (2.3), let d = a/bc. This gives the indefinite summation (cf. [3, Eq. (3.6.1)])

n∑
k=0

(1 − aq2k)

(1 − a)

(a, b, c, a/bc; q)k

(q, aq/b, aq/c, bcq; q)k
qk =

(aq, bq, cq, aq/bc; q)n

(q, aq/b, aq/c, bcq; q)n
. (3.2)

Next let c → ∞. This gives, after multiplying both sides by bn,

n∑
k=0

(1 − aq2k)

(1 − a)

(a, b; q)k

(q, aq/b; q)k

bn−k =
(aq, bq; q)n

(q, aq/b; q)n

. (3.3)

To obtain Warnaar’s q-analogue of the sum of cubes (1.4), replace n by n − 1, (shift the
index of summation, k 7→ k − 1) and set a = b = q2.

Of course, our proof of (1.4) is not essentially different from Warnaar’s since the
indefinite summation (3.2) can also be proved using a telescoping argument.
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Equation (3.3) also contains a q-analogue of the sum of the first n squares,

n∑
k=1

k2 =
1

6
n(n + 1)(2n + 1).

In (3.3) replace n by n − 1, then let a = q2 and b = q
3
2 , which gives

n∑
k=1

(1 − q2k)(1 − qk)

(1 − q2)(1 − q)
q

3
2
(n−k) =

(1 − qn)(1 − qn+1)(1 − qn+ 1
2 )

(1 − q)(1 − q2)(1 − q
3
2 )

. (3.4)

Equation (3.3) further contains a q-analogue of the sum of the first n integers,

n∑
k=1

k =

(
n + 1

2

)
.

In (3.3) replace n by n − 1, then let a = q2 and b = q, which gives

n∑
k=1

(1 − q2k)

(1 − q2)
qn−k =

[
n + 1

2

]
q

. (3.5)

Both identities, (3.4) and (3.5) are different from the corresponding q-analogues given
by Warnaar in [4], namely

n∑
k=1

(1 − q3k)(1 − qk)

(1 − q3)(1 − q)
q2(n−k) =

(1 − qn)(1 − qn+1)(1 − q2n+1)

(1 − q)(1 − q2)(1 − q3)
, (3.6)

and
n∑

k=1

(1 − qk)

(1 − q)
q2(n−k) =

[
n + 1

2

]
q

, (3.7)

respectively. These two identities can be easily derived from an indefinite bibasic summa-
tion formula due to Gosper (see [3, Eq. (3.6.8)]),

n∑
k=0

(1 − apkqk)

(1 − a)

(a; p)k(c; q)k

(q; q)k(ap/c; p)k

c−k =
(ap; p)n(cq; q)n

(q; q)n(ap/c; p)n

c−n, (3.8)

a formula which is more general than (3.3). First multiply both sides of (3.8) by cn,
replace n by n − 1. Then let c = p = q2 to obtain (3.6), while let c = q2 and a = 0 to
obtain (3.7).

From (3.3) it is also easy to derive a q-analogue of the classical formula for the first n
odd integers,

n∑
k=1

(2k − 1) = n2.
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In (3.3), simply replace n by n − 1, and let a = b = q, which gives

n∑
k=1

(1 − q2k−1)

(1 − q)
qn−k =

(
1 − qn

1 − q

)2

. (3.9)

For a q-analogue of the sum of odd squares,

n∑
k=1

(2k − 1)2 =
1

3
n(2n − 1)(2n + 1),

replace in (3.3) n by n − 1, put a = q and b = q
3
2 , which is

n∑
k=1

(1 − q2k−1)(1 − qk− 1
2 )

(1 − q)(1 − q
1
2 )

q
3
2
(n−k) =

(1 − qn)(1 − qn− 1
2 )(1 − qn+ 1

2 )

(1 − q)(1 − q
1
2 )(1 − q

3
2 )

. (3.10)

We may also obtain from (3.3) results for alternating sums. First replace n by n − 1,
then let b = −a. This gives

n∑
k=1

(1 − aq2k−2)

(1 − a)

(a2; q2)k−1

(q2; q2)k−1

(−1)n−kan−k =
(a2q2; q2)n−1

(q2; q2)n−1

. (3.11)

Now, for a q-analogue of the alternating sum of odd integers,

n∑
k=1

(2k − 1)(−1)n−k = n,

we simply choose a = q in (3.11):

n∑
k=1

(1 − q2k−1)

(1 − q)
(−1)n−kqn−k =

(1 − q2n)

(1 − q2)
. (3.12)

For a q-analogue of the alternating sum of squares,

n∑
k=1

k2(−1)n−k =

(
n + 1

2

)
, (3.13)

we choose a = q2 in (3.11), and then replace q2 by q:

n∑
k=1

(
1 − qk

1 − q

)2

(−1)n−kqn−k =

[
n + 1

2

]
q

. (3.14)

Finally, we point out that the special case a = q2, b = −q
3
2 of (3.3), with n replaced

by n − 1,
n∑

k=1

(1 − q2k)(1 − qk)

(1 − q2)(1 − q)
(−1)n−kq

3
2
(n−k) =

(1 + qn+ 1
2 )

(1 + q
3
2 )

[
n + 1

2

]
q

, (3.15)

is another q-analogue of (3.13).
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4 Sums of q-quarts and q-quints

In view of the usefulness of the indefinite summation (3.2) obtained from Jackson’s sum-
mation (2.3), it appears to be indeed appropriate to look for generalizations. By starting
with Bailey’s transformation formula (2.2), performing some specializations and appeal-
ing to a special case of the the terminating 6φ5 summation (2.4), we are eventually lead
to a little “master identity” in Lemma 1. By specializing this identity in various ways,
we obtain q-analogues of the sums for consecutive quarts and quints, and q-analogues of
the alternating sums of cubes and quarts.

In Bailey’s transformation formula (2.2), we first let d = aqn+1 (thus λ = aq−n/bc),
then let f → ∞, and then put a = b = q2. This gives the following transformation of
indefinite sums.

n∑
k=0

(1 − q2+2k)

(1 − q2)

(q2, q2, c, e; q)k

(q, q, q3/c, q3/e; q)k

( q

ce

)k

=
(q3, ce; q)n

(q3/e, c; q)n
e−n

n∑
k=0

(1 − q2k−n/c)

(1 − q−n/c)

(q−n/c, q−n/c, q−2−n, e; q)k

(q, q, q3/c, q1−n/ce; q)k

(
qn+3

e

)k

. (4.1)

Observe now that the sum on the right hand side is almost a terminating very-well-
poised 6φ5 series. If the summation index on the right hand side would run from 0 up to
n + 2, we would indeed have a 6φ5 series which could be summed using (2.4). However,
in the (indefinite) summation above the index runs only up to n, two terms too short.
Consequently, in order to evaluate the right-hand side of (4.1), we use the simple relation

n∑
k=0

ak =

( n+2∑
k=0

ak

)
− an+1 − an+2,

where we can sum the 6φ5 series with given summand and then subtract the last two
terms. Since by (2.4),

n+2∑
k=0

(1 − q2k−n/c)

(1 − q−n/c)

(q−n/c, q−n/c, q−2−n, e; q)k

(q, q, q3/c, q1−n/ce; q)k

(
qn+3

e

)k

=
(q1−n/c, q/e; q)n+2

(q, q1−n/ce; q)n+2

=
(c/q2, q/e; q)n+2

(q, ce/q2; q)n+2

en+2,

we have

n∑
k=0

(1 − q2k−n/c)

(1 − q−n/c)

(q−n/c, q−n/c, q−2−n, e; q)k

(q, q, q3/c, q1−n/ce; q)k

(
qn+3

e

)k
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=
(c/q2, q/e; q)n+2

(q, ce/q2; q)n+2
en+2 − (1 − qn+2/c)

(1 − q−n/c)

(q−n/c, q−n/c, q−2−n, e; q)n+1

(q, q, q3/c, q1−n/ce; q)n+1

(
qn+3

e

)n+1

− (1 − qn+4/c)

(1 − q−n/c)

(q−n/c, q−n/c, q−2−n, e; q)n+2

(q, q, q3/c, q1−n/ce; q)n+2

(
qn+3

e

)n+2

=
(c/q; q)n+1(q/e; q)n+2

(ce/q; q)n+1(q; q)n+2

[
(1 − c/q2)

(1 − ce/q2)
en+2+

(e; q)n+1(c/q; q)n+2

(q3/c; q)n+1(q/e; q)n+2

(q

c

)n

×
(

(1 − qn+2/c)(1 − qn+2)2

(1 − q)(1 − c/q)2
+

(1 − eqn+1)

(1 − ce/q2)

qn+2

c

)]
.

In the last equality we have applied some elementary manipulations for q-shifted factorials
(see e.g. [3, Appendix I]) which allowed us to simplify the result significantly. We now
substitute the last expression for the sum on the right hand side of (4.1) and obtain

n∑
k=0

(1 − q2+2k)

(1 − q2)

(q2, q2, c, e; q)k

(q, q, q3/c, q3/e; q)k

( q

ce

)k

=
(1 − c/q)(1 − q/e)(1 − q2/e)

(1 − ce/q)(1 − q)(1 − q2)
e−n

[
(1 − c/q2)

(1 − ce/q2)
en+2 +

(e; q)n+1(c/q; q)n+2

(q3/c; q)n+1(q/e; q)n+2

(q

c

)n

×
(

(1 − qn+2/c)(1 − qn+2)2

(1 − q)(1 − c/q)2
+

(1 − eqn+1)

(1 − ce/q2)

qn+2

c

)]

=
(1 − c/q)(1 − q/e)(1 − q2/e)

(1 − ce/q)(1 − q)(1 − q2)
e−n

[
(1 − c/q2)

(1 − ce/q2)
en+2 +

(e; q)n+1(c; q)n+1

(q3/c; q)n(q/e; q)n+2

(q

c

)n

×
(

(1 − qn+1)(1 − qn+2)

(1 − q)(1 − c/q)
− (1 − e/q)

(1 − ce/q2)
qn+1

)]
.

(4.2)

In the second equality we have pulled out the quotient of linear factors (1− qn+3/c)/(1−
c/q) from the sum of the two terms inside the big parentheses. This will be convenient for
our purpose, in particular for deriving nice q-analogues of the formulas (1.5) and (1.6).
The products outside the big parentheses will contain the linear factors appearing in the
respective formulas while the expression inside the big parentheses (which is a sum of two
terms) contributes a nonlinear, quadratic factor.

We manipulate the identity in (4.2) slightly further. After replacing n by n−1, shifting
the index of summation (k 7→ k − 1), and multiplying both sides by (ce/q)n−1 we arrive
at the following result.

Lemma 1

n∑
k=1

(1 − q2k)

(1 − q2)

(
1 − qk

1 − q

)2
(c, e; q)k−1

(q3/c, q3/e; q)k−1

(
ce

q

)n−k
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=
(1 − c/q)(1 − q/e)(1 − q2/e)

(1 − ce/q)(1 − q)(1 − q2)

[
(1 − c/q2)

(1 − ce/q2)
e2

(
ce

q

)n−1

+
(e; q)n(c; q)n

(q3/c; q)n−1(q/e; q)n+1

×
(

(1 − qn)(1 − qn+1)

(1 − q)(1 − c/q)
− (1 − e/q)

(1 − ce/q2)
qn

)]
.

(4.3)

When c = q2, the right hand side of (4.3) simplifies considerably since one term drops
out. We find it convenient to list this special case explicitly.

Corollary 2

n∑
k=1

(1 − q2k)

(1 − q2)

(
1 − qk

1 − q

)3
(e; q)k−1

(q3/e; q)k−1
(eq)n−k

=
(1 − qn)(1 − qn+1)(e; q)n

(1 − q)(1 − q2)(1 − eq)(q3/e; q)n−1

(
(1 − qn)(1 − qn+1)

(1 − q)2
− (1 − e/q)

(1 − e)
qn

)
. (4.4)

The case e = q
3
2 of Lemma 1 will also be needed.

Corollary 3

n∑
k=1

(1 − q2k)

(1 − q2)

(
1 − qk

1 − q

)2
(c; q)k−1

(q3/c; q)k−1

(
cq

1
2

)(n−k)

=
(1 − c/q)(1 − q−

1
2 )(1 − q

1
2 )

(1 − cq
1
2 )(1 − q)(1 − q2)

[
(1 − c/q2)

(1 − cq−
1
2 )

q3
(
cq

1
2

)n−1

+
(1 − qn+ 1

2 )(c; q)n

(1 − q−
1
2 )(1 − q

1
2 )(q3/c; q)n−1

(
(1 − qn)(1 − qn+1)

(1 − q)(1 − c/q)
− (1 − q

1
2 )

(1 − cq−
1
2 )

qn

)]
.

(4.5)

In the sequel, we consider special cases of Corollaries 2 and 3 leading to q-analogues
of several sums and alternating sums of low integer powers.

The first thing we observe is that by letting e = q in Corollary 2 we immediately
recover Warnaar’s q-analogue of the sum of cubes in (1.4). (One could in principal obtain
the same result with putting e = q3/c directly in Lemma 1, however it is not easy to see
at one glance that the right-hand side then is independent of c and factors correctly to
the squared q-binomial coefficient as desired.)

Next, we take e = q
3
2 in Corollary 2. This gives

n∑
k=1

(1 − q2k)

(1 − q2)

(
1 − qk

1 − q

)3

q
5
2
(n−k)

=
(1 − qn)(1 − qn+1)(1 − qn+ 1

2 )

(1 − q)(1 − q2)(1 − q
5
2 )

(
(1 − qn)(1 − qn+1)

(1 − q)2
− (1 − q

1
2 )

(1 − q
3
2 )

qn

)
. (4.6)
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This is clearly a q-analogue of the classical sum of quarts (1.5), as 3n2 + 3n − 1 =
3n(n + 1) − 1.

The special case e = q2 of Corollary 2 gives

n∑
k=1

(1 − q2k)

(1 − q2)

(
1 − qk

1 − q

)4

q3(n−k)

=
(1 − qn)2(1 − qn+1)2

(1 − q)2(1 − q2)(1 − q3)

(
(1 − qn)(1 − qn+1)

(1 − q)2
− (1 − q)

(1 − q2)
qn

)
. (4.7)

This is clearly a q-analogue of the classical sum of quints (1.6), as 2n2 + 2n − 1 =
2n(n + 1) − 1.

The special cases of Corollary 2 where e = −q
3
2 , e = −q2, e → 0 and e → ∞ (in the

latter two cases we first need to multiply both sides of (4.4) by e1−n) all give q-analogues
of the alternating sum of quarts, which in the classical case reads as

n∑
k=1

k4(−1)n−k =
1

2
n(n + 1)(n2 + n − 1). (4.8)

In particular, we list the two cases e = −q
3
2 and e = −q2 of Corollary 2 explicitly:

n∑
k=1

(1 − q2k)

(1 − q2)

(
1 − qk

1 − q

)3

(−1)n−kq
5
2
(n−k)

=
(1 − qn)(1 − qn+1)(1 + qn+ 1

2 )

(1 − q)(1 − q2)(1 + q
5
2 )

(
(1 − qn)(1 − qn+1)

(1 − q)2
− (1 + q

1
2 )

(1 + q
3
2 )

qn

)
(4.9)

and

n∑
k=1

(
1 − q2k

1 − q2

)2(
1 − qk

1 − q

)2

(−1)n−kq3(n−k)

=
(1 − q2n)(1 − q2(n+1))

(1 − q)(1 − q2)2(1 + q3)

(
(1 − qn)(1 − qn+1)

(1 − q)2
− (1 + q)

(1 + q2)
qn

)
, (4.10)

both of which are clearly q-analogues of (4.8), as n2 + n − 1 = n(n + 1) − 1.
Finally, we give q-analogues of the alternating sum of cubes, which in the classical

case reads as
n∑

k=1

k3(−1)n−k =
1

8

[
(2n + 1)(2n2 + 2n − 1) + (−1)n

]
. (4.11)
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Take c = −q
3
2 in Corollary 3. This gives

n∑
k=1

(1 − q2k)

(1 − q2)

(
1 − qk

1 − q

)2

(−1)n−kq2(n−k)

=
(1 − q−

1
2 )

(1 − q4)

[
(1 + q−

1
2 )

(1 + q)
q2(n+1)(−1)n−1

+
(1 − q2n+1)

(1 − q−
1
2 )(1 − q

1
2 )

(
(1 − qn)(1 − qn+1)

(1 − q)(1 + q
1
2 )

− (1 − q
1
2 )

(1 + q)
qn

)]
,

(4.12)

which is a q-analogue of (4.11). The c = −q2 case of Corollary 3 gives another q-analogue
of (4.11):

n∑
k=1

(
1 − q2k

1 − q2

)2(
1 − qk

1 − q

)
(−1)n−kq

5
2
(n−k)

=
(1 + q)(1 − q−

1
2 )(1 − q

1
2 )

(1 + q
5
2 )(1 − q)(1 − q2)

[
2

(1 + q
3
2 )

q3(−1)n−1
(
q

5
2

)n−1

+
(1 − qn+ 1

2 )(1 + qn−1)(1 + qn)

(1 − q−
1
2 )(1 − q

1
2 )(1 + q)

(
(1 − qn)(1 − qn+1)

(1 − q)(1 + q)
− (1 − q

1
2 )

(1 + q
3
2 )

qn

)]
.

(4.13)

One can derive two other q-analogues of (4.11) by multiplying both sides of (4.5) by
c1−n and taking the limit c → 0, or c → ∞.

Concluding Remark 4 Our q-analogues of
∑n

k=1 km, for m = 1, 2, 3, 4, 5, all are of the
form

n∑
k=1

(1 − q2k)

(1 − q2)

(
1 − qk

1 − q

)m−1

q
m+1

2
(n−k), (4.14)

compare with (3.5), (3.4), (1.4), (4.6) and (4.7), respectively. It is a good guess that a
reasonable continuation involving higher integer powers will follow the same pattern. It is
not clear whether, for instance, by appropriately specializing Sears’ general (multi-term)
transformation for well-poised basic hypergeometric series (cf. [3, Sec. 4.12]), one can
derive general formulas. These may explicitly involve q-Bernoulli numbers or q-Bernoulli
polynomials (which could be but would not need to be those defined by Carlitz [1]). On
the other hand, a general formula for (4.14) may even eventually lead to a solid definition
for (a possibly new type of) q-Bernoulli polynomials. This should be worth investigating.
In any case, it should be at least possible to successively determine closed forms for (4.14)
explicitly for small values of m greater than 5, say for m = 6, 7, 8, 9.
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