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Abstract

We give a simple common proof to recent results by Dombi and by Chen and
Wang concerning the number of representations of an integer in the form a1 + a2,
where a1 and a2 are elements of a given infinite set of integers. Considering the
similar problem for differences, we show that there exists a partition N = ∪∞

k=1Ak

of the set of positive integers such that each Ak is a perfect difference set (meaning
that any non-zero integer has a unique representation as a1 − a2 with a1, a2 ∈ Ak).
A number of open problems are presented.

1 Introduction and summary

For a set A ⊆ Z and an integer n ∈ Z consider the representation functions

R
(1)
A (n) = {(a1, a2) ∈ A × A : a1 + a2 = n},

R
(2)
A (n) = {(a1, a2) ∈ A × A : a1 + a2 = n, a1 < a2},

and

R
(3)
A (n) = {(a1, a2) ∈ A × A : a1 + a2 = n, a1 ≤ a2}.

To what extent do R
(j)
A (n) determine the set A? Problems of this sort were, to our knowl-

edge, first studied by Nathanson in [N78]. Let N denote the set of all positive integers. In
his research talks and private communications, Sárközy has raised the following question:
do there exist A, B ⊆ N with the infinite symmetric difference such that R

(j)
A (n) = R

(j)
B (n)

for all, but finitely many n ∈ N?
Dombi noticed in [D02] that the answer is negative for j = 1, by the simple observation

that R
(1)
A (n) is odd if and only if n = 2a for some a ∈ A. On the other hand, he has

shown that for j = 2 the answer is positive and indeed, there is a partition N = A ∪ B
such that R

(2)
A (n) = R

(2)
B (n) for all n ∈ N.
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Theorem 1 (Dombi [D02]) Define the mapping T : N → {1,−1} by

T (1) = 1, T (2n) = −T (2n − 1), T (2n + 1) = T (n + 1); n ∈ N

and let
A = {n ∈ N : T (n) = 1}, B = {n ∈ N : T (n) = −1}.

Then R
(2)
A (n) = R

(2)
B (n) for all n ∈ N.

For the function R
(3)
A (n) the problem was solved by Chen and Wang in [CW03].

Theorem 2 (Chen and Wang [CW03]) 1 Define the mapping T : N → {1,−1} by

T (1) = 1, T (2n) = −T (2n − 1), T (2n + 1) = −T (n + 1); n ∈ N

and let
A = {n ∈ N : T (n) = 1}, B = {n ∈ N : T (n) = −1}.

Then R
(3)
A (n) = R

(3)
B (n) for all integer n ≥ 3.

Below we give Theorems 1 and 2 a new simple proof, establishing both results through
one common argument which also shows that the constructions of Dombi and Chen-
Wang are, essentially, unique. We then proceed to investigate the parallel problem for
differences.

Let rA(n) denote the number of representations of the integer n as a difference of two
elements of the set A ⊆ Z:

rA(n) = {(a′, a′′) ∈ A × A : a′′ − a′ = n}.

It is not difficult to see that for any finite partition of N one can find a partition set, say
A, such that there are arbitrarily large integer n with rA(n) = ∞. On the other hand, we
were able to partition N into the infinite number of subsets with identical finite difference
representation functions. Indeed, our subsets are perfect difference sets. (Recall, that
A ⊆ Z is a perfect difference set if any non-zero integer has a unique representation as a
difference of two elements of A; in our terms, rA(n) = 1 for any n ∈ N.) Moreover, one
can arrange it so that the subsets in question have completely different structure.

Theorem 3 There is a partition N = ∪∞
k=1Ak of the set of all positive integers such that

each Ak is a perfect difference set and |Ai ∩ (Aj + z)| ≤ 2 for any i, j, z ∈ N.

1The way we present Theorems 1 and 2 emphasizes the striking similarity between the partitions
N = A ∪ B considered in these theorems. Ironically, Dombi conjectured that sets A, B ⊆ N with the
infinite symmetric difference satisfying R

(3)
A (n) = R

(3)
B (n) (for n large enough) do not exist. The result of

Chen and Wang shows, however, that such sets do exist and can be obtained by a very minor modification
of Dombi’s original construction.
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2 The proofs

Proof of Theorems 1 and 2. Let A2, B2, and T2 denote the two sets and the mapping
of Theorem 1, and let A3, B3, and T3 denote the two sets and the mapping of Theorem 2.
For j ∈ {2, 3} define

αj(x) =
∑
a∈Aj

xa, βj(x) =
∑
b∈Bj

xb, and τj(x) =
∑
n∈N

Tj(n)xn.

Thus αj(x), βj(x), and τj(x) converge absolutely for |x| < 1 and satisfy

αj(x) + βj(x) =
x

1 − x
, αj(x) − βj(x) = τj(x). (1)

Moreover, it is easily seen that

2
∑
n∈N

R
(j)
A (n)xn = (αj(x))2 + (−1)j+1αj(x

2) (2)

and similar identity holds with B and β substituted for A and α, respectively. Taking
into account that the sum Tj(1) + · · · + Tj(n − 1) vanishes for n odd and equals −Tj(n)
for n even, we derive from (1) and (2) that

2
∑
n∈N

(
R

(j)
A (n) − R

(j)
B (n)

)
xn =

(
(αj(x))2 − (βj(x))2

)
+ (−1)j+1

(
αj(x

2) − βj(x
2)

)

=
x

1 − x
τj(x) + (−1)j+1τj(x

2)

=
∑
n∈N

( ∑
1≤i≤n−1

Tj(i)
)
xn + (−1)j+1

∑
n∈N

Tj(n)x2n

=
∑
n∈N

( − Tj(2n) + (−1)j+1Tj(n)
)
x2n

for |x| < 1 and j ∈ {2, 3}. It remains to observe that Tj(2n) = (−1)j+1Tj(n), except if
j = 3 and n = 1. �

Suppose that N = A∪B is a partition of the set of positive integers and let T (n) = 1
if n ∈ A and T (n) = −1 if n ∈ B. Our proof of Theorems 1 and 2 shows that then

R
(j)
A (n) = R

(j)
B (n) for all sufficiently large n if and only if T (1) + · · · + T (2n) = 0 and

T (2n) = (−1)j+1T (n), for all but finitely many n ∈ N. The reader will easily check that
this is equivalent to the assertion that there exists n0 ∈ N such that T (2n) = −T (2n− 1)
and T (2n − 1) = (−1)jT (n) for n ≥ n0, and T (1) + · · · + T (2n0) = 0. That is, any

partition N = A ∪ B satisfying R
(j)
A (n) = R

(j)
B (n) for all sufficiently large n is obtained

essentially as in Theorems 1 and 2.
Proof of Theorem 3. Fix a function f : N → N satisfying

f(2m − 1) ≤ m, f(2m) = m + 1; m = 1, 2, . . . (3)
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and such that for any k ∈ N the inverse image f−1(k) = {n ∈ N : k = f(n)} is infinite.
Set Ak = ∅ for all k ∈ N. Our construction involves infinitely many steps which we
enumerate by positive integers. At the nth step we add one or two elements to the set
Af(n) so that (i) every positive integer is added to some Ak at certain step; (ii) no positive
integer is added to several distinct Ak at different steps; (iii) for any d, k ∈ N there is a
step such that the element(s) added at this step to Ak produce(s) a pair (a1, a2) ∈ Ak×Ak

with a2 − a1 = d; (iv) the element(s) added to Ak at any step produce(s) no non-trivial
equality of the form a1 − a2 = a3 − a4 with a1, a2, a3, a4 ∈ Ak; (v) the element(s) added to
Ak at any step produce(s) no triple (a1, a2, a3) ∈ Ak ×Ak ×Ak which is a shift of another
triple (b1, b2, b3) ∈ Al × Al × Al with some l 6= k. Once we manage to satisfy (i)–(v), our
proof is over; we now proceed to describe exactly how the elements to be added to Af(n)

at the nth step are chosen.
If n = 2m is even then it follows from (3) that the set Af(n) = Am+1 was not affected

by steps 1, . . . , n−1. This set, therefore, remains empty by the beginning of the nth step,
and we initialize it inserting to it the smallest positive integer not contained in ∪m

l=1Al.
Suppose now that n is odd and write for brevity k = f(n). Let d be the smallest

positive integer, not representable as a1 − a2 with a1, a2 ∈ Ak. We insert to Ak two
numbers z and z + d, where z is to satisfy the following conditions:

(a) {z, z + d} ∩ ( ∪∞
l=1 Al

)
= ∅;

(b) equality a1 − a2 = a3 − a4 with a1, a2, a3, a4 ∈ Ak ∪ {z, z + d} holds only trivially;
that is, if and only if either a1 = a3 and a2 = a4, or a1 = a2 and a3 = a4;

(c) none of the triples (a1, z, z + d), (a1, a2, z), (a1, a2, z + d) with a1, a2 ∈ Ak are trans-
lates of a triple (b1, b2, b3) with b1, b2, b3 ∈ Al, l 6= k.

Clearly, condition (a) excludes only a finite number of possible values of z, and a little
meditation shows that this is the case also with condition (b). Concentrating on condition
(c), we notice that the actual number of values of l to be taken into account is finite, as
all but (n + 1)/2 sets Al are empty by the beginning of the nth step. Furthermore, for
any fixed l the number of triples (b1, b2, b3) with b1, b2, b3 ∈ Al is finite, and the number
of possible values of a1 ∈ Ak is finite, too. It follows that condition (c) also excludes only
finite number of z. Thus choosing z is always possible, and this concludes the proof. �

3 Open problems

We list below some related problems.
The proof of Theorem 3 can be simplified if we wish to construct just one perfect

difference set A ⊆ N. In this case we can start with the empty set A(0) = ∅ and define
at the nth step A(n) = A(n−1) ∪ {zn, zn + dn}, where dn is the smallest non-negative
integer not representable as a1 − a2 with a1, a2 ∈ A(n−1), and zn is to be so chosen that
zn, zn + dn /∈ A(n−1), and no non-trivial equality a1 − a2 = a3 − a4 with a1, a2, a3, a4 ∈
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A(n−1)∪{zn, zn +dn} is created. The number of choices of zn excluded by these conditions
is O(n3) and since dn = O(n2), the nth element of the resulting set A is O(n3). It follows
that the counting function A(x) = |A ∩ [1, x]| satisfies A(x) � x1/3. On the other hand,
it is easily seen that for any perfect difference set A ⊆ N we have A(x) � x1/2.

Problem 1 Does there exist a perfect difference set A ⊆ N with the counting function
A(x) � x1/2? If not, is it true that for any ε > 0 there exists a perfect difference set
A ⊆ N with A(x) � x1/2−ε? If not, how large can lim infx→∞ ln A(x)/ lnx for a perfect
difference set A ⊆ N be?

The definition of R
(1)
A (n) extends readily onto the case where A is a subset of an

arbitrary abelian group G and n is an element of the group. Suppose that G is finite
and for a group character χ let Â(χ) = |G|−1

∑
a∈A χ(a), the Fourier coefficient of the

indicator function of A. The identity R
(1)
A = R

(1)
B translates easily into the requirement

that either Â(χ) = B̂(χ) or Â(χ) = −B̂(χ) hold for any character χ. Though this seems
to be a rather strong condition, numerical computations show that for certain groups
pairs (A, B) such that R

(1)
A = R

(1)
B are not that rare as one could expect. Quite likely,

these pairs are not limited to simple special cases as for instance |A| = |G|/2, B = G \A,
or B = {a + d : a ∈ A} with a fixed element d ∈ G of order two. Nevertheless we state
our next problem in the most general form.

Problem 2 For any finite abelian group G determine all pairs of subsets A, B ⊆ G such
that R

(1)
A = R

(1)
B .

We note that if G is of odd order then no non-trivial pairs exist, as in this case the values
of n for which R

(1)
A (n) is odd determine the set A uniquely. On the other hand, if G is an

elementary 2-group then any two perfect difference sets A, B ⊆ G satisfy R
(1)
A = R

(1)
B .

As a common generalization of the representation functions R
(1)
A and rA, one can

consider two potentially different sets A, B ⊆ Z and for n ∈ Z define

rA,B(n) = #{(a, b) ∈ A × B : a + b = n}.
An unpublished observation due to Freiman, Yudin, and the present author is as follows.
Suppose that A and B are finite and non-empty, and for k ∈ N let νk denote the kth
largest value attained by rA,B. Thus {νk} is the spectrum of the function rA,B and we
have ν1 ≥ ν2 ≥ · · · , ν1 + ν2 + · · · = |A||B|, and νk = 0 for all k large enough. Then

ν2
k ≤ νk + νk+1 + νk+2 + · · · (4)

for any k ∈ N.
For the proof we write A = {a1, . . . , al} and B = {b1, . . . , bm} where the elements are

numbered in the increasing order, and notice first that

rA,B(ai + bj) ≤ min{i + j − 1, l + m − (i + j − 1)}; 1 ≤ i ≤ l, 1 ≤ j ≤ m.

For if ai + bj = au + bv then either u ≤ i, or v ≤ j; since there are at most i such repre-
sentations with u ≤ i and at most j representations with v ≤ j, and one representation
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satisfies both u ≤ i and v ≤ j, we conclude that rA,B(ai + bj) ≤ i + j − 1. The proof
of the estimate rA,B(ai + bj) ≤ l + m − (i + j − 1) is almost identical; just notice that if
ai + bj = au + bv then either u ≥ i or v ≥ j. Now we have

ν1 + · · ·+ νk ≤ #{(i, j) : rA,B(ai + bj) ≥ νk}
≤ #{(i, j) : min{i + j − 1, l + m − (i + j − 1)} ≥ νk}
= #{(i, j) : νk ≤ i + j − 1 ≤ l + m − νk}
= lm − 2 #{(i, j) : i + j ≤ νk}
= lm − νk(νk − 1)

and (4) follows from lm = ν1 + · · ·+ νk + νk+1 + · · · .
Problem 3 What are the general properties shared by the functions rA,B(n) (for all finite
non-empty A, B ⊆ Z), other than that reflected by (4)?

Since the spectrum {νk} defines a partition of the integer |A||B|, it can be visualized with
a Ferrers diagram corresponding to this partition; that is, an arrangement of |A||B| square
boxes in bottom-aligned columns such that the leftmost column is of height ν1, the next
column is of height ν2, and so on. For any t ∈ N, the length of the tth row of this diagram
(counting the rows from the bottom) is then Nt = #{n : rA,B(n) ≥ t}. We notice that
from a well-known result of Pollard [P75] it follows that N1 + · · ·+ Nt ≥ t(|A| + |B| − t)
for any t ≤ min{|A|, |B|}; one can derive this inequality as a corollary of (4), too.

We conclude our note with two problems due to Gowers and Konyagin, presented here
from their kind permission. Both problems pertain to the group Z/pZ of residue classes
modulo a prime p.

Problem 4 (Gowers, personal communication) For a prime p, let A ⊆ Z/pZ be a

subset of cardinality |A| = (p + 1)/2. The average value of R
(1)
A is then (p + 1)2/(4p) =

p/4 + O(1). Is it true that for any positive constant ε and any sufficiently large p, there

exists n ∈ Z/pZ satisfying |R(1)
A (n) − p/4| < εp?

Problem 5 (Konyagin, personal communication) Do there exist positive constants
ε and C such that for any sufficiently large prime p and any non-empty subset A ⊆ Z/pZ

of cardinality |A| <
√

p, there is n ∈ Z/pZ satisfying 1 ≤ R
(1)
A (n) ≤ C|A|1−ε?
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