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Abstract

Let G be a directed graph, and let ∆ACY
G be the simplicial complex whose

simplices are the edge sets of acyclic subgraphs of G. Similarly, we define ∆NSC
G to be

the simplicial complex with the edge sets of not strongly connected subgraphs of G as
simplices. We show that ∆ACY

G is homotopy equivalent to the (n−1−k)-dimensional
sphere if G is a disjoint union of k strongly connected graphs. Otherwise, it is
contractible. If G belongs to a certain class of graphs, the homotopy type of ∆NSC

G

is shown to be a wedge of (2n − 4)-dimensional spheres. The number of spheres
can easily be read off the chromatic polynomial of a certain associated undirected
graph.

We also consider some consequences related to finite topologies and hyperplane
arrangements.

1 Introduction

A monotone property of a (directed or undirected) graph is one which is preserved under
deletion of edges. Hence, the set of all graphs on a particular vertex set, [n] say, that
satisfy a monotone property form a simplicial complex whose vertex set is the set of edges
of the graphs. In numerous recent papers, see e.g. [1, 5, 6, 10, 11, 14, 15], the topological
properties of such complexes of graphs have been studied. Although most papers have
dealt with complexes of all graphs having a particular property P , it is indeed natural
to study the complex of all subgraphs of a given graph that satisfy P . The purpose of
this paper is to study directed graph complexes of this type. The properties that we
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focus on are acyclicity and strong non-connectivity. Both were studied by Björner and
Welker [5] in the case of all graphs. We adapt their techniques in order to generalize their
results. We also consider some consequences related to topics such as finite topologies
and hyperplane arrangements.

In Section 3 we study acyclic graphs. The homotopy type of the complex of acyclic
subgraphs of any given directed graph is determined. It is either a homotopy sphere
or contractible. Thereafter, in Section 4, we focus on not strongly connected graphs.
More precisely, we compute the homotopy type of the complex of not strongly connected
subgraphs of a directed graph, if the graph belongs to a particular class, which we call
2-dense graphs.

We begin, however, with a brief survey in the next section of the more or less standard
tools from topological combinatorics that will be made use of later.

Acknowledgement. The author is grateful to his advisor Anders Björner for suggesting
the study of subgraph complexes.

2 Basic topological combinatorics

Here, we briefly review the parts of the topological combinatorics machinery that we will
use later. For more details we refer to the survey [4].

To any poset P , we associate the order complex ∆(P ). It is the simplicial complex
whose faces are the chains of P . Similarly, to any simplicial complex Σ, we associate
its face poset P (Σ) which consists of the nonempty faces of Σ ordered by inclusion. The
complex ∆(P (Σ)) is the barycentric subdivision of Σ, hence it is homeomorphic to Σ. (We
do not distinguish notationally between a complex and its underlying topological space.)

Our first two tools are due to Quillen [12]. In a poset P with an element x ∈ P , we
write P≤x = {y ∈ P | y ≤ x}.
Lemma 2.1 (Quillen Fiber Lemma). Let P and Q be posets, and suppose we have
an order-preserving map f : P → Q such that ∆(f−1(Q≤q)) is contractible for all q ∈ Q.
Then ∆(P ) is homotopy equivalent to ∆(Q).

Lemma 2.2 (Closure Lemma). Let P be a poset, and suppose that f : P → P is a
closure operator (i.e. f(p) ≥ p and f 2(p) = f(p) for all p ∈ P ). Then ∆(P ) is homotopy
equivalent to ∆(f(P )).

If a poset P has unique minimal and maximal elements, denoted by 0̂ and 1̂, respec-
tively, then its proper part is P = P \ {0̂, 1̂}.

The next result can be found e.g. in [4].

Lemma 2.3. Let L be a lattice. Form a simplicial complex Σ whose faces are those
subsets of the atoms of L whose joins are not the top element. Then ∆(L) and Σ are
homotopy equivalent.
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For simplicial complexes ∆1 and ∆2, let ∆1 ∗ ∆2 denote their join. The following
lemma is well-known.

Lemma 2.4. Suppose ∆i is homotopy equivalent to a wedge of ni spheres of dimension
di, i = 1, 2. Then ∆1 ∗∆2 is homotopy equivalent to a wedge of n1n2 spheres of dimension
d1 + d2 + 1.

Finally, we need a convenient collapsibility lemma stated by Björner and Welker [5].
Let 2[n] denote the set of subsets of [n]. Given i ∈ [n], define a map 2[n] → 2[n] by

F 7→ F ± i =

{
F ∪ {i} if i 6∈ F ,

F \ {i} if i ∈ F .

Lemma 2.5. If ∆1 ⊆ ∆2 are simplicial complexes on the vertex set [n] and there exist
vertices i, j ∈ [n] such that F ± i maps ∆2 \∆1 to itself and F ± j maps ∆1 to itself, then
∆2 is contractible (and so is ∆1).

3 Acyclic subgraphs

From now on, let G be a fixed directed graph on vertex set [n]. Like all graphs in this paper
(directed and undirected), G will be assumed to have no loops or multiple edges. Our
first object of study is the complex ∆ACY

G of all acyclic subgraphs of G. More precisely,
with E(G) denoting the edge set of G, we define

∆ACY
G = {F ⊆ E(G) | ([n], F ) has no directed cycle}.

Let Tr(·) denote transitive closure. Define PosG to be the following subset of all
partial orders on [n]: a poset belongs to PosG iff its comparability graph is Tr(H) for
some subgraph H of G. Under inclusion, PosG is a poset. We denote its unique minimal
element, the empty relation, by 0̂. In the following lemma, the case of G being the
complete graph is [5, Lemma 2.1].

Lemma 3.1. The complexes ∆(PosG \ {0̂}) and ∆ACY
G are homotopy equivalent.

Proof. The map H 7→ Tr(H) ∩ G is a closure operator on P (∆ACY
G ). We claim that its

image is isomorphic to PosG \ {0̂}. To show this, it suffices to check that Tr(H) can be
reconstructed from Tr(H) ∩G; it can, since Tr(H) = Tr(Tr(H) ∩ (G)). Thus, by Lemma
2.2, the barycentric subdivision of ∆ACY

G is homotopy equivalent to ∆(PosG \ {0̂}).
Recall that the vertices of any directed graph can be partitioned into strongly connected

components: x and y belong to the same component iff there exist directed paths from x
to y and from y to x. If every vertex belongs to the same component, then the graph is
strongly connected.

Björner and Welker stated the following theorem in the case of G being the complete
graph only. However, it is straightforward to check that their proof goes through in the
more general case, too.
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Theorem 3.2 (See Theorem 2.2 in [5]). If G is strongly connected, then ∆(PosG\{0̂})
is homotopy equivalent to the (n − 2)-sphere.

It is now straightforward to prove the main result of this section.

Theorem 3.3. If G is a disjoint union of k strongly connected components, then ∆ACY
G

is homotopy equivalent to the (n − 1 − k)-sphere. Otherwise, ∆ACY
G is contractible.

Proof. If G is not a disjoint union of strongly connected components, then G has an edge
e which is not included in any cycle. Thus, ∆ACY

G is a cone with apex e.
Now suppose that G is a disjoint union of k strongly connected components. If k = 1,

then we are done by Theorem 3.2 and Lemma 3.1. Otherwise, ∆ACY
G is a join of k

complexes of this type. Applying Lemma 2.4 (k − 1) times, we conclude that ∆ACY
G is

homotopy equivalent to the sphere of dimension

k∑
i=1

(ai − 2) + k − 1 = n − k − 1,

where ai is the number of vertices in the ith component of G.

Recall that a quasiorder is a reflexive and transitive relation. The poset (actually a
lattice) of quasiorders on [n] is a well-studied object (see e.g. [7]), mainly since quasiorders
on [n] correspond in a 1-1 fashion to topologies on [n]. The subposet Posn of partial orders
on [n] then corresponds to the topologies that satisfy the T0 separation axiom. Thus, the
next corollary can be thought of as a statement about finite topologies.

For a quasiorder R on [n], let PosR
n be the poset of all posets that are contained in R.

Corollary 3.4. Let R be a quasiorder on [n]. If R is in fact an equivalence relation with
k equivalence classes, then ∆(PosR

n \{0̂}) is homotopy equivalent to the (n−1−k)-sphere.
Otherwise, ∆(PosR

n \ {0̂}) is contractible.

Proof. There is an obvious correspondence between quasiorders and transitively closed
directed graphs. Applying Theorem 3.3 with the graph corresponding to R yields the
result via Lemma 3.1.

4 Not strongly connected subgraphs

In this section we turn our attention to ∆NSC
G , the complex of subgraphs of G that are

not strongly connected. More precisely,

∆NSC
G = {F ⊆ E(G) | ([n], F ) is not strongly connected}.

Again, the case of G being the complete graph was analysed in [5].
Let ΠG be the subposet of the partition lattice Πn consisting of the possible partitions

into strongly connected components of subgraphs of G. The partition corresponding to
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a graph H is denoted by π(H). Clearly, if π(H), π(H ′) ∈ ΠG, then their join (in Πn)
belongs to ΠG. Since 0̂ ∈ ΠG, we conclude that ΠG is a lattice, although it is easy to
construct an example showing that ΠG is not a sublattice of Πn.

By a minimal cyclic set of G, we mean an inclusion-minimal subset S ⊆ [n] with the
property that some directed G-cycle has S as vertex set. Clearly, such sets correspond
to atoms of ΠG. We let Ĝ denote the hypergraph on [n] whose edges are precisely the
minimal cyclic sets of G.

Directed graphs whose minimal cyclic sets all have cardinality two will be important
to us. We call such graphs 2-dense. Thus, G is 2-dense iff every cycle contains two vertices
that themselves form a cycle in G, i.e. iff Ĝ is an ordinary graph.

Recall that to any (undirected) graph H = ([n], E), one associates the graphical ar-
rangement AH. This is a hyperplane arrangement in R

n containing |E| different hyper-
planes, each given by a coordinate equation xi = xj for {i, j} ∈ E. Its intersection lattice,
L(AH), is the lattice of all possible intersections of collections of such hyperplanes, ordered
by reverse inclusion.

Theorem 4.1. Suppose that G is 2-dense. If Ĝ is connected, the order complexes ∆(ΠG)

and ∆(L(A
bG)) are homotopy equivalent. If Ĝ is disconnected, then ∆(ΠG) is contractible.

Proof. Suppose that G is 2-dense and denote the edge set of Ĝ by E(Ĝ). Let Σ denote the

simplicial complex on the vertex set E(Ĝ) whose simplices are given by the disconnected

subgraphs of Ĝ. By Lemma 2.3, we have ∆(ΠG) ' Σ.

If Ĝ is disconnected, then Σ is just a simplex, and therefore contractible.
Now suppose that Ĝ is connected. Taking transitive closure and then intersecting with

Ĝ yields a closure operator on P (Σ). Its image is isomorphic to the poset of all partitions
of [n] that arise as sets of connected components in nonempty disconnected subgraphs of

Ĝ. Clearly, this poset is isomorphic to L(A
bG). By Lemma 2.2, the theorem follows.

Remark. Requiring G to be 2-dense is not necessary in the above theorem. If G is not
2-dense, then A

bG should be interpreted as the hypergraph subspace arrangement given by

Ĝ. This generalization will not, however, be useful to us later in this paper. For more on
hypergraph arrangements and subspace arrangements in general, we refer to the survey [2].

Björner’s and Welker’s proof of [5, Lemma 3.1] goes through to prove the more general
statement below. We state it here to be able to point out where the 2-density assumption
is being used. Below, P ⊕ Q denotes ordinal sum of posets.

Lemma 4.2 (See Lemma 3.1 in [5]). If G is 2-dense, then ∆NSC
G and ∆(PosG\{0̂}⊕ΠG)

are homotopy equivalent.

Proof. For convenience, let Q = PosG \ {0̂} ⊕ ΠG. Consider the natural order-preserving
surjection ϕ : P (∆NSC

G ) → Q given by

ϕ(H) =

{
Tr(H) ∈ PosG \ {0̂} if H is acyclic,

π(H) ∈ ΠG otherwise.
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In order to use Lemma 2.1, we study the inverse images of ϕ.
To begin with, we pick p ∈ PosG \ {0̂}. Clearly, ϕ−1(Q≤p) has a unique maximal

element, namely the intersection of G and (the comparability graph of) p. This element
is a cone point, and ∆(ϕ−1(Q≤p)) is contractible.

Now choose τ ∈ ΠG. Since G is 2-dense, any non-singleton block of τ contains a
directed G-cycle of length two. Without loss of generality, suppose that 1 and 2 form
such a cycle. Let ∆2 = ∆(ϕ−1(Q≤τ )) and let ∆1 ⊆ ∆2 be the subcomplex comprising
the graphs that contain no directed path from 1 to 2 except possibly the edge (1, 2).
Now observe that adding the edge (2, 1) to H ∈ ∆1 affects the partition into strongly
connected components at worst by merging the part which contains 1 with that which
contains 2. This shows that H 7→ H±(2, 1) maps ∆1 into itself. Similarly, H 7→ H±(1, 2)
maps ∆2 \ ∆1 into itself. Thus, by Lemma 2.5, ∆(ϕ−1(Q≤τ )) is contractible, and we are
done.

Using χ
bG(t) to denote the chromatic polynomial of Ĝ, we are now in position to state

the main theorem. Note that the case of G being not strongly connected is uninteresting
since ∆NSC

G is just a simplex in this case.

Theorem 4.3. If G is 2-dense and strongly connected, then ∆NSC
G is homotopy equivalent

to a wedge of (2n − 4)-dimensional spheres. The number of spheres is |χ′
bG
(0)|.

Proof. By Lemma 4.2 and the definition of ordinal sums, ∆NSC
G ' ∆(PosG \{0̂})∗∆(ΠG).

If Ĝ is disconnected, ∆NSC
G is contractible by Theorem 4.1. In this case, the linear

coefficient of χ
bG(t), and thus its absolute value |χ′

bG
(0)|, vanishes as desired. We may

therefore assume that Ĝ is connected.
It is well-known, see e.g. Rota [13], that the characteristic polynomial of L(A

bG) and

the chromatic polynomial of Ĝ coincide, i.e.

χ
bG(t) =

∑
x∈L(A

bG
)

µ(0̂, x)tdim(x),

where µ is the Möbius function of L(A
bG). Moreover, by a theorem of Björner [3],

∆(L(A
bG)) has the homotopy type of a wedge of |µ(0̂, 1̂)| spheres of dimension codim(1̂)−2.

Since the top element has dimension one in our case, we conclude that ∆(L(A
bG)), and

therefore ∆(ΠG), has the homotopy type of a wedge of (n − 3)-dimensional spheres and
that the number of spheres is the absolute value of the linear coefficient of χ

bG(t).

Theorem 3.3 shows that ∆(PosG \ {0̂}) ' Sn−2, so, by Lemma 2.4, we are done.

Remark. The number of spheres above, i.e. the absolute value of the linear coefficient
of the chromatic polynomial of Ĝ, has a nice interpretation due to Greene and Zaslavsky
[9]. It is the number of acyclic orientations of Ĝ having a unique fixed sink. See also [8].

Corollary 4.4 (Theorem 1.2 in [5]). The complex of all not strongly connected directed
graphs on [n] is homotopy equivalent to a wedge of (n − 1)! spheres of dimension 2n − 4.

Proof. If G is the complete directed graph, then Ĝ is the complete undirected graph. The
linear coefficient in its chromatic polynomial is (−1)n−1(n − 1)!.
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