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Abstract

One of the main open problems in secret sharing is the characterization of the
ideal access structures. This problem has been studied for several families of access
structures with similar results. Namely, in all these families, the ideal access struc-
tures coincide with the vector space ones and, besides, the optimal information rate
of a non-ideal access structure is at most 2/3.

An access structure is said to be r-homogeneous if there are exactly r participants
in every minimal qualified subset. A first approach to the characterization of the
ideal 3-homogeneous access structures is made in this paper. We show that the
results in the previously studied families can not be directly generalized to this
one. Nevertheless, we prove that the equivalences above apply to the family of the
sparse 3-homogeneous access structures, that is, those in which any subset of four
participants contains at most two minimal qualified subsets. Besides, we give a
complete description of the ideal sparse 3-homogeneous access structures.

Keywords. Cryptography; Secret sharing schemes; Information rate; Ideal secret
sharing schemes.

1 Introduction

A secret sharing scheme Σ is a method to distribute a secret value k ∈ K among a set
of participants P. Every participant p ∈ P receives a share sp ∈ Sp in such a way that
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only some subsets of participants, the qualified subsets, are able to reconstruct the secret
k from their shares. Secret sharing was introduced by Blakley [1] and Shamir [19]. A
comprehensive introduction to this topic can be found in [22]. Only perfect secret sharing
schemes are going to be considered in this paper, that is, schemes in which the shares of the
participants in a non-qualified subset provide absolutely no information about the value
of the secret. Besides, the reader must notice that we are dealing here with unconditional
security , that is, we are not making any assumption on the computational power of the
participants.

The access structure of a secret sharing scheme is the family of the qualified subsets,
Γ ⊂ 2P . In general, access structures are considered to be monotone increasing , that is,
any subset of P containing a qualified subset is qualified. Then, the access structure Γ is
determined by the family of the minimal qualified subsets , Γ0, which is called the basis of
Γ. We assume that every participant belongs to at least one minimal qualified subset.

Due to efficiency reasons and the fact that the security of a system depends on the
amount of information that must be kept secret, the size of the shares given to the
participants is a key point in the design of secret sharing schemes. The information rate
ρ of a secret sharing scheme is defined as the ratio between the length (in bits) of the
secret and the maximum length of the shares given to the participants. Namely,

ρ = ρ(Σ,Γ,K) =
log | K |

maxp∈P log | Sp | ·

In any perfect secret sharing scheme, the size of the share of any participant is at least the
size of the secret [22]. Hence, the information rate satisfies 0 < ρ ≤ 1. A secret sharing
scheme is said to be ideal if its information rate is equal to one, that is, if all shares
have the same size as the secret. The access structures that admit an ideal secret sharing
scheme are called ideal . For instance, the threshold schemes proposed in the first works
on secret sharing [1, 19] are ideal. Therefore, the (t, n)-threshold access structure, which
consists of all subsets with at least t participants of a set of n participants, is ideal. Ito,
Saito and Nishizeki [10] proved, in a constructive way, that there exists a secret sharing
scheme for every access structure. The schemes constructed by the method in [10] are in
general very inefficient, because the size of the shares is much larger than the size of the
secret, that is, their information is, in most cases, very small.

When designing a secret sharing scheme for a given access structure Γ, we may try to
maximize the information rate. The optimal information rate of an access structure Γ is
defined by ρ∗(Γ) = sup(ρ(Σ,Γ,K)), where the supremum is taken over all possible sets of
secrets K with | K | ≥ 2 and all secret sharing schemes Σ with access structure Γ and set
of secrets K. Of course, the optimal information rate of an ideal access structure is equal
to one.

The above considerations lead to two problems that have received considerable atten-
tion: to characterize the ideal access structures and, more generally, to determine the
optimal information rate of any access structure. Even though a number of results have
been given, both problems are far from being solved.

Matroids play an important role in the characterization of the ideal access structures.
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Brickell and Davenport [6] gave a necessary condition in terms of matroids. This necessary
condition is not sufficient. A counterexample is obtained from the result by Seymour [18],
who proved that there is no ideal scheme for the access structures related to the Vamos
matroid.

A sufficient condition for an access structure to be ideal was given by Brickell [5],
who introduced the vector space secret sharing schemes, which are ideal schemes for a
wide family of access structures, the vector space access structures. These structures are
precisely the ones that are related to representable matroids and the ideal schemes are
equivalent to the ones that are obtained from linear codes [15] and equivalent also to the
ones obtained from monotone span programs [12]. As a consequence of the results by Si-
monis and Ashikhmin [21], this sufficient condition is not necessary. Namely, they proved
that the access structures related to the non-Pappus matroid, which is not representable,
are ideal but are not vector space.

Several techniques have been introduced in [4, 7, 17, 23] in order to construct secret
sharing schemes for some families of access structures, which provide lower bounds on their
optimal information rate. Upper bounds have been found for several particular access
structures by using some tools from Information Theory [2, 3, 8]. A general method to
find upper bounds, the independent sequence method , was given in [2] and was improved
in [16]. However, there exists a wide gap between the best known upper and lower bounds
on the optimal information rate for most access structures.

Due to the difficulty of finding general results, these problems have been studied in
several particular classes of access structures: access structures on sets of four [22] and
five [11] participants, access structures defined by graphs [2, 3, 4, 6, 7, 8, 23], bipartite
access structures [16], access structures with three or four minimal qualified subsets [13],
and access structures with intersection number equal to one [14]. There exist remarkable
coincidences in the results obtained for all these classes of access structures. Namely, the
ideal access structures coincide with the vector space ones and, besides, there is no access
structure Γ whose optimal information rate is such that 2/3 < ρ∗(Γ) < 1. Moreover,
the ideal access structures in all these families have been completely characterized and
described. A natural question that arises at this point is to determine to which extent
these results can be generalized to other families of access structures.

The aim of this paper is to present a first approximation to the characterization of the
ideal 3-homogeneous access structures. An access structure is said to be r-homogeneous
if all minimal qualified subsets have exactly r different participants. Notice that the
access structures defined by graphs, one of the above-mentioned families, are precisely
the 2-homogeneous ones.

Our first result, Proposition 3.1, is an example proving that the ideal 3-homogeneous
access structures do not coincide with the vector space ones. Therefore, the results in
the previously studied families do not apply to the family of the 3-homogeneous access
structures. This example and the result in Proposition 3.2, lead us to study the sparse
3-homogeneous access structures, that is, the structures such that each set of four partic-
ipants contains at most two minimal qualified subsets.

Our main results are gathered in Theorems 4.1 and 4.2. We prove in Theorem 4.1 that
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the vector space 3-homogeneous access structures over Z2 are sparse, while Theorem 4.2
provides a complete characterization and description of the ideal sparse 3-homogeneous
access structures. We obtain for the sparse 3-homogeneous access structures similar results
as in the previously studied families. Namely, we prove that the ideal sparse 3-homogenous
access structures coincide with the vector space ones and that there is no access structure
in this family with optimal information rate between 2/3 and 1. Besides, our results
contain a characterization of the 3-homogeneous structures that are Z2-vector space access
structures.

The paper is organized as follows. We recall in Section 2 some definitions and known
results on vector space secret sharing schemes. Among them, we present a combinatorial
property, related to the dual access structure, that characterizes the vector space access
structures over the finite field Z2. Besides, we define in this section the simple components
of an access structure and present some basic facts about this concept. Our main results
are given in the following two sections. An ideal 3-homogeneous access structure that is
not vector space is presented in Section 3, while Section 4 deals with the characterization
and description of the ideal sparse 3-homogeneous access structures.

2 Preliminaries

Some definitions and the notation together with several general results that will be used
in the following are given in this section. First we recall some basic facts on vector space
secret sharing schemes and besides we present a characterization of the Z2-vector space
access structures. Next, we recall some reduction methods that simplify the analysis of
an access structure by decomposing it into simple components. Finally, we rewrite the
well-known characterization of the ideal 2-homogeneous access structures in terms of those
simple components. The goal of our paper is to find out to which extent this result can
be generalized to the 3-homogeneous access structures.

An access structure Γ on a set of participants P is said to be a vector space access
structure over a finite field K if there exist a vector space E over K and a map ψ :
P ∪{D} −→ E \{0}, where D /∈ P is called the dealer , such that if A ⊂ P then, A ∈ Γ if
and only if the vector ψ(D) can be expressed as a linear combination of the vectors in the
set ψ(A) = {ψ(p) : p ∈ A}. In this situation, the map ψ is said to be a realization of the
K-vector space access structure Γ. Any vector space access structure can be realized by an
ideal scheme (see [5] or [22] for proofs). Namely, if Γ is a K-vector space access structure
then we can construct a secret sharing scheme for Γ with set of secrets K = K : given a
secret value k ∈ K, the dealer takes at random an element v ∈ E such that v · ψ(D) = k,
and gives to the participant p ∈ P the share sp = v · ψ(p). Observe that, a subset A ⊂ P
is not qualified if and only if there exists a vector v ∈ E such that v · ψ(D) 6= 0 and
v · ψ(p) = 0 if p ∈ A. The schemes that can be defined in this way are called K-vector
space secret sharing schemes. They are a particular case of linear schemes, because the
shares are obtained by linear maps applied to the secret and some random values and,
hence, the secret is recovered also by linear maps applied to the shares of the qualified
subsets. Vector space secret sharing schemes were introduced in [5], and general linear
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secret sharing schemes were first described in [20].
A characterization of the Z2-vector space access structures is presented in Theorem 2.2.

This result was given in [9]. Nevertheless, since its proof is not long, we give it here for
completeness’ sake. It involves the dual access structure of an access structure Γ, which
is the access structure Γ∗ on the same set of participants P defined by Γ∗ = {B ⊂ P :
P \ B 6∈ Γ}. The following lemma on the dual access structure will be used in several
places in the paper. Let us recall that Γ0 denotes the basis of Γ, that is, the family of
minimal qualified subsets.

Lemma 2.1 Let Γ be an access structure on a set of participants P. Let B ⊂ P. Then,
B ∈ Γ∗ if and only if B ∩A 6= ∅ for every A ∈ Γ0.

Theorem 2.2 Let Γ be an access structure on a set of participants P. Then, Γ is a
Z2-vector space access structure if and only if for every two subsets A ∈ Γ0 and A∗ ∈ Γ∗

0,
the intersection A ∩ A∗ has odd cardinal number.

Proof. Let ψ : P ∪ {D} −→ E \ {0} be a realization of Γ as a Z2-vector space access
structure. Let A ∈ Γ0 and A∗ ∈ Γ∗

0. Since P \A∗ is a maximal non-qualified subset of the
access structure Γ, there exists v ∈ E such that v · ψ(D) = 1, v · ψ(p) = 0 if p ∈ P \ A∗,
and v · ψ(p) = 1 if p ∈ A∗. Observe that, since A ∈ Γ0 is a minimal qualified subset and
K = Z2, then ψ(D) =

∑
p∈A ψ(p). Therefore, 1 = v · ψ(D) =

∑
p∈A v · ψ(p) =

∑
p∈A∩A∗ 1

and, hence, A ∩ A∗ has odd cardinal number.
Let us prove now the converse. We denote Γ∗

0 = {B1, . . . , Bm}. Let ψ : P∪{D} −→ Z
m
2

be the map defined by ψ(D) = (1, . . . , 1), and ψ(p) = (δ(p, B1), . . . , δ(p, Bm)) whenever
p ∈ P, where δ(p, B) = 1 if p ∈ B and δ(p, B) = 0 otherwise. The proof is concluded by
checking that ψ is a realization of Γ as a Z2-vector space access structure. �

Let Γ be an access structure defined on a set of participants P. For a subset Q ⊂ P
we define the access structure induced by Γ on the set of participants Q as Γ(Q) = {A ⊂
Q : A ∈ Γ}. Hence the minimal qualified subsets of Γ(Q) are exactly the subsets A ⊂ Q
such that A ∈ Γ0.

Let Γ be an access structure on a set of participants P. We say that Γ is connected
if for each pair of participants p, q ∈ P there exist A1, . . . , A` ∈ Γ0 such that p ∈ A1,
q ∈ A`, and Ai ∩ Ai+1 6= ∅ if 1 ≤ i ≤ `− 1. It is clear that, for any access structure Γ on
a set of participants P, there exists a unique partition P = P1 ∪ · · · ∪ Pr such that the
induced access structures Γ(P1), . . . ,Γ(Pr) are connected and Γ = Γ(P1)∪ · · ·∪Γ(Pr). In
this situation we say that Γ(P1), . . . ,Γ(Pr) are the connected components of Γ.

Furthermore, related to the access structure Γ, we define the equivalence relation ∼
in P as follows. Two participants p, q ∈ P are said to be equivalent if either p = q or
p 6= q and the following two conditions are satisfied: (1) {p, q} 6⊂ A if A ∈ Γ0, and (2) if
A ⊂ P \ {p, q} then, A ∪ {p} ∈ Γ0 if and only if A ∪ {q} ∈ Γ0.

We say that the access structure Γ is a reduced access structure if there is no pair
of different equivalent participants. Otherwise, we consider participants p1, . . . , pm ∈ P
defining the set P/ ∼ of the equivalence classes given by the relation ∼, that is P/∼ =
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{[p1], . . . , [pm]}. An access structure Γ∼ on the set P/ ∼ is obtained in a natural way from
the access structure Γ by identifying equivalent participants. It is not difficult to check
that Γ∼ is isomorphic to the induced access structure Γ({p1, . . . , pm}). The structure Γ∼
is called the reduced access structure of Γ. Notice that if Γ is reduced then Γ = Γ∼.

Let Γ be an access structure with connected components Γ(P1), . . . ,Γ(Pr). The re-
duced access structures Γ(P1)∼, . . . ,Γ(Pr)∼ are called the simple components of Γ. The
proof of the following lemma is not difficult.

Lemma 2.3 Let Γ be an access structure on a set of participants P. Then, the following
statements hold:

1. If Γ′ is a simple component of Γ, then ρ∗(Γ′) ≥ ρ∗(Γ).

2. If Γ is an ideal access structure, then all the simple components of Γ are so.

3. If K is a finite field then, Γ is a K-vector space access structure if and only if every
simple component of Γ is a K-vector space access structure.

We conclude this section by stating the known results on the characterization of the
ideal access structures that are defined by graphs in terms of their simple components.

An access structure Γ is said to be r-homogeneous if its rank and its min-rank are equal
to r, where the rank and the min-rank of Γ are, respectively, the maximum and the mini-
mum number of participants in a minimal qualified subset. So, the 2-homogeneous access
structures are exactly those that can be defined by a graph. Observe that the complete
graph Kn represents a (2, n)-threshold access structure, which is the simple component of
the access structure corresponding to a complete multipartite graph. Therefore, the char-
acterization of ideal 2-homogeneous access structures, which is obtained from the results
in [3, 4, 6, 8, 22], can be rewritten as follows. The purpose of this paper is to examine
to which extent this result can be generalized to the family of the 3-homogeneous access
structures.

Theorem 2.4 Let Γ be a 2-homogeneous access structure on a set of participants P.
Then, the following conditions are equivalent:

1. Γ is a vector space access structure.

2. Γ is an ideal access structure.

3. ρ∗(Γ) > 2/3.

4. Every simple component of Γ is a (2, n)-threshold access structure.
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3 Two results on 3-homogeneous access structures

In this section we present two results related to the characterization of the ideal 3-
homogeneous access structures. Namely, in Proposition 3.1, we prove that the equiv-
alence between ideal and vector space access structures does not hold for the family of
3-homogeneous access structures. Meanwhile, in Proposition 3.2, we give a necessary con-
dition for a 3-homogeneous access structure to have optimal information rate greater than
2/3 and, hence, to be ideal. From our propositions we get that the result in Theorem 2.4
for the family of 2-homogeneous access structures can not be directly generalized to the
family of 3-homogeneous access structures. This fact leads us, in the next section, to
focus our attention on the family of the sparse 3-homogeneous access structures.

Let us show, first, that there exists an ideal 3-homogeneous access structure that is
not vector space. Simonis and Ashikhmin [21] presented the first examples of ideal access
structures that are not K-vector space access structures for any finite field K . Namely,
the access structures related to the non-Pappus matroid, which have rank 3 and min-rank
2 and, hence, are not homogeneous. Our goal is to point out an ideal 3-homogeneous
access structure that is not vector space. This access structure is presented in the next
proposition and arises from the results in [21] by means of suitable changes.

Proposition 3.1 Let Γ be the 3-homogeneous access structure on the set P = {p1, . . . , p9}
of nine participants with basis Γ0 = {A ⊂ P : |A| = 3} \ A, where A = {{p1, p2, p3}, {p1,
p5, p7}, {p1, p6, p8}, {p2, p4, p7}, {p2, p6, p9}, {p3, p4, p8}, {p3, p5, p9}, {p4, p5, p6}}, (the sets
in A correspond to the lines in Figure 1). Then, Γ is not a vector space access structure
but can be realized by an ideal secret sharing scheme.

•
•

•

• • •

p1

p2

p3

p4 p5 p6

p7
p8

p9

• • •

Figure 1: A representation of the access structure in Proposition 3.1.

Proof. We prove first that Γ is not a K-vector space access structure for any finite field
K. Let us suppose that there exists a realization ψ : P∪{D} → E \{0} of Γ as a K-vector
space access structure. Let us denote vi = ψ(pi) and vD = ψ(D). Since ψ is a realization of
Γ hence, for any pair pi, pj ∈ P of different participants, we have that dim〈vi, vj〉 = 2 while
dim〈vi, vj, vD〉 = 3. We prove next that dim〈v1, . . . , v9, vD〉 = 3. Let i = 4, . . . , 9. Since
{p1, p2, pi} ∈ Γ and Γ is a 3-homogeneous access structure, then there exist λ1, λ2, λi ∈
K\{0} such that vD = λ1v1+λ2v2+λivi. Hence it follows that vi ∈ 〈v1, v2, vD〉. In the same
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way, since {p2, p3, p4} ∈ Γ, then v3 ∈ 〈v2, v4, vD〉, and thus v3 ∈ 〈v1, v2, vD〉. Therefore,
vi ∈ 〈v1, v2, vD〉 for every i = 3, . . . , 9, and so dim〈v1, . . . , v9, vD〉 = 3 as we wanted to
prove. Notice that, if {pi, pj , pk} /∈ Γ is a non-qualified subset with three participants,
then vD /∈ 〈vi, vj , vk〉, and hence dim〈vi, vj, vk〉 = 2 because dim〈v1, . . . , v9, vD〉 = 3. In
particular, dim〈v1, v2, v3〉 = 2 and dim〈v4, v5, v6〉 = 2 and, besides, v7 ∈ 〈v1, v5〉 ∩ 〈v2, v4〉,
v8 ∈ 〈v1, v6〉∩〈v3, v4〉, v9 ∈ 〈v3, v5〉∩〈v2, v6〉. If we consider these nine vectors as points in
the projective plane, their relative position is depicted in Figure 1 and, hence, by applying
the Theorem of Pappus, we conclude that dim〈v7, v8, v9〉 = 2. Therefore, vD /∈ 〈v7, v8, v9〉
and so {p7, p8, p9} is not a minimal qualified subset, a contradiction.

Let us prove now that there exists an ideal secret sharing scheme for the access struc-
ture Γ. Let us consider the vector space Z

6
5 and the subspaces Fi = 〈vi, wi〉, where

v0 = (1, 1, 1, 1, 0, 4), w0 = (3, 0, 2, 0, 1, 0), v1 = (1, 0, 0, 0, 0, 0), w1 = (0, 1, 0, 0, 0, 0),
v2 = (1, 0, 0, 0, 1, 0), w2 = (0, 1, 0, 0, 0, 1), v3 = (0, 0, 0, 0, 1, 0), w3 = (0, 0, 0, 0, 0, 1),
v4 = (1, 0, 1, 0, 0, 4), w4 = (0, 1, 0, 4, 1, 1), v5 = (0, 0, 1, 0, 0, 0), w5 = (0, 0, 0, 1, 0, 0),
v6 = (1, 0, 4, 4, 0, 4), w6 = (0, 1, 1, 0, 1, 1), v7 = (1, 0, 0, 1, 0, 0), w7 = (0, 1, 1, 4, 0, 0),
v8 = (1, 0, 1, 0, 1, 1), w8 = (0, 1, 0, 4, 1, 0), v9 = (0, 0, 1, 0, 1, 0), w9 = (0, 0, 0, 1, 0, 1).

For any A ⊂ P, we consider the subspace FA =
∑

pi∈A Fi. One can check that dimFi = 2
for every i = 0, 1, . . . , 9 and that F0 ⊂ FA if A ∈ Γ while F0 ∩ FA = {0} whenever
A /∈ Γ. Then, an ideal secret sharing scheme with access structure Γ is obtained in the
following way: for any secret value k = (k1, k2) ∈ K = Z

2
5, the dealer randomly chooses

two vectors u1, u2 ∈ Z
6
5 such that v0 · u1 = k1 and w0 · u2 = k2, and gives the share

si = (vi · u1, wi · u2) ∈ Z
2
5 to the participant pi. �

Observe that the ideal scheme we have presented for the access structure Γ in Proposi-
tion 3.1 is not a vector space secret sharing scheme but it is a linear secret sharing scheme,
because the shares are computed by means of linear maps.

A necessary condition for a 3-homogeneous access structure to have optimal informa-
tion rate greater than 2/3 and, hence, to be ideal is presented in the next proposition.
This necessary condition will be used in several places in the following section. The inde-
pendent sequence method is a key point in its proof. This method works as follows, (see [2,
Theorem 3.8] and [16, Theorem 2.1]). Let Γ be an access structure on a set of participants
P. We say that a sequence ∅ 6= B1 ⊂ · · · ⊂ Bm /∈ Γ of subsets of P is made independent
by a subset A ⊂ P if there exist subsets X1, . . . , Xm ⊂ A such that Bi ∪ Xi ∈ Γ and
Bi−1 ∪ Xi /∈ Γ for every i = 1, . . . , m, where B0 is the empty set. If there exists such a
sequence, then ρ∗(Γ) ≤ |A|/(m+ 1) if A ∈ Γ, while ρ∗(Γ) ≤ |A|/m whenever A /∈ Γ.

Proposition 3.2 Let Γ be a 3-homogeneous access structure on a set of participants P
with optimal information rate ρ∗(Γ) > 2/3. Let p1, p2, p3, p4 ∈ P be four different partici-
pants. Assume that {p1, p2, p3} ∈ Γ and that {p1, p2, p4} ∈ Γ. Then, either {p1, p3, p4} ∈ Γ,
or {p2, p3, p4} ∈ Γ, or {p3, p4, p} 6∈ Γ for any participant p ∈ P \ {p1, p2, p3, p4}.

Proof. Let us assume that {p1, p3, p4}, {p2, p3, p4} 6∈ Γ. Let p ∈ P \ {p1, p2, p3, p4}. We
must demonstrate that {p3, p4, p} 6∈ Γ. In order to do it we distinguish two cases.
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First let us suppose that {p1, p3, p} 6∈ Γ. In this case we can consider the subsets
B1 = {p1}, B2 = {p1, p3} and B3 = {p1, p3, p}. We have that B1∪{p2, p4} = {p1, p2, p4} ∈
Γ, B1 ∪ {p2} = {p1, p2} 6∈ Γ because Γ is 3-homogeneous, B2 ∪ {p2} = {p1, p2, p3} ∈
Γ, and B2 ∪ {p4} = {p1, p3, p4} 6∈ Γ. Therefore, if B3 ∪ {p4} ∈ Γ then the sequence
∅ 6= B1 ⊂ B2 ⊂ B3 /∈ Γ is made independent by the set A = {p2, p4} /∈ Γ by taking
X1 = {p2, p4}, X2 = {p2} and X3 = {p4}. Hence, by the independent sequence method
it follows that ρ∗(Γ) ≤ 2/3, a contradiction. Thus, B3 ∪ {p4} = {p1, p3, p4, p} 6∈ Γ. In
particular, {p3, p4, p} 6∈ Γ as we wanted to prove.

Now we assume that {p1, p3, p} ∈ Γ. In such a case we consider the subsets B1 =
{p3}, B2 = {p3, p4} and B3 = {p2, p3, p4}. Notice that B1 ∪ {p1, p} = {p1, p3, p} ∈ Γ,
B1 ∪ {p} = {p3, p} 6∈ Γ because Γ is 3-homogeneous, B2 ∪ {p1} = {p1, p3, p4} 6∈ Γ, and
B3 ∪ {p1} = {p1, p2, p3, p4} ∈ Γ. Thus, if B2 ∪ {p} ∈ Γ, then the sequence ∅ 6= B1 ⊂
B2 ⊂ B3 /∈ Γ is made independent by the set A = {p1, p} /∈ Γ by taking X1 = {p1, p},
X2 = {p} and X3 = {p1}. Therefore, by the independent sequence method it follows that
ρ∗(Γ) ≤ 2/3, a contradiction. Hence, {p3, p4, p} = B2∪{p} 6∈ Γ. This completes the proof
of the proposition. �

4 Sparse 3-homogeneous access structures

From the results in the previous section it follows that the equivalences in Theorem 2.4
for the family of the 2-homogeneous access structures can not be directly generalized to
the family of the 3-homogeneous access structures. We wonder if this equivalence applies
if we consider some subfamily of 3-homogeneous structures. One of the main results of
this section is to give a positive answer to this question by considering the family of
the sparse 3-homogeneous access structures, that is 3-homogeneous access structures such
that each set of four participants contains at most two minimal qualified subsets. Namely
in Theorem 4.2 we demonstrate that the ideal access structures in this family coincides
with the vector space ones and, besides, we prove that there is no access structure in
this family with optimal information rate between 2/3 and 1. Moreover, we present a
complete description of the ideal sparse 3-homogeneous access structures in terms of their
simple components. In addition, our results provide also a complete characterization of
the 3-homogeneous Z2-vector space access structures.

Before doing it, let us show how the sparse 3-homogeneous access structures arise from
the results in the previous section in a natural way.

Let Γ be a 3-homogeneous access structure on a set of participants P. The necessary
condition in Proposition 3.2 on Γ to have optimal information rate greater than 2/3
involves the number of minimal qualified subsets contained in a subset {p1, p2, p3, p4} ⊂ P
of four participants. This leads us to consider, for a subset of participants Q ⊂ P,
the number ω(Q,Γ) of minimal qualified subsets A ∈ Γ0 such that A ⊂ Q. Besides,
we consider ω(4,Γ) = max{ω(Q,Γ) : |Q| = 4}. On one hand, 1 ≤ ω(4,Γ) ≤ 4 if
Γ is a 3-homogeneous access structure. On the other hand, the ideal and not vector
space 3-homogeneous access structure in Proposition 3.1 is such that any subset of four
participants contains at least three minimal qualified subsets. These facts leads us to focus
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our attention on the family of 3-homogeneous access structures satisfying ω(4,Γ) ≤ 2, that
is on the family of 3-homogeneous access structures such that each set of four participants
contains at most two minimal qualified subsets. These access structures are called sparse.

On top of this, the importance of the sparse 3-homogeneous access structures is also
pointed to by Theorem 4.1. This theorem states that the vector space 3-homogeneous ac-
cess structures over Z2 are exactly the ideal and sparse ones. A complete characterization
and description of these access structures will be given in Theorem 4.2.

Theorem 4.1 Let Γ be a 3-homogeneous access structure on a set of participants P.
Then, the following conditions are equivalent:

1. Γ is a Z2-vector space access structure.

2. Γ is sparse and has optimal information rate ρ∗(Γ) > 2/3.

Proof. First let us show that (1) implies (2). Let Γ be a Z2-vector space 3-homogeneous
access structure. Since Γ is a vector space access structure, then it is ideal and so ρ∗(Γ) =
1 > 2/3. We must prove that Γ is sparse. Otherwise there exist four different participants
p1, p2, p3, p4 ∈ P such that the subsets {p1, p2, p3}, {p1, p2, p4} and {p1, p3, p4} are minimal
qualified subsets. Since Γ is 3-homogeneous, hence {p1, p2} 6∈ Γ = (Γ∗)∗ and so, from
Lemma 2.1, it follows that there exists B ∈ Γ∗

0 such that p1, p2 6∈ B. Besides, since
{p1, p2, p3} and {p1, p2, p4} are minimal qualified subsets then, applying again Lemma 2.1,
we conclude that p3, p4 ∈ B. Therefore {p1, p3, p4} ∩ B = {p3, p4} has even cardinal
number. Thus, from Theorem 2.2, it follows that Γ is not a Z2-vector space access
structure, a contradiction. This completes the proof of this implication.

Conversely, assuming (2) we must demonstrate (1). Let us assume that Γ is a sparse
3-homogeneous access structure with optimal information rate ρ∗(Γ) > 2/3. If Γ is not a
Z2-vector space access structure then, from Theorem 2.2, there exist A = {p1, p2, p3} ∈ Γ0

and A∗ ∈ Γ∗
0 such that the intersection A ∩ A∗ has even cardinal number. We are going

to prove that a contradiction holds in this case.
From Lemma 2.1 we have that A ∩ A∗ 6= ∅. Therefore |A ∩ A∗| = 2. Without loss

of generality we can suppose that p1, p2 ∈ A∗ and that p3 6∈ A∗. Since A∗ ∈ Γ∗
0, hence

it follows that A∗ \ {pi} 6∈ Γ∗ whenever i = 1, 2. Therefore, from Lemma 2.1, we get
that there exists {pi, qi,1, qi,2} ∈ Γ0 such that qi,1, qi,2 /∈ A∗. Let us consider the subsets
B1 = {p3}, B2 = {p3, q1,1, q1,2} and B3 = {p3, q1,1, q1,2, q2,1, q2,2}. Observe that B3∩A∗ = ∅.
Hence, applying Lemma 2.1 it follows that B3 6∈ (Γ∗)∗ = Γ. We claim that the sequence
∅ 6= B1 ⊂ B2 ⊂ B3 /∈ Γ is made independent by the set A = {p1, p2} /∈ Γ by taking
the subsets X1 = {p1, p2}, X2 = {p1} and X3 = {p2}. Therefore, from our claim and by
applying the independent sequence method it follows that ρ∗(Γ) ≤ 2/3, a contradiction.
Hence, the proof will be completed by proving our claim. Let us demonstrate it.

On one hand, we have that the subsets B3 ∪ X3, B2 ∪ X2 and B1 ∪ X1 are qualified
subsets for the access structure Γ because {p2, q2,1, q2,2} ⊂ B3∪X3, {p1, q1,1, q1,2} ⊂ B2∪X2

and {p1, p2, p3} = B1∪X1. On the other hand, B1∪X2 = {p1, p3} is not a qualified subset
since Γ is a 3-homogeneous access structure. Therefore, in order to prove our claim we only
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must check that B2 ∪X3 6∈ Γ. Since B2 ∪X3 = {p2, p3, q1,1, q1,2} and Γ is 3-homogeneous,
hence it follows that it is enough to show that the subsets {p2, p3, q1,1}, {p2, p3, q1,2},
{p2, q1,1, q1,2} and {p3, q1,1, q1,2} are not qualified.

Firstly let us show that {p3, q1,1, q1,2} 6∈ Γ. Since p3, q1,1, q1,2 /∈ A∗, hence it follows
that {p3, q1,1, q1,2} ∩ A∗ = ∅. Thus, from Lemma 2.1, {p3, q1,1, q1,2} 6∈ (Γ∗)∗ = Γ.

Now we are going to prove that {p2, p3, q1,1}, {p2, p3, q1,2} 6∈ Γ. By symmetry we
only need to show that {p2, p3, q1,1} 6∈ Γ. If {p2, p3, q1,1} ∈ Γ, then p1, p2, p3, q1,1 ∈
P are four different participants. On one hand we have that {p1, p2, p3} ∈ Γ. Hence
ω({p1, p2, p3, q1,1},Γ) ≥ 2, and then ω({p1, p2, p3, q1,1},Γ) = 2 because Γ is sparse. On the
other hand we have that {p1, q1,1, q1,2} ∈ Γ. Therefore, a contradiction follows by applying
Proposition 3.2.

To finish we must demonstrate that {p2, q1,1, q1,2} 6∈ Γ. Otherwise, p1, p2, q1,1, q1,2 ∈ P
are four different participants and ω({p1, p2, q1,1, q1,2},Γ) ≥ 2. So ω({p1, p2, q1,1, q1,2},Γ) =
2. Since {p1, p2, p3} ∈ Γ, hence from Proposition 3.2 we get a contradiction. This com-
pletes the proof of our claim and so the proof of the theorem. �

The above theorem makes clear the relevance of the sparse access structures in the
characterization of the ideal 3-homogeneous access structures: the Z2-vector space 3-
homogeneous access structures are exactly the ideal and sparse ones.

Our next goal is to give a complete characterization and description of the ideal sparse
3-homogeneous access structures. We obtain for this the same equivalences as the ones
established in Theorem 2.4 for the family of the 2-homogeneous access structures. That
is, the vector space access structures in both families coincide with the ideal ones and
with those having optimal information rate greater than 2/3.

It is easy to check that the simple components of a sparse 3-homogeneous access
structure is also a sparse 3-homogeneous access structure. Therefore, new sparse 3-
homogeneous access structures can be obtained from old by adding or cutting off equiv-
alent participants. We describe now the reduced and connected sparse 3-homogeneous
access structures that will be proved to be the only ideal access structures with these
properties.

The 3-homogeneous star Γ〈S(p)〉 is the access structure on the set of 2r + 1 par-
ticipants P = {p, a1, . . . , ar, b1, . . . , br} having basis (Γ〈S(p)〉)0 = {A1, . . . , Ar}, where
Ai = {p, ai, bi} for i = 1, . . . , r.

We notate Γ2 for the access structure associated to the Fano plane, in which the partic-
ipants and the minimal qualified subsets are, respectively, the points and the lines of the
finite projective plane of order 2. Namely, Γ2 is the access structure on the set P =
{p1, . . . , p7} with basis (Γ2)0 = {{p1, p2, p3}, {p1, p4, p7}, {p1, p5, p6}, {p2, p4, p6}, {p2, p5,
p7}, {p3, p4, p5}, {p3, p6, p7}}.

Finally, Γ2,1 will denote the access structure obtained from Γ2 by removing one par-
ticipant. That is, the set of participants of Γ2,1 is P = {p1, . . . , p6} and its basis is
(Γ2,1)0 = {{p1, p2, p3}, {p1, p5, p6}, {p2, p4, p6}, {p3, p4, p5}}.

Theorem 4.2 Let Γ be a sparse 3-homogeneous access structure on a set of participants
P. Then, the following conditions are equivalent:
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1. Γ is a vector space access structure.

2. Γ is an ideal access structure.

3. ρ∗(Γ) > 2/3.

4. Every simple component of Γ is either an access structure Γ〈S(p)〉 defined by a 3-
homogeneous star, or the access structure associated to the Fano plane Γ2, or its
related access structure Γ2,1.

Proof. Any vector space access structure is ideal and, hence, its optimal information
rate is greater than 2/3. Besides, from Theorem 4.1 we get that (3) implies (1). Hence,
conditions (1), (2) and (3) are equivalent.

Now let us prove that (4) implies (1). It is not hard to show that the dual access
structure of a 3-homogeneous star has basis (Γ〈S(p)〉∗)0 = {{p}} ∪ {{c1, . . . , cr} : ci ∈
{ai, bi}}, while Γ∗

2 = Γ2, and (Γ∗
2,1)0 = (Γ2,1)0 ∪ {{p1, p4}, {p2, p5}, {p3, p6}}. Therefore,

for each one of these access structures we have that |A∩A∗| = 1, 3 whenever A ∈ Γ0 and
A∗ ∈ Γ∗

0 and hence, by applying Theorem 2.2, we conclude that they are Z2-vector space
access structures. The proof of this implication is completed by applying Lemma 2.3.

In order to finish the proof of the theorem it is enough to demonstrate that (2) implies
(4). That is, assuming that Γ is an ideal sparse 3-homogeneous access structure on a set of
participants P, we must prove that every simple component of Γ is either a 3-homogeneous
star, or Γ2 or Γ2,1.

On one hand, the simple components of Γ are also sparse 3-homogeneous access struc-
tures because they are induced substructures of Γ. On the other hand, from Lemma 2.3 it
follows that the simple components of Γ are ideal. Therefore, we may assume that Γ is an
ideal, reduced and connected sparse 3-homogeneous access structure. Besides, from the
results in [14] it follows that Γ〈S(p)〉, Γ2 and Γ2,1 are the only ideal and 3-homogeneous
connected access structures with intersection number equal to one (that is to say, there is
at most one participant in the intersection of any two different minimal qualified subsets).
Hence, the proof is concluded by checking that: if Γ is an ideal, reduced and connected
sparse 3-homogeneous access structure on a set of participants P, then Γ has intersection
number equal to one.

It is clear that a 3-homogeneous access structure Γ has intersection number equal to
one if and only if ω({a, b, c, d},Γ) ≤ 1 for every four different participants a, b, c, d ∈
P. Let us suppose that there exist four different participants a, b, c, d ∈ P such that
ω({a, b, c, d},Γ) ≥ 2. Since Γ is sparse, hence we can assume that {a, c, d}, {b, c, d} ∈ Γ
and that {a, b, c}, {a, b, d} /∈ Γ. We are going to prove that, in this situation, a and b are
equivalent participants and, hence, Γ is not a reduced access structure, a contradiction.

From Proposition 3.2, the set {a, b, p} is not qualified for any p ∈ P. Then, {a, b} 6⊂ A
if A ∈ Γ0. Let us prove now that, if A ⊂ P \ {a, b}, then A ∪ {a} ∈ Γ0 if and only if
A ∪ {b} ∈ Γ0. Obviously, we can suppose that |A| = 2. We distinguish two cases.

Case 1 : A∩{c, d} 6= ∅. Since both {a, c, d} and {b, c, d} are minimal qualified subsets,
we can suppose that A = {c, x} with x 6= d. Let us show that, if {a, c, x} ∈ Γ0, then
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{b, c, x} ∈ Γ0, being the converse proved in the same way. We consider the subsets
B1 = {c}, B2 = {b, c} and B3 = {b, c, x}, and X1 = {a, d}, X2 = {d} and X3 = {a}. If
{b, c, x} /∈ Γ, then the sequence ∅ 6= B1 ⊂ B2 ⊂ B3 6∈ Γ is made independent by {a, d}
and, hence ρ∗(Γ) ≤ 2/3, a contradiction. Therefore, {b, c, x} ∈ Γ0.

Case 2 : A ∩ {c, d} = ∅. Hence, A = {x, y} ⊂ P \ {a, b, c, d}. As before, it is enough
to prove that {b, x, y} ∈ Γ0 if {a, x, y} ∈ Γ0. So, let us assume that {a, x, y} ∈ Γ0.
Notice that, in such a case we have that {b, c, x, y} ∈ Γ, because otherwise a contradiction
is obtained by applying the independent sequence method to the subsets B1 = {c},
B2 = {b, c} and B3 = {b, c, x, y}, and X1 = {a, d}, X2 = {d} and X3 = {a}. Let us
suppose that {b, x, y} /∈ Γ. Hence, at least one of the subsets {b, c, x}, {b, c, y}, {c, x, y}
is qualified. If {c, x, y} ∈ Γ, we can apply Proposition 3.2 to the minimal qualified
subsets {c, x, y} and {a, x, y} and, since {a, c, d} ∈ Γ, we obtain that ω({a, c, x, y},Γ) > 2,
a contradiction. Then, without loss of generality, we can suppose that {b, c, x} ∈ Γ0.
Hence, from Case 1, we get that {a, c, x} ∈ Γ0. Since {b, x, y} /∈ Γ = (Γ∗)∗ then, from
Lemma 2.1, there exists A∗ ∈ Γ∗

0 such that {b, x, y}∩A∗ = ∅. Applying again Lemma 2.1,
{b, c, x}∩A∗ 6= ∅ and {a, x, y}∩A∗ 6= ∅. Hence, {a, c, x}∩A∗ = {a, c} has an even number
of elements. Therefore, from Theorem 2.2 it follows that Γ is not a Z2-vector space access
structure. The proof of the theorem is completed by noticing that there is a contradiction
with Theorem 4.1 because, by assumption, Γ is an ideal sparse 3-homogeneous access
structure. �

We conclude the section by showing three examples in order to illustrate our result.

Example 4.3 On the set P = {p1, . . . , p6} of six participants we consider the access struc-
ture Γ with minimal qualified subsets {p1, p2, p3}, {p1, p2, p6}, {p1, p5, p6} and {p3, p4, p5}.
This access structure is sparse, reduced and connected. Besides, the structure Γ is neither
a 3-homogeneous star, nor Γ2 nor Γ2,1. Thus, from Theorem 4.2, Γ is not ideal. Moreover,
ρ∗(Γ) ≤ 2/3.

Example 4.4 Next, let Γ be the access structure on P = {p1, . . . , p7} whose mini-
mal qualified subsets are {p1, p2, p3}, {p1, p4, p5}, {p1, p4, p7}, {p2, p3, p6}, {p4, p5, p6} and
{p4, p6, p7}. Now, Γ is sparse and connected. Besides, the participants p1 and p6 are
equivalent as well as the participants p5 and p7. Thus, the simple component of Γ is
Γ∼ = Γ({p1, . . . , p5}) a 3-homogeneous star and so, by applying Theorem 4.2, Γ is a
vector space access structure.

Example 4.5 Finally, on the set P = {p1, . . . , p7, q1, . . . , q7} of fourteen participants let
Γ be the sparse access structure with minimal qualified subsets {p1, p2, p3}, {p3, p4, p5},
{p1, p5, p6}, {p2, p4, p6}, {p1, p5, p7}, {p2, p4, p7}, {q1, q2, q3}, {q1, q5, q6}, {q1, q6, q7}, {q3, q4,
q5} and {q3, q4, q7}. In this case Γ has two connected components Γ1 = Γ({p1, . . . , p7})
and Γ2 = Γ({q1, . . . , q7}), and the equivalent participants are p7 ∼ p6 and q7 ∼ q5. Hence,
the simple components of Γ are Γ1,∼ = Γ({p1, . . . , p6}) and Γ2,∼ = Γ({q1, . . . , q6}). Notice
that Γ1,∼ = Γ2,1, while Γ2,∼ is neither a 3-homogeneous star, nor Γ2 nor Γ2,1. Thus, from
Theorem 4.2 we conclude that Γ is a non-ideal access structure and ρ∗(Γ) ≤ 2/3.
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5 Conclusion and open problems

The characterization of ideal access structures and the search for bounds on the optimal in-
formation rate are two of the main open problems in secret sharing. The results we present
in this paper are a first approach to the characterization of the ideal 3-homogeneous access
structures.

The main result in this paper is a complete characterization of the ideal access struc-
tures in the family of the sparse 3-homogeneous access structures. Namely, we prove
that, in this family, the vector space access structures coincide with the ideal ones and
also with those having optimal information rate greater than 2/3. Besides, a complete de-
scription of the ideal and sparse access structures is given. Moreover, our results provide
also a characterization of the Z2-vector space 3-homogeneous access structures, because
we demonstrate that those structures are sparse.

Nevertheless, a similar characterization of the ideal access structures can not be found
for the family of the 3-homogeneous access structures. Specifically, we demonstrate that
the equivalence between ideal and vector space access structures does not hold in that
family.

Actually, the characterization of the ideal 3-homogeneous access structures is far from
being solved. On one hand, to characterize the K-vector space access structures in that
family is still an open problem, which have been solved in this paper only in the case K =
Z2. On the other hand, the other open problem is to characterize the ideal 3-homogeneous
access structures that are not vector space, whose existence have been proved in Section 3.

As a further step, one could try to find other families of 3-homogeneous access struc-
tures in which similar properties as in the sparse case are obtained when characterizing
the ideal access structures. For instance, other families of 3-homogeneous access struc-
tures defined in terms of ω(4,Γ), (recall that 1 ≤ ω(4,Γ) ≤ 4 and that the sparse are
those with ω(4,Γ) ≤ 2).

In general, matroids play a key role in the characterization of the ideal access struc-
tures. Brickell and Davenport [6] proved that, if Γ is an ideal access structure on a set of
participants P, there exists a matroid M on the set P∪{D} such that A ⊂ P is a minimal
qualified subset of Γ if and only if A∪{D} is a circuit of M. Besides, for every participant
p ∈ P, the circuits of M containing p equally determine the minimal qualified subsets of
an ideal access structure on the set of participants (P ∪ {D}) \ {p}. The matroids that
are related in that way to ideal access structures are called secret sharing matroids.

Seymour [18] proved the existence of non-secret sharing matroids. Specifically, they
proved that the access structures that are obtained from the Vamos matroid are not ideal.
The vector space construction by Brickell [5] implies that all representable matroids are
secret sharing matroids. Nevertheless, Simonis and Ashikhmin [21] proved that the non-
Pappus matroid, which is not representable, is a secret sharing matroid.

Therefore, the main open problem in relation to the characterization of ideal access
structures is to determine which non-representable matroids are secret sharing matroids.
The non-Pappus matroid and the matroid related to the access structure in Proposition 3.1
are two examples. The ideal schemes realizing these access structures are linear (but not
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vector space). An interesting open problem appears here: is there any secret sharing
matroid that is not realized by any ideal linear secret sharing scheme?

Finally, the gap between 2/3 and 1 appearing in the values of the optimal information
rates of several families access structures suggests the following question: is there any
access structure Γ such that 2/3 < ρ∗(Γ) < 1?
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[16] C. Padró, G. Sáez. Secret sharing schemes with bipartite access structure. IEEE
Transactions on Information Theory Vol. 46, No. 7 (2000), 2596–2604.
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