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Abstract

A square real matrix is sign-nonsingular if it is forced to be nonsingular by its
pattern of zero, negative, and positive entries. We give structural characterizations
of sign-nonsingular matrices, digraphs with no even length dicycles, and square non-
negative real matrices whose permanent and determinant are equal. The structural
characterizations, which are topological in nature, imply polynomial algorithms.

1 Introduction

Pólya’s permanent problem can be “traced back to an innocent exercise from 1913.”1

There are many equivalent versions, such as characterizing when det (B) = perm (B) for
a square nonnegative real matrix B, when all dicycles of a digraph have odd length, or
when a square real matrix is sign-nonsingular.

In this section we start with some basic definitions, concepts, and theorems. Then
we briefly illustrate why the versions of the previous paragraph are equivalent. Following
this we state the Main Theorem which solves all versions of Pólya’s permanent problem.
Finally, we outline the contents of the rest of the paper.

There are some nonstandard figure conventions used in this paper. The notation
“(F. N)” appears in the text when Figure number N is relevant. There are variations
such as “(F. Ni, p. x)”, where part i of Figure N on page x is relevant. If part i of
Figure N is a graph, we refer to it as HNi. Further figure conventions are explained in
the second paragraphs of Sections 6 and 8.

We assume the reader is familiar with elementary linear algebra and complexity theory.
For an informal discussion of complexity theory see Lovász and Plummer [28] or Plummer
[35]. We will use the graph terminology of Bondy and Murty [3].

∗Support from NSERC is gratefully acknowledged.
1Quoted from Brualdi and Shader [6].
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All graphs in this paper are simple, that is, they do not have loops or multiple edges.
Let G be a graph. We denote the vertex set by V (G), the number of vertices by ν (G),
the edge set by E (G), and the number of edges by ε (G). If s is a vertex or edge of G,
then we say G uses s, and s is on G.

The degree of a vertex v is the number of edges incident with v. The minimum
degree δ (respectively, maximum degree ∆) of G is the smallest (respectively, largest)
degree of one of its vertices. If S ⊂ V (G), then N (S) is the set of all vertices in V (G)−S
which are adjacent to a vertex in S. If H is a subgraph of G, and e is an edge of G incident
with exactly one vertex on H , then we say e is incident with H .

An n-cycle is a cycle with n vertices. Graphs are disjoint if their vertex sets are
disjoint. The sum of graphs G1, . . . , Gn is the graph with vertex set ∪n

i=1V (Gi) and edge
set ∪n

i=1E (Gi), and it is denoted by G1+· · ·+Gn and
∑n

i=1 Gi. The intersection of graphs
G1 and G2 is the graph with vertex set V (G1) ∩ V (G2) and edge set E (G1) ∩ E (G2),
and it is denoted by G1 ∩ G2.

If G has a subgraph isomorphic to a graph K, then we say G has a K (subgraph).
If G is isomorphic to K, then we say G is a K. A subgraph H of G is proper if H 6= G
and H is not the empty graph.

The origin and terminus of a path are called its ends. A vertex on a path is an
intermediate vertex if it is not an end. Two or more paths are internally disjoint if
every vertex on two of the paths is an end of both. Suppose G has minimum degree at
least two, and P is a path of G. We say P is a 2-path if its ends have degree at least
three, and all its intermediate vertices have degree two. If G has only one 2-path with
ends a and b, then we denote it by Pab.

If X ⊂ V (G), then G [X] is the subgraph of G with vertex set X whose edge set
consists of the edges of G having both ends in X. If F ⊂ E (G), then G [F ] is the
subgraph with edge set F whose vertex set consists of the vertices incident with edges
in F . If S ⊂ V (G) ∪ E (G), then G − S is the graph obtained from G by removing all
vertices and edges in S (and the edges incident with vertices in S). If s is a vertex or edge
of G, then G− s is G − {s}. If P is a path of G, then G− P is the graph obtain from G
by removing all edges and intermediate vertices of P . (The ends of P stay.) If P1 and P2

are internally disjoint paths, then G − (P1 + P2) is defined to be (G − P1) − P2.
Let P = v1v2 · · · vn be a path. If 1 ≤ i ≤ j ≤ n, then the subpath vivi+1 · · · vj is

denoted by P [vi, vj]. The subpath P [vi, vj]− vi is denoted by P (vi, vj ], and the subpath
P [vi, vj ] − {vi, vj} is denoted by P (vi, vj). If 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n, then we say
that we have the order vi1 , vi2, . . . , vik on P . Suppose x1, x2, . . . , xk are vertices on a
cycle C. We say that we have the cyclic order x1, x2, . . . , xk on C if we have the order
x1, x2, . . . , xk on the path C − e for some edge e of C.

A matching of G is a set of pairwise nonadjacent edges of G. We say a matching
saturates a vertex x if some edge in the matching is incident with x. A matching is
perfect if it saturates all vertices of G. If M is a perfect matching, then a cycle C
is M-alternating if M ∩ E (C) is a perfect matching of C. The symmetric difference
M 4 E (C) is also a perfect matching, and we say it is obtained by shifting M on C.
An alternating cycle is a cycle which is M-alternating for some perfect matching M .
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H G

Mwell-fitted

Figure 1: A bipartite graph G with a well-fitted K3,3 bisubdivision H .

If H is obtained from graph K by replacing some of its edges by paths of odd length
(or equivalently, subdividing some of its edges an even number of times), then we say H
is a bisubdivision of K, or a K bisubdivision2 (F. 1). Note that a bisubdivision of a
bipartite graph is also bipartite.

The next concept is a generalization of alternating cycles. Suppose H is a subgraph,
and M is a perfect matching of G (F. 1). We say H is well-fitted to M if for every edge
e in M , either e is on H , or e has no end on H . A subgraph H is well-fitted to G if H
is well-fitted to some perfect matching of G. We also say G has a well-fitted H .

All digraphs (directed graphs) in this paper are strict, that is, they do not have loops
or parallel arcs. Let D be a digraph. We denote the vertex set by V (D) and the arc set by
A (D). By dicycle and dipath we mean directed cycle and directed path, respectively.
The origin and terminus of a dipath are called its ends. If X and Y are disjoint subsets
of V (D), then a dipath from X to Y is a dipath having origin in X, terminus in Y , and
no intermediate vertices in X ∪ Y . If x and y are vertices of D, then an (x, y)-dipath is
a dipath from {x} to {y}. Digraphs are disjoint if their vertex sets are disjoint.

Let S be a subset of the real numbers. An S-edge weighting w of a graph G
is a function w : E (G) → S. An S-arc weighting

→
w of a digraph D is a function

→
w: A (D) → S.

Let G be a bipartite graph with a {−1, 1}-edge weighting w (F. 2, p. 6, graph G).
Suppose C is a cycle. Let w (C) =

∏
e∈E(C) w (e). We say C is w-unbalanced if

w (C) =

{ −1 if ν (C) ≡ 0 (mod 4), and
1 if ν (C) ≡ 2 (mod 4).

If w is implicit we simply say C is unbalanced. We say w is unbalanced if G has
a perfect matching and every alternating cycle (with respect to any perfect matching)
is unbalanced. A cycle is balanced if it is not unbalanced. A cycle whose edges are
alternately weighted −1 and 1 is an example of a balanced cycle.

2In the literature H is referred to as both an even K and an odd K, which is why we choose to call
H a K bisubdivision.
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Let D be a digraph with a {−1, 1}-arc weighting
→
w (F. 2, p. 6, digraph D). Suppose

C is a dicycle of D. Let
→
w (C) =

∏
e∈A(C)

→
w (e). C is

→
w-negative if

→
w (C) = −1 and

→
w-positive if

→
w (C) = 1. We say

→
w is negative if every dicycle of D is

→
w-negative.

Let w be a {−1, 1}-edge weighting of a bipartite graph G. If we replace w (e) by
its negative for every edge e incident with a vertex v of G, then we say the resulting
{−1, 1}-edge weighting is obtained from w by switching at v. If w′ is obtained from
w by sequentially switching at vertices v1, . . . , vk, then we say w and w′ are equivalent.
Note that w′ is invariant under changing the order of v1, . . . , vk. Similar definitions hold
for {−1, 1}-arc weightings of digraphs.

Let S be a set. An S-matrix is a matrix with all its entries in S. Let A = [aij ] be an
m × n real matrix. The support of A is {(i, j) |aij 6= 0}. The sign pattern of A is the
m × n {−, 0, +}-matrix S = [sij] (p. 12, matrices A and S) such that

sij =




− if aij < 0,
0 if aij = 0, and
+ if aij > 0,

for i = 1, . . . , m and j = 1, . . . , n. If A is a square matrix, then A is sign-nonsingular
if every matrix with the same sign pattern as A is nonsingular (F. 2, matrix A).

Suppose A = [aij] is an m × n real matrix (F. 2, A and G). Let G be the bipartite
graph with colour classes R = {r1, . . . , rm} and C = {c1, . . . , cn} such that ricj is an edge
of G if and only if aij 6= 0 for i = 1, . . . , m and j = 1, . . . , n. We say G and A correspond,
and G is the bipartite graph of A, where R is the set of row vertices and C is the
set of column vertices. In defining G we are implicitly ordering its set {R, C} of colour
classes, and each of its colour classes. Note that G is isomorphic to the bipartite graph
of any matrix obtained from A by permuting its rows, permuting its columns, or taking
its transpose. Let w be the {−1, 1}-edge weighting of G such that

w (ricj) =

{ −1 if aij < 0, and
1 if aij > 0,

for every edge ricj of G. We say (G, w) is the weighted bipartite graph of A, and
(G, w) and A correspond.

Suppose D is a digraph with vertex set {v1, . . . , vn} (F. 2, D and G). Let G be the
bipartite graph with colour classes {r1, . . . , rn} and {c1, . . . , cn} such that r1c1, . . . , rncn

are edges of G, and ricj is an edge of G if and only if vivj is an arc of D, for every i and
j in {1, . . . , n} such that i 6= j. We say G is the bipartite graph of D, and G and D
correspond. We also say that the perfect matching {r1c1, . . . , rncn} of G corresponds
to the vertex set of D, and that rici corresponds to vi for i = 1, . . . , n. Note that
for every perfect matching M of G, there is a digraph D′ corresponding to G such that
M corresponds to the vertex set of D′. Suppose

→
w is a {−1, 1}-arc weighting of D.

Let w be the {−1, 1}-edge weighting of G such that w (rici) = −1 for i = 1, . . . , n, and

w (ricj) =
→
w (vivj) for every edge ricj of G such that i 6= j. We say (G, w) is the weighted

bipartite graph of
(
D,

→
w

)
, and (G, w) and

(
D,

→
w

)
correspond.
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A graph G is connected if there is an (x, y)-path for every pair of vertices x and y.
A component of G is a maximal connected subgraph. Suppose k ≥ 1. A k-vertex cut
of G is a set X of k vertices such that G − X is not connected. G is n-connected if
ν (G) ≥ n + 1 and G does not have an (n − 1)-vertex cut.

A digraph D is strongly connected if there is an (x, y)-dipath for every ordered
pair of vertices (x, y). A strong component of D is a maximal strongly connected
subdigraph. A k-vertex cut of D is a set X of k vertices such that D − X is not
strongly connected. D is strongly n-connected if ν (D) ≥ n + 1 and D does not have
an (n − 1)-vertex cut.

A graph G is k-extendible if

• ν ≥ 2k + 2,
• G is connected,
• G has a matching of size k, and
• for every matching Mk of size k, there is a perfect matching containing Mk.

The fourth condition is the most important. The first three are included so that graphs
such as stars are excluded, and so that Theorem 3 is true. A brace is a 2-extendible
bipartite graph.

Next we state three classical results which are fundamental to the work of this paper.

Theorem 1 (Menger [32]) Let D be a strongly k-connected digraph. Suppose X and Y
are disjoint nonempty subsets of V (D). Then there exist k internally disjoint dipaths
P1, . . . , Pk from X to Y . If |X| ≥ k (respectively, |Y | ≥ k), then P1, . . . , Pk can be chosen
to have distinct origins (respectively, termini).

Theorem 2 (Frobenius [8, 9] and König [19, 20]) A bipartite graph G has a matching
saturating all vertices in a colour class A if and only if |X| ≤ |N (X)| for every subset X
of A.

In the next theorem, the equivalence of statements (a) and (b) when k = 1 is due
to Hetyei [13]. Brualdi and Perfect [4] proved a matrix version of the equivalence of
statements (a) and (b) for all k. The equivalence of statements (a), (c), and (d) for
k = 1, 2 is stated in Brualdi and Shader [6, pages 42 and 124]. In particular, braces
correspond to strongly 2-connected digraphs.

Theorem 3 Let G be a bipartite graph with a perfect matching, and let A be a colour
class of G. If k ≥ 1, then the following statements are equivalent.

a) G is k-extendible.

b) G is connected, k+1 ≤ |A|, and for every subset X of A such that 1 ≤ |X| ≤ |A|−k,
we have |X| + k ≤ |N (X)|.

c) Some digraph corresponding to G is strongly k-connected.

d) All digraphs corresponding to G are strongly k-connected.
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(D,w)(G,w)

perm (B) = 4 = det (B)
All dicycles have

All alternating
cycles have

length ≡ 2

(mod 4).

w is unbalanced.

odd length.
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v1

w is negative.
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c3

r1
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A =

-1

1

-1

-1

-1

-1

-1

0

1

A is sign-nonsingular.

v3

D′

→

-1

1

Figure 2: Versions of Pólya’s permanent problem.

In section 4 we will state many versions of Pólya’s permanent problem and prove they
are all equivalent . For now we will only give examples to informally show the equivalence
of the three versions given in the first paragraph of this introduction. In Figure 2, we
see (G, w) corresponds to both A and

(
D,

→
w

)
, and H corresponds to both B and D′. As

well, D naturally corresponds to D′: arcs of D with weight 1 are replaced by dipaths of
length 2 to give D′. Notice that A is sign-nonsingular, all dicycles of D′ have odd length,
and det (B) = perm (B). This concurrence happens in general. Consequently, we have
three equivalent problems: characterize sign-nonsingular matrices, characterize digraphs
having only odd length dicycles, and characterize nonnegative matrices whose permanent
and determinant are equal.

Next we introduce two new versions. “Our goal is to obtain a formulation of the
problem which is more convenient for the purpose of solving it.”3 In Figure 2, notice
that w is an unbalanced weighting of G. Determining when a {−1, 1}-edge weighting of a
bipartite graph is unbalanced is another version of the problem. This problem in turn is
equivalent to the slightly different problem of determining when a bipartite graph has an
unbalanced {−1, 1}-edge weighting. (In one version we are given a graph and a weighting,
whereas, in the other version we are only given a graph.) This is the formulation which
is solved by the Main Theorem.

3Quoted from Little [25].
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G1

G3

G2

a

C

G

cd

S = { ab,bc}

b

Figure 3: A 4-cycle sum.

In order to state the Main Theorem, we need to define a set G of graphs (F. 3). Suppose
G1, . . . , Gn are bipartite graphs, where n ≥ 3, such that their pairwise intersection is a
4-cycle C = abcda. Let S be a (not necessarily proper) subset of E(C). The graph
(
∑n

i=1 Gi) − S is called a 4-cycle sum of G1, . . . , Gn at C. (4-cycle sums are closely
related to the 2-joins of Brualdi and Shader [6, p. 120].) Let G consist of

• the Heawood graph H14 (F. 4, p. 8),
• all planar braces, and
• all graphs generated from planar braces using 4-cycle sums.

Note that we are allowed to use the 4-cycle sum operation more than once. For example,
we obtain another graph in G if we take five disjoint copies of the graph G of Figure 3,
select a 4-cycle from each copy, and then identify the 4-cycles.

The restriction n ≥ 3 in the definition of a 4-cycle sum requires some explanation.
There are three reasons we do not allow the graph G to be a 4-cycle sum of only two
braces G1 and G2. First, G may not be a brace. Second, using such 4-cycle sums in the
definition of G would not add any new braces to G. For example, if G1 and G2 are planar,
then G is also planar; and so G is already in G if it is a brace. Third, inductive proofs
involving G would be more difficult.

Main Theorem. The following statements are equivalent for a bipartite graph G.

1) G is a brace which has an unbalanced {−1, 1}-edge weighting.

2) G is a brace which does not have a well-fitted K3,3 bisubdivision.

3) G is in G.
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Let U be the class of bipartite graphs which have unbalanced {−1, 1}-edge weightings.
In section 4 we show that the problem of characterizing U can be reduced to characterizing
the braces in U . The Main Theorem gives a good characterization of these braces, that is,
it shows that determining if a given brace is in U is an algorithmic question in NP∩co-NP.
To show a brace is in U , we show it is in G. To show a brace is not in U , we show it has a
well-fitted K3,3 bisubdivision. A polynomial algorithm for determining if a given bipartite
graph is in U can be derived (with a lot of work) from the Main Theorem and its proof.
A full discussion about an algorithm is found in Robertson, Seymour, and Thomas [37].

Figure 4 shows four naturally corresponding objects from different versions of Pólya’s
permanent problem. They play an important role, as we see from the Main Theorem.
They were first connected to the problem by Tinsley [47]. The digraph D7 was found
independently by Boyd (communicated to Thomassen [45, page 40]), Koh [18], and
Seymour [41]. It is the only strongly 2-connected digraph with no even dicycle [30].

Section 2 outlines the proof of the Main Theorem. Sections 3 and 4 are about the
history and versions of Pólya’s permanent problem. Sections 5 to 9 contain the proof of
the Main Theorem. Section 10 relates the Main Theorem to results of Little, Seymour,
and Thomassen.

Each alternating cycle has length 6, 10, or 14.

det (T  ) = 24 = perm( T  )

Each dicycle has length 3, 5, or 7.

1

c3

r4

c1

r2
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r7 c2

c7

c6

c5

c4

0T =
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1

0

0
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1

1

1

0

1

1

0

0

1

1

0

0

1

0

0

0

0

1

1

0 0 0 1 0

0

0

1

1

1

1 0 0 0 1 0

0

1

0

0

0

1

1

H14 D7

v1

v2

v3

v4v5

v6

v7

There is no balanced 2-colouring.

Fano 
plane 

Figure 4: The Tinsley, Heawood, Fano, Boyd, Ko, and Seymour collection.
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2 Proof Outline

In this section we outline the proof of the Main Theorem. To prove that the three
statements of the Main Theorem are equivalent, we show (1 ⇒ 2 ⇒ 3 ⇒ 1).

We prove the relatively easy implication (1 ⇒ 2) by showing that if a bipartite graph
G has a well-fitted K3,3 bisubdivision, then G can not have an unbalanced {−1, 1}-edge
weighting.

We prove (3 ⇒ 1) using induction. In the induction basis, we show that H14 is a
brace, and that unbalanced weightings can be constructed for H14 and all planar braces.
In the induction step, we suppose G is a 4-cycle sum of G1, . . . , Gn. We use unbalanced
weightings of G1, . . . , Gn to construct an unbalanced weighting of G. Furthermore, we
show that if G1, . . . , Gn are braces, then either G is a brace, or G is one exceptional graph
H10 (which is not in G).

G3 = G

G0 = L12 G2

=

G2

G1G1

=

1 2 4

Figure 5: An example for Theorem 24 (p. 39).

The difficult part of the proof is showing (2 ⇒ 3). It suffices to show that if G is a brace,
then G ∈ G or G has a well-fitted K3,3 bisubdivision. This is done by induction on ε (G).
Here we need a theorem from [31] which roughly says that all braces can be constructed
from a “base set” B using “local operations”. (Section 5 contains a precise statement of
the theorem, and Figure 5 gives an example of it in action.) For the induction basis, it is
easy to verify that each brace in B is either in G, or has a well-fitted K3,3 bisubdivision.
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G ∈

H ∈  

2

1

=

4

H is a brace.

H

G

G

G

H G

H  has a well-fitted
K3,3 bisubdivision.

G  has a well-fitted
K3,3 bisubdivision.

Figure 6: The induction step in the proof of the Main Theorem.

The induction step is illustrated by Figure 6. (Note that the lower right graph is in G
because it is a 4-cycle sum of three planar braces.) If G 6∈ B, then G can be obtained
from a smaller brace H using a local operation. The result then holds for H . If H has
a well-fitted K3,3 bisubdivision, then it is routine to show G does also. Hence, we may
assume H ∈ G. We then show G is also in G, or G has a well-fitted K3,3 bisubdivision.
This part of the proof is long because there are many cases. There are many cases because
there are four local operations, and because H can be either an H14, or a planar brace,
or a 4-cycle sum of smaller braces. The reason it works is because we know the structure
of H - it’s in G - and because G is obtained from H using a local operation.

Sections 5, 6, 7, and 8 contain known results and technical lemmas needed to prove
the Main Theorem. Section 9 contains the core of its proof.
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3 Origins

In this section we discuss four origins of Pólya’s permanent problem.

Permanents

The permanent and determinant of an n × n matrix A = [aij] are given by

perm (A) =
∑

σ∈Sn

n∏
i=1

ai,σ(i) and det (A) =
∑

σ∈Sn

sgn (σ)
n∏

i=1

ai,σ(i),

respectively, where Sn is the set of all permutations of {1, . . . , n} and

sgn (σ) =

{ −1 if σ is the product of an odd number of transpositions, and
1 if σ is the product of an even number of transpositions,

for every σ in Sn. The terms in the above formulas for perm (A) and det (A) will be called
the terms of perm (A) and det (A), respectively.

The formula for perm (A) is similar to, and simpler than, the formula for det (A).
But there is a polynomial algorithm for calculating determinants, whereas calculating
permanents is #P-complete4 as shown by Valiant [49]. This apparent paradox can be
explained by noting that Gaussian elimination, not the given formula, is used to efficiently
calculate determinants. Given the similarity between the formulas for the permanent
and the determinant, Pólya [36] asked if it was possible to calculate permanents using
determinants. Specifically, given a matrix A = [aij ], was it possible to change the signs of
some of the entries of A to give a new matrix B = [bij ] such that the corresponding terms
of perm (A) and det (B) were equal, that is,

n∏
i=1

ai,σ(i) = sgn (σ)
n∏

i=1

bi,σ(i),

for every σ in Sn. We would then have perm (A) = det (B). Here is an example.

A =


 1 1 0

1 1 1
1 1 1


 perm (A) = a11a22a33 + a11a23a32 + a12a21a33

+a12a23a31 + a13a21a32 + a13a22a31

= 1 + 1 + 1 + 1 + 0 + 0 = 4

B =



−1 1 0
−1 −1 1

1 1 1




det (B) = b11b22b33 − b11b23b32 − b12b21b33

+b12b23b31 + b13b21b32 − b13b22b31

= 1 + 1 + 1 + 1 + 0 + 0 = 4

It was soon discovered by Szegö [43] that for every n ≥ 3, Pólya’s method does not
work for some n×n matrix. This lead to the obvious question of when Pólya’s method can
be used to calculate the permanent of a matrix, and this is Pólya’s permanent problem.

4A complexity class consisting of hard counting problems. Counting the number of Hamiltonian cycles
of a graph is another problem in this class.
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Sign-Solvable Sign Systems

Let S be an n×n {−, 0, +}-matrix and t be an n×1 {−, 0, +}-matrix. Sx = t denotes
the set of all matrix equations Ax = b such that A has sign pattern S, and b has sign
pattern t. We say Sx = t is a sign system, and the matrix equations in Sx = t are its
instances. Sx = t is sign-solvable if all instances have a unique solution and all the
solutions of the instances have the same sign-pattern.

Ax =

[
3 −2
−1 −1

] [
x
y

]
=

[
0
−5

]
= b ⇒ x =

[
x
y

]
=

[
2
3

]

Sx =

[
+ −
− −

] [
x
y

]
=

[
0
−

]
= t ⇒ x =

[
x
y

]
=

[
+
+

]

For the sign-system of the example, given an arbitrary instance

[
a −b
−c −d

] [
x
y

]
=

[
0
−e

]
, where a, b, c, d, and e are positive numbers,

we can use Cramer’s Rule to find the solution as follows.

x =

∣∣∣∣∣ 0 -b
-e -d

∣∣∣∣∣∣∣∣∣∣ a -b
-c -d

∣∣∣∣∣
=

−be

−ad − bc
> 0 y =

∣∣∣∣∣ a 0
-c -e

∣∣∣∣∣∣∣∣∣∣ a -b
-c -d

∣∣∣∣∣
=

−ae

−ad − bc
> 0

Note that all the determinants are negative for all choices of a, b, c, d, and e. Consequently,
every instance has a unique solution, and both entries of the solution are positive. Thus,
the sign system is sign-solvable. All these negative determinants are due to the fact that
the matrices in question are sign-nonsingular. (See Theorem 4 on page 16.)

It has been shown that the last ingredient needed to characterize sign-solvable sign
systems is a characterization of sign-nonsingular matrices. (See Brualdi and Shader [6], or
Klee, Ladner, and Manber [17].) Determining if a matrix is sign-nonsingular is a version
of Pólya’s permanent problem, as we will see in the next section.

The possibility of studying sign-solvable sign systems was first raised by Samuelson
[38] in his book Foundations of Economic Analysis (first edition, 1947). Given two
economic variables, we might not know exactly how one affects the other. But we may
know a qualitative relationship, that is, one causes the other to rise, or one causes the other
to fall, or they are independent of one another. Samuelson asked the following general
question: given some qualitative relationships between variables, what other qualitative
relationships can be derived? Samuelson’s question and the papers of Gorman [11] and
Lancaster [21, 22, 23] started the study of sign-solvability.
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Samuelson gave the following example, which is also in Brualdi and Shader [6, p. 1].
We have five parameters from the coffee trade.

• t is a measure of people’s taste for coffee.

• p(t) is the price per bag, as a function of t.

• V (t) is the volume, that is, the number of bags sold per day, as a function of t.

• S(p) is the supply in bags per day, as a function of p.

• D(p, t) is the demand in bags per day, as a function of p and t.

Suppose we make three qualitative assumptions.

• ∂S
∂p

> 0, that is, the supply of coffee increases as the price increases.

• ∂D
∂p

< 0, that is, the demand for coffee decreases as the price increases.

• ∂D
∂t

> 0, that is, the demand increases as people’s taste for coffee increases.

We will show these assumptions imply ∂p
∂t

> 0 and ∂v
∂t

> 0, that is, the price p and the
volume v increase as people’s taste t for coffee increases.

The volume is always less than or equal to the supply and the demand, that is,
V (t) ≤ S(p) and V (t) ≤ D(p, t). Suppose the volume is (strictly) less than the supply.
Then the price will drop, causing D(p, t) to rise by assumption; and so the volume will also
be less than the demand. Now with the volume less than both the supply and demand,
the volume will increase. Similarly, we can show the volume increases when it is less than
the demand. The volume stops increasing, and the market reaches equilibrium, when the
supply, demand, and volume are all equal, that is, when

S(p) = V (t) = D(p, t).

Taking partial derivatives with respect to t we obtain

∂S

∂p

∂p

∂t
=

∂V

∂t
=

∂D

∂p

∂p

∂t
+

∂D

∂t
.

Equivalently, 
 ∂S

∂p
−1

∂D
∂p

−1





 ∂p

∂t
∂V
∂t


 =


 0

−∂D
∂t


 .

By our assumptions ∂S
∂p

> 0, ∂D
∂p

< 0, and ∂D
∂t

> 0, we have an instance of the sign system


 + −
− −





 ∂p

∂t
∂V
∂t


 =


 0

−


 .

On the previous page we showed that it is sign-solvable, and that for every instance, both
entries of the solution are positive. Hence, the price and the volume increase as people’s
taste for coffee increases.
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Pfaffian Orientations

If we replace each edge xy of a graph G by either the arc xy or the arc yx, then the

resulting digraph
→
G is called an orientation of G. The orientation

→
G is Pfaffian if G

has at least one perfect matching, and every alternating cycle C of G has an odd number
of arcs going in the one direction around C and an odd number of arcs going in the other
direction (F. 18, p. 33). In the next section we will see that determining which bipartite
graphs have Pfaffian orientations is a version of Pólya’s permanent problem. Note that
some nonbipartite graphs also have Pfaffian orientations (F. 19, p. 35).

Pfaffian orientations were first examined by Kasteleyn [14, 15, 16], Fisher [7], and
Temperley and Fisher [44]. They were interested in applications in chemistry, such as the
dimer problem. (See Lovász and Plummer [28, Section 8.3].) We give another example
(F. 7, p. 15).

A single bond in a molecule consists of two electrons shared by two atoms, and a
double bond consists of four electrons shared by two atoms. Both hydrocarbons in the
example have 16 carbon-carbon single bonds and 10 carbon-hydrogen single bonds. These
hydrocarbons are called aromatic because each also has a π-bond consisting of 14 electrons
shared by the 14 carbon atoms. Each hydrocarbon has an associated graph having a vertex
for every carbon atom, and an edge for every carbon-carbon single bond. A resonance
form of either aromatic hydrocarbon is defined as follows. Choose a perfect matching of
the associated graph. For each of the 7 corresponding single carbon-carbon bonds, add
two electrons from the π-bond to obtain a carbon-carbon double bond. (In other words, a
π-bond and 7 “independent” single bonds are replaced by 7 “independent” double bonds.)
An aromatic hydrocarbon is said to be a hybrid of its resonance forms. We should note
that resonance forms are theoretical molecules, that is, they can not be found in nature.
We are describing something that exists as a hybrid of things that do not exist, or as
John D. Roberts [33, p. 212] put it, we are describing a rhinoceros as a cross between
a dragon and a unicorn.

The sum of the bond strengths is greater for an aromatic hydrocarbon than for any
one of its resonance forms. The difference is called the resonance energy of the π-bond.
The resonance energy is an increasing function of the number of resonance forms, which
is just the number m of perfect matchings of the associated graph. Calculating m can be
done efficiently if the graph has a Pfaffian orientation. (See Theorem 16 on page 35.)

The nature of π-bonds causes aromatic hydrocarbons to be physically planar, which
results in the associated graphs being planar. Conveniently, all planar graphs have Pfaffian
orientations, as shown by Kasteleyn [15, 16].

Even Dicycles

The study of even length dicycles in digraphs began with questions asked by Younger
(communicated to Thomassen [2, p. 34])5, Levow [24], Seymour [40], and Lovász [26].
These questions concerned conditions on the connectivity, vertex degrees, and number of
arcs which force a digraph to have an even dicycle. This research is surveyed in [30].

5Also communicated to the author at a later date.
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Figure 7: Organic Chemistry.

the electronic journal of combinatorics 11 (2004), #R79 15



4 Versions

In this section we discuss many versions of Pólya’s permanent problem and show they are
all algorithmically equivalent. All versions of Pólya’s permanent problem will be given
as algorithmic questions. For each we are implicitly asking for a good characterization of
some set S and a polynomial algorithm for determining membership in S. Instances of
one version can be naturally translated into instances of the other versions (F. 2, p. 6).

Let A be a square matrix. The terms of det (A) are balanced if either all terms are
zero, or there is a negative term and a positive term. The terms of det (A) are unbalanced
if they are not balanced, that is, there is a nonzero term and all nonzero terms have the
same sign.

A row of a matrix is balanced if either all its entries are zero, or it has a negative
entry and a positive entry. The row is unbalanced if it is not balanced. A matrix is
row-balanced if all its rows are balanced.

A square matrix D = [dij] is diagonal if dij = 0 for every i and j such that i 6= j.
A matrix is nonzero if it has at least one nonzero entry.

Version 1. Given a square matrix A, are the terms of det (A) balanced?

Version 2. Is a given square matrix A sign-nonsingular?

Version 3. Given a square matrix A, is there a nonzero diagonal {−1, 0, 1}-matrix D
such that AD is row-balanced? (See equation ∗ on page 18.)

Version 4. Given a bipartite graph G with a {−1, 1}-edge weighting w and a perfect
matching M , are all M-alternating cycles w-unbalanced?

Version 5. Given a bipartite graph G with a {−1, 1}-edge weighting w, is w unbalanced?

The next theorem shows versions 1 to 5 are equivalent. The equivalence between
versions 1 and 2 is found in the work of Bassett, Maybee, and Quick [1], Samuelson
[38], and Lancaster [21]. Klee, Ladner, and Manber [17] showed versions 2 and 3 are
equivalent. Kasteleyn [16] showed versions 4 and 5 are equivalent.

Theorem 4 If (G, w) is the weighted bipartite graph of a square real matrix A = [aij ],
then the following statements are equivalent.

a) The terms of det (A) are balanced.

b) Let E be the set of all matrices with the same sign pattern as A. Either all matrices in
E are singular, or E contains matrices with negative, positive, and zero determinant.

c) A is not sign-nonsingular.

d) There exists a nonzero diagonal {−1, 0, 1}-matrix D such that AD is row-balanced.

e) For every perfect matching M of G, there exists a w-balanced M-alternating cycle.

f) Either G has no perfect matching, or there exists a w-balanced M-alternating cycle
for some perfect matching M of G.
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Figure 8: An example for (a ⇒ b).

Proof. We prove (a ⇒ b ⇒ c ⇒ a) and (c ⇒ d ⇒ e ⇒ f ⇒ c).

(a ⇒ b). Suppose the terms of det (A) are balanced. Then either all terms of det (A)
are zero, or det (A) has a positive and a negative term. If all terms of det (A) are zero,
then the same is true for all matrices in E ; and so all matrices in E are singular.

Suppose det (A) has a positive and a negative term (F. 8). Choose a negative term
sgn (σ)

∏n
i=1 aiσ(i). If B = [bij ] is in E , then sgn (σ)

∏n
i=1 biσ(i) is also negative. If we choose

B so that b1σ(1), . . . , bnσ(n) have large absolute values relative to the other entries of B,
then sgn (σ)

∏n
i=1 biσ(i) will dominate det (B); and so det (B) < 0. Similarly, we can use a

positive term of det (A) to choose a matrix C in E such that det (C) > 0.
Consider the continuous polynomial function

p (x) = det [(1 − x) B + xC] .

Since p (0) = det (B) < 0 and p (1) = det (C) > 0, the Intermediate Value Theorem
implies p (z) = 0 for some z between 0 and 1. Then (1 − z) B + zC is singular because
det [(1 − z) B + zC] = 0. Furthermore, (1− z) B + zC has the same sign pattern as B
and C because it is a convex combination of them; and so (1 − z) B + zC is in E .

(b ⇒ c). This implication is trivial.

(c ⇒ a). We will prove (¬a ⇒ ¬c). Suppose the terms of det (A) are unbalanced. Then
det (A) has a nonzero term, and all nonzero terms are positive (respectively, negative).
It follows that for every matrix E in E , det (E) has a nonzero term, and all nonzero
terms are positive (respectively, negative). Therefore, all matrices in E have positive
(respectively, negative) determinant. Thus, every matrix in E is nonsingular, that is, A is
sign-nonsingular.
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(c ⇒ d). Suppose A = [aij ] is not sign-nonsingular. Then there exists a singular matrix
S = [sij ] in E . Choose a nonzero n× 1 matrix z = [zi] such that Sz = 0, and let C = [cij ]
be the diagonal matrix such that cii = zi for i = 1, . . . , n. Here is an example.

A =




1 1 0 1
0 0 −1 0
−1 1 0 1
1 1 0 −1


 S =




2 4 0 2
0 0 −1 0
−1 1 0 1
5 1 0 −1


 z =



−1
2
0
−3


 C =



−1 0 0 0
0 2 0 0
0 0 0 0
0 0 0 −3




Then 0 = Sz = S
(
C1

)
= (SC) 1. Thus, the sum of the entries in any row of SC is 0.

Hence, SC is row-balanced.

0 = SC1 =




2 4 0 2
0 0 −1 0
−1 1 0 1
5 1 0 −1






−1 0 0 0
0 2 0 0
0 0 0 0
0 0 0 −3







1
1
1
1


 =



−2 8 0 −6
0 0 0 0
1 2 0 −3
−5 2 0 3







1
1
1
1




Let D = [dij] be the diagonal {−1, 0, 1}-matrix with the same sign pattern as C. Since
C is nonzero, so is D. Since S and A have the same sign pattern, and C and D have the
same sign pattern, the (i, j)-entry sijcjj of SC has the same sign as the (i, j)-entry aijdjj

of AD for i = 1, . . . , n and j = 1, . . . , n. Hence, SC and AD have the same sign pattern.
Therefore, AD is also row-balanced.

AD =




1 1 0 1
0 0 −1 0
−1 1 0 1
1 1 0 −1






−1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1


 =



−1 1 0 −1
0 0 0 0
1 1 0 −1
−1 1 0 1


 = B (∗)

(d ⇒ e). Suppose there exists a nonzero diagonal {−1, 0, 1}-matrix D = [dij] such that
AD = B is row-balanced. Suppose M is a perfect matching of G (F. 9). Let (H, u)
be the weighted bipartite graph of B. Let r1, . . . , rn be the row vertices and c1, . . . , cn

be the column vertices of both G and H . Then H is obtained from G by removing all
edges incident with vertices cj such that djj = 0. Furthermore, u is obtained from the
restriction wr of w to E (H) by switching at all the vertices cj such that djj = −1.

r2

c3

c1

c2 r3r1

r4 c4

c3

r2

G

c2 r3r1

r4c1 c4

HM -11

Figure 9: An example for (d ⇒ e).
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Figure 10: The example for (d ⇒ e) continued.

Call a path P of H useful if

• its origin is a column vertex,
• its terminus is a row vertex,
• it is well-fitted to M , and
• u (e) = −u (f) whenever e ∈ M and e immediately precedes f on P .

Since D is nonzero, djj 6= 0 for some j in {1, . . . , n}. Then all the edges of G incident
with cj are also edges of H . In particular, H includes the edge in M incident with cj .
Hence, H has a useful path of length 1. Now choose a useful (c, r)-path P of H having
maximum length (F. 10).

Since B is row-balanced, either the row vertex r of H has degree 0, or it is incident
with both an edge of weight −1 and an edge of weight 1. Since the last edge ` of P is
incident with r, we have the second possibility; and so we can choose an edge rc′ of H
such that u (rc′) = −u (`). Since rc′ is an edge of H , all edges of G incident with the
column vertex c′ are edges of H . In particular, H includes the edge c′r′ in M incident
with c′. If c′ is not on P , then P + rc′r′ is a useful path which is longer than P , and we
have contradicted the maximality of P . Hence, c′ is on P .

Now consider the M-alternating cycle C = P [c′, r]+rc′. For every edge e in E(C)∩M ,
if f is the next edge on C, then u (e) = −u (f). It follows that u gives half the edges of
C weight 1, and the other half weight −1. This implies C is u-balanced.

For an alternating cycle, the property of being balanced is not changed by switching;
and so this property is invariant under equivalence. Since C is u-balanced, and u is
equivalent to wr, this invariance implies C is also wr-balanced. It then trivially follows
that C is w-balanced.

(e ⇒ f). This implication is trivial.

(f ⇒ c). Suppose G has no perfect matching. For every permutation σ in Sn, the term

sgn (σ)
∏n

i=1 ai,σ(i) of det (A) is nonzero if and only if
{
r1cσ(1), . . . , rncσ(n)

}
is a perfect

matching of G. Hence, all terms of det (A) are zero. Since A itself is singular, A is not
sign-nonsingular.
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Suppose G has a perfect matching M and a w-balanced M-alternating cycle C. Let
A′ be the {−1, 0, 1}-matrix with the same sign pattern as A. Relabel the row and column
vertices of G with x1, . . . , xn and y1, . . . , yn, respectively, so that M = {x1y1, . . . , xnyn}
and C = y1x1y2x2 · · · ykxky1. With the new vertex names, (G, w) becomes the weighted
bipartite graph of a matrix B = [bij ] which is obtained from A′ by permuting rows and
columns. Let P and Q be the permutation matrices such that PBQ = A′.

Next we consider the following terms of det (B):

s = sgn [i] · b11b22 · · · bkk · bk+1,k+1 · · · bnn and

t = sgn [(1, 2, . . . , k)] · b12b23 · · · bk−1,kbk1 · bk+1,k+1 · · · bnn.

Since B is a {−1, 0, 1}-matrix, and C is w-balanced, we have

st = sgn [(1, 2, . . . , k)] · b11b22 · · · bkk · b12b23 · · · bk−1,kbk1

= sgn [(1, 2) (1, 3) · · · (1, k)] b11b12b22b23 · · · bk−1,kbkkbk1

= (−1)k−1 w (y1x1)w (x1y2) w (y2x2)w (x2y3) · · ·w (xk−1yk)w (ykxk)w (xky1)

= (−1)k−1 w (C) = (−1)k−1 (−1)k = −1.

Therefore, s and t have opposite signs, and so B satisfies statement (a). We have already
proven (a) implies (c); and so B satisfies (c). Hence, there exists a singular matrix S with
the same sign pattern as B. Then PSQ is a singular matrix with the same sign pattern
as PBQ = A′. Since A′ and A have the same sign pattern, A is not sign-nonsingular.

Let G be a bipartite graph with a {−1, 1}-edge weighting w. If we wish to show w is
unbalanced, then Theorem 4 implies that we only need to verify all M-alternating cycles
are w-unbalanced for some fixed perfect matching M . The theorem also implies that if
M and M ′ are perfect matchings, then there is a w-balanced M-alternating cycle if and
only if there is a w-balanced M ′-alternating cycle.

Lemma 5 Suppose D is a digraph with a {−1, 1}-arc weighting
→
w, (G, w) is the weighted

bipartite graph of
(
D,

→
w

)
, and M is the perfect matching of G corresponding to V (D).

Then D has a
→
w-positive dicycle if and only if G has a w-balanced M-alternating cycle.

Proof. (F. 2, p. 6, D and G). Suppose
→
C = v1v2 · · · vkv1 is a dicycle of D.

→
C corresponds

to an M-alternating cycle C = c1r1c2r2c3 · · · ckrkc1 of G, where vi corresponds to ciri in
M for i = 1, 2, . . . , k. By definition, w (e) = −1 for every edge e in M . Then

w (C) = [w (c1r1) w (c2r2) · · ·w (ckrk)] · [w (r1c2) w (r2c3) · · ·w (rkc1)]

= (−1)k ·
[→
w (v1v2)

→
w (v2v3) · · · →

w (vkv1)
]

= (−1)k · →
w

(→
C

)
.

Hence,
→
w

(→
C

)
= 1 if and only if w (C) = (−1)k, that is,

→
C is

→
w-positive if and only if C

is w-balanced.
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Version 6. Is a {−1, 1}-arc weighting of a digraph negative?

Next we show versions 4 and 6 are equivalent. Suppose G is a bipartite graph with
a {−1, 1}-edge weighting u and a perfect matching M . Let w be a weighting equivalent
to u which assigns −1 to all edges in M . Then (G, w) corresponds to a weighted digraph(
D,

→
w

)
. For an M-alternating cycle, the property of being unbalanced is invariant under

equivalence; and so all M-alternating cycles of G are u-unbalanced if and only if they are
all w-unbalanced. Furthermore, Lemma 5 implies that all M-alternating cycles of G are
w-unbalanced if and only if all dicycles of D are

→
w-negative.

Bassett, Maybee, and Quick [1] proved the equivalence between the relatively distant
versions 2 and 6. Thomassen [46] gave a polynomial algorithm for version 6 when it
is restricted to planar digraphs. In the same paper he observed that, other than D7

(F. 4), the only strongly 2-connected digraphs with negative {−1, 1}-arc weightings “that
I know of are obtained from planar digraphs in a simple way. This suggests that perhaps
the even dicycle problem can be reduced to the planar case.” When the Main Theorem
is translated into digraphs (not easy), we see his suggestion is true.

Version 7. Does a given digraph have a negative {−1, 1}-arc weighting?

A dipath P is an ear dipath of a digraph H if the ends of P are on H , but no arc or
intermediate vertex of P is on H . We also call a dicycle an ear dipath of H if it has a
unique vertex on H . An ear decomposition of a digraph D is a sequence D1, D2, . . . , Dn

of subdigraphs of D satisfying the following conditions (F. 11).

• D1 is a K1.
• there exists an ear dipath Pi of Di−1 such that Di−1 + Pi = Di for i = 2, . . . , n.
• Dn = D.

Next we follow the work of Little [25] and Seymour and Thomassen [42] to show that
the slightly different versions 6 and 7 are equivalent. The next result is implicit in Hetyei
[13] and explicit in Lovász and Plummer [27]. Hartfiel [12] proved a matrix version.

Lemma 6 A digraph has an ear decomposition if and only if it is strongly connected.
There is a polynomial algorithm for constructing an ear decomposition when one exists.

D4 = D

D1 = K1

P2 P4

D3

P3

D2

Figure 11: An ear decomposition of a strongly connected digraph D.
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Theorem 7 Suppose we know a strongly connected digraph D has a negative {−1, 1}-arc
weighting

→
u, but we do not know the weights assigned to the arcs by

→
u. Then the following

statements hold.

a) There is a polynomial algorithm for constructing an explicit negative {−1, 1}-arc
weighting of D.

b) Given an arbitrary {−1, 1}-arc weighting of D, there is a polynomial algorithm for
determining if it is negative.

c) All negative {−1, 1}-arc weightings of D are equivalent.

Proof. D has an ear decomposition D1, . . . , Dn by Lemma 6. Suppose 2 ≤ i ≤ n. Let Pi

be the dipath such that Di−1 + Pi = Di. D1, . . . , Di is an ear decomposition of Di; and
so Di is strongly connected by Lemma 6. Hence, we can choose a dicycle Ci of Di which
uses Pi. In order to prove the theorem, we first need to prove the following statements
are equivalent for a {−1, 1}-arc weighting

→
w of D.

1)
→
w is equivalent to

→
u.

2)
→
w is negative.

3)
→
w (Ci) = −1, for i = 2, . . . n.

Since u is negative, (1) implies (2). Trivially, (2) implies (3).

1-1

a

w we ws = uDn

Pn

→ → → →

Figure 12: An example for the proof.

Suppose (3) holds. We will proof (1) holds by induction on n. If n = 1, then D ∼= K1

and (1) is trivially true. Suppose n ≥ 2. The restrictions of
→
w and

→
u to A (Dn−1) are

equivalent by the induction hypothesis. It follows that
→
w is equivalent to a weighting

→
we

such that the restrictions of
→
we and

→
u to A (Dn−1) are equal (F. 12). Let a be the last arc

of Pn. By switching on some of the intermediate vertices of Pn, we can get a weighting
→
ws from

→
we such that the restrictions of

→
ws and

→
u to A (D − a) are equal. Hence,

→
ws (Cn − a) =

→
u (Cn − a) and

→
ws (Cn) =

→
w (Cn) = −1 =

→
u (Cn) .

Then
→
ws (a) =

→
u (a). It follows that

→
ws and

→
u are equal; and so (1) holds.
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The results of the lemma are now easy. Construct a {−1, 1}-arc weighting
→
u i of Di for

i = 1, . . . , n as follows. Let
→
u1 be the empty function. For i = 2, . . . , n, construct

→
u i by

extending
→
u i−1 to Di so that

→
u i (Ci) = −1. Then

→
un (Ci) = −1 for i = 2, . . . , n. It follows

that
→
un is negative; and so statement (a) holds. As for (b), in order to determine if a

given weighting is negative, we just need to determine if C2, . . . , Cn are negative. Finally,
(c) holds because we have shown that all negative weightings are equivalent to

→
u.

Now we can show the equivalence of versions 6 and 7. Suppose we have a polynomial
algorithm A6 for answering version 6, and suppose we have an instance of version 7, that
is, we want to determine if a given digraph D has a negative {−1, 1}-arc weighting. A
digraph has such a weighting if and only if all its strong components have such a weighting;
and so we may assume D is strongly connected. Construct a {−1, 1}-arc weighting

→
un

using the polynomial algorithm of Theorem 7a. Apply A6 to determine if
→
un is negative.

Since
→
un is negative if and only if D has a negative weighting by Theorem 7a, we determine

if D has a negative weighing.
Suppose we have a polynomial algorithm A7 for answering version 7, and suppose

we have an instance of version 6, that is, we want to determine if a given {−1, 1}-arc

weighting
→
w of a digraph D is negative. As in the previous paragraph, we may assume D

is strongly connected. Apply A7 to determine if D has a negative weighting. If a negative
weighting exists, then we use Theorem 7b to determine if

→
w is negative. If there is no

negative weighting, then obviously
→
w is not negative.

Version 8. Does a given bipartite graph have an unbalanced {−1, 1}-edge weighting?

Version 8 can be translated into version 7. Let G be a bipartite graph. There is
a polynomial algorithm to determine if G has a perfect matching M (See Lovász and
Plummer [28].) If M does not exist, then by definition G has no unbalanced weighting.
If M exists, then G corresponds to a digraph D, where M corresponds to V (D). By
Lemma 5 we know that D has a negative {−1, 1}-arc weighting if and only if G has a
{−1, 1}-edge weighting such that all M-alternating cycles are unbalanced, which in turn
is equivalent to G having an unbalanced weighting by Theorem 4. Similarly, version 7
can be translated into version 8.

Next we follow the work of Thomassen [45] to show versions 7 and 8 can be restricted
to looking at only strongly 2-connected digraphs and braces, respectively.

Suppose digraph D is strongly connected but not strongly 2-connected, and ν (D) ≥ 3.
Then D has a vertex v such that D − v is not strongly connected (F. 13, p. 24). It is
easy to show V (D − v) has a partition {V1, V2} such that all arcs between V1 and V2 are
outgoing arcs of V1. For i = 1, 2, let Ni be the set of vertices in Vi which are incident with
arcs from V1 to V2. Let

D1 = D [V1 ∪ {v}] + {xv |x ∈ N1} and D2 = D [{v} ∪ V2] + {vy |y ∈ N2} .

We say D1 and D2 are reductions of D (at v).

Lemma 8 (Thomassen [45]) If D1 and D2 are reductions of a digraph D, then D has a
negative {−1, 1}-arc weighting if and only if D1 and D2 have such weightings.
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-11
D

v

D1 D2

Figure 13: Reductions D1 and D2 of a digraph D at a vertex v, and negative weightings
of the three digraphs.

Lemma 8 has an equivalent version involving bipartite graphs [31, Lemma 26].
Version 7 can now be reduced to the following version using Lemma 8.

Version 7a. Does a given strongly 2-connected digraph have a negative {−1, 1}-arc
weighting?

Version 8a. Does a given brace have an unbalanced {−1, 1}-edge weighting?

Suppose digraph D corresponds to bipartite graph G. G is a brace if and only if D
is strongly 2-connected by Theorem 3. Furthermore, G has an unbalanced {−1, 1}-edge
weighting if and only if D has a negative {−1, 1}-arc weighting by Lemma 5. Hence,
version 7a and 8a are equivalent.

Note that version 8a is the one solved by the Main Theorem.

Version 9. Given a square matrix A, does there exist a sign-nonsingular matrix L with
the same dimensions and support as A?

Let A be a square matrix, and suppose L is a matrix with the same dimensions and
support as A. Let (G, w) be the weighted bipartite graph of L. Then w is an unbalanced
{−1, 1}-edge weighting of G if and only if L is sign-nonsingular by Theorem 4. Therefore,
versions 8 and 9 are equivalent.

Version 10. Can Pólya’s method (p. 11) be used to calculate the permanent of a given
square matrix?

Given m × n matrices A = [aij ] and B = [bij ], we define their Hadamard product
A ∗ B to be the m × n matrix [aijbij ]. Changing the signs of the entries of a matrix A
is equivalent to taking the Hadamard product A ∗ L of A and some {−1, 0, 1}-matrix L
with the same dimensions and support as A. We now reformulate version 10. Given an
n×n matrix A, does there exist an n×n {−1, 0, 1}-matrix L with the same support as A
such that corresponding terms of perm (A) and det (A ∗ L) are equal. The next theorem
gives us a condition for when such an L exists.
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Lemma 9 Let A = [aij ] be an n×n matrix and let L = [`ij ] be an n×n {−1, 0, 1}-matrix
with the same support as A. Then corresponding terms of perm (A) and det (A ∗ L) are
equal if and only if all nonzero terms of det (L) are equal to 1.

Proof. Suppose σ is in Sn. Since A and L have the same support, either the three terms∏n
i=1 ai,σ(i), sgn (σ)

∏n
i=1 ai,σ(i)`i,σ(i), and sgn (σ)

∏n
i=1 `i,σ(i) are all equal to zero, or they

are all nonzero. If they are all nonzero, then

n∏
i=1

ai,σ(i) = sgn (σ)
n∏

i=1

ai,σ(i)`i,σ(i) ⇔ sgn (σ)
n∏

i=1

`i,σ(i) = 1.

The result now follows.
We will now show versions 9 and 10 are equivalent. Let A be an n × n matrix. The

polynomial algorithm for determining if a bipartite graph has a perfect matching can be
used to determine if det (A) has a nonzero term. If all terms of det (A) are zero, then
it is trivial to show that Pólya’s method can be applied to A, and that there is no sign-
nonsingular n × n matrix L with the same support as A. Therefore, we may assume
det (A) has a nonzero term.

Suppose Pólya’s method can be applied to A. By Lemma 9 there exists an n × n
{−1, 0, 1}-matrix L with the same support as A such that all nonzero terms of det (L) are
equal to 1. Since det (A) has a nonzero term, so does det (L). Then L is sign-nonsingular
by Theorem 4. Therefore, there is a sign-nonsingular n×n matrix with the same support
as A.

Conversely, suppose there exists a sign-nonsingular n × n matrix L′ with the same
support as A. By Theorem 4 all nonzero terms of det (L′) have the same sign. If all the
entries of some row of L′ are multiplied by −1 to give a matrix L′′, then the nonzero
terms of det (L′′) have the opposite sign as the nonzero terms of det (L′). Hence, we may
assume all nonzero terms of det (L′) are positive. If L is the {−1, 0, 1}-matrix with the
same sign pattern as L, then all nonzero terms of det (L) will equal 1. Therefore, Pólya’s
method can be applied to A by Lemma 9.

Next we discuss “unweighted” versions of Pólya’s permanent problem. Suppose we
have an instance of version 6, that is, we want to determine if a given {−1, 1}-arc weighting
→
w of a digraph D is negative. Equivalently, does D have a

→
w-positive dicycle? Let D′ be

the digraph obtained from D by replacing every arc xy such that
→
w (xy) = 1 by a dipath

xzy (F. 2, p. 6). There is a natural correspondence between the dicycles of D and D′.
Let C and C ′ be corresponding dicycles of D and D′, respectively. Then C is

→
w-positive

if and only if C ′ has even length. Hence, the instance of version 6 can be answered using
a polynomial algorithm for the following version.

Version 11. Does a given digraph have a dicycle of even length?

Going in the other direction is easier. An instance of version 11 can be translated into
an instance of version 6 by weighting every arc with −1. Therefore, versions 6 and 11 are
equivalent. There are six more “unweighted” versions. We denote the set of nonnegative
real numbers by <+

0 .
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Version 12. Given a square
(
<+

0

)
-matrix A, does det (A) = perm (A)?

Version 13. Given a square
(
<+

0

)
-matrix A, are the terms of det (A) balanced?

Version 14. Is a given square
(
<+

0

)
-matrix A sign-nonsingular?

Version 15. Given a square
(
<+

0

)
-matrix A, does there exist a nonzero diagonal

{−1, 0, 1}-matrix D such that AD is row-balanced?

Version 16. Given a bipartite graph G with a perfect matching M , does G have an
M-alternating cycle whose length is divisible by 4?

Version 17. Does a given bipartite graph G have an alternating cycle whose length is
divisible by 4?

The next theorem shows the “unweighted” versions are equivalent. It is proven using
earlier results, or by modifying their proofs.

Theorem 10 (F. 4) Let A be a square
(
<+

0

)
-matrix such that det (A) has a positive term.

Then the bipartite graph G of A has a perfect matching. Let D be a digraph corresponding
to G. The following statements are equivalent.

a) All dicycles of D have odd length.

b) Det (A) = perm (A).

c) All nonzero terms of det (A) are positive.

d) A is sign-nonsingular.

e) For every nonzero diagonal {−1, 0, 1}-matrix D, some row of AD is unbalanced.

f) There exists a perfect matching M of G such that all M-alternating cycles have
length congruent to 2 modulo 4.

g) All alternating cycles of G have length congruent to 2 modulo 4.

Next we look at obstructions. In the context of version 7, an obstruction is a minimal
digraph which does not have a negative {−1, 1}-arc weighting. The significance of this
definition is that a digraph has a negative {−1, 1}-arc weighting if and only if it does
not have a subdigraph which is an obstruction. As in other graph problems involving
obstructions, the goal is to characterize the set of obstructions. We first need some
definitions.

Let v be a vertex of a digraph D (F. 14a, p. 27). Let D′ be the digraph obtain from
D − v by adding new vertices v− and v+, and then adding the arcs in{

zv− | zv ∈ A (D)
}
∪

{
v−v+

}
∪

{
v+z | vz ∈ A (D)

}
.

We say D′ is obtained from D by vertex splitting. If D′′ is obtained from D via a
sequence of vertex splittings, then D′′ is called a weak D. (D itself is also a weak D.)
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A digraph with a weak  C5

D

Weak  C5
↔

v v- v+

D ′

vertex
splitting

(a)

(b)

↔

Figure 14: Examples for vertex splitting and Theorem 11.

For n ≥ 3, the double dicycle
↔
Cn is the symmetric digraph obtained from the n-cycle

by replacing every edge xy by the arcs xy and yx. If n is odd, we say
↔
Cn is odd. The next

result characterizes the obstructions to a digraph having a negative {−1, 1}-arc weighting.
We will prove it in Section 10 using the Main Theorem.

Theorem 11 (Seymour and Thomassen [42]) (F. 14b) A digraph has a weak odd
↔
Cn if

and only if it does not have a negative {−1, 1}-arc weighting.

Given Theorem 11, version 7 is equivalent to the following version.

Version 18. Does a given digraph have a weak odd
↔
Cn?
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In the context of version 8, an obstruction is a bipartite graph H with a perfect
matching such that H does not have an unbalanced {−1, 1}-edge weighting, but every
well-fitted proper subgraph does have an unbalanced {−1, 1}-edge weighting.

Characterizing the set of obstructions for version 8 is done by the following theorem.
For now we only prove it in the “easy” direction. This part of the theorem will be used
later in proving the Main Theorem. In Section 10 we will then use the Main Theorem to
prove Theorem 12 in the “difficult” direction.

Theorem 12 (Little [25]) If G is a bipartite graph with a perfect matching, then G has
a well-fitted K3,3 bisubdivision (F. 1, p. 3) if and only if G does not have an unbalanced
{−1, 1}-edge weighting.

Proof (⇒). We first show K3,3 does not have an unbalanced {−1, 1}-edge weighting.
Suppose w is an arbitrary {−1, 1}-edge weighting of K3,3. For every edge of K3,3, there is
a unique 4-cycle which is disjoint from the edge. Thus, K3,3 has nine 4-cycles C1, . . . , C9.
Each edge of K3,3 is on four of these cycles. Hence,

9∏
i=1

w (Ci) =
∏

e∈E(K3,3)

[w (e)]4 = 1.

Since 9 is odd, w (Ci) = 1 for some i in {1, . . . , 9}. Then Ci is a balanced alternating
cycle of K3,3. Therefore, w is not unbalanced.

Next we use induction on the number of edges to show K3,3 bisubdivisions do not
have unbalanced {−1, 1}-edge weightings. The induction basis is the previous paragraph.
Suppose K and K ′ are K3,3 bisubdivisions such that K ′ is obtained from K by replacing
an edge xy of K by the path xvuy, that is, by subdividing xy twice. Suppose w′ is an
arbitrary {−1, 1}-edge weighting of K ′. Let w be the {−1, 1}-edge weighting of K such
that w (xy) = −w′ (xv) · w′ (vu) · w′ (uy) and w (e) = w′ (e) for every e in E (K) − {xy}.
By the induction hypothesis, w is not unbalanced. Then either K does not have a perfect
matching, or K has a perfect matching M and w-balanced M-alternating cycle C. Since all
K3,3 bisubdivisions have perfect matchings, C exists. Then M and C naturally correspond
to a perfect matching M ′ and a w′-balanced M ′-alternating cycle of K ′. Therefore, w′ is
not unbalanced.

Finally, suppose G has a well-fitted K3,3 bisubdivision K. Suppose w is an arbitrary
{−1, 1}-edge weighting of G, and let wr be the restriction of w to E (K). Since K has no
unbalanced {−1, 1}-edge weighting, wr is not unbalanced. Then either K does not have
a perfect matching, or K has a wr-balanced alternating cycle C. Since K has a perfect
matching, C exists. Since C is well-fitted to K, and K is well-fitted to G, Lemma 22
(p. 38) implies C is well-fitted to G. Then C is a w-balanced alternating cycle of G.
Therefore, w is not unbalanced.

Given the preceding theorem, version 8 is equivalent to the following version.

Version 19. Does a given bipartite graph have a well-fitted K3,3 bisubdivision?
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Figure 15: A hypergraph with a balanced 2-vertex colouring, a satisfiable conjunction of
not-all-equal clauses, and a bipartite graph with a balanced 2-colouring of a colour class.

A hypergraph H is an ordered pair (V, E), where V is a set and E is a set of subsets
of V . The elements of V are called the vertices, and the elements of E are called the
hyperedges. A 2-vertex colouring of H is a function from V to a set of size two, say
{red, blue} (F. 15a). A 2-vertex colouring is balanced if every hyperedge contains a red
vertex and a blue vertex. H has a system of distinct representatives if there exists
an injective function f : E (H) → V (H) such that f (e) ∈ e for every hyperedge e.

Suppose we have a truth assignment for the propositions P1, . . . , Pn. A not-all-equal
clause A (P1, . . . , Pn) is true if some Pi is true and some Pj is false (F. 15b). A conjunction
F of not-all-equal clauses is satisfiable if there is a truth assignment for the set of
propositions such that all not-all-equal clauses of F are true. F is matchable if there
exists an injective function from its set of not-all-equal clauses to the set of propositions
such that each clause A (P1, . . . , Pn) get mapped into {P1, . . . , Pn}.

Let G be a bipartite graph with colour classes A and B. A 2-colouring of B is
a function from B to a set of size two, say {red, blue} (F. 15c). A 2-colouring of B
is balanced if every vertex in A is adjacent to a red vertex and a blue vertex. G is
A-matchable if G has a matching which saturates every vertex in A.

Version 20. Given a hypergraph H with a system of distinct representatives, does H
have a balanced 2-vertex colouring?

Version 21. Is a matchable conjunction of not-all-equal clauses satisfiable?

Version 22. Let G be a bipartite graph with colour classes A and B such that G is
A-matchable. Does G have a balanced 2-colouring of B?

To motivate version 20, consider the following two observations. If H is a hypergraph
with no balanced 2-vertex colouring, and we keep removing hyperedges from H , we will
eventually get a subhypergraph of H with a balanced 2-vertex colouring. If H is a
hypergraph with a balanced 2-vertex colouring and at least one hyperedge, and we keep
removing vertices from H , we will eventually get a subhypergraph of H with no balanced
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2-vertex colouring. Considering these observations one might wonder if a hypergraph has
a balanced 2-vertex colouring if the number of vertices is “large” relative to the number
of hyperedges. But this is trivially false: consider a hypergraph with hyperedges {v1, v2},
{v1, v3}, {v2, v3}, and {v1, v2, v3, . . . , v1010}. To get away from such easy counterexamples,
one might ask if a hypergraph has a balanced 2-vertex colouring if the number of vertices is
“large” relative to the number of hyperedges, and the vertices are “equitably distributed”
amongst the hyperedges. Version 20 asks such a question.

We will follow the work of Seymour [41] to show that versions 20, 21, and 22 are
equivalent to version 17. We first need Theorem 13.

Let G be a bipartite graph with colour classes A and B such that G is A-matchable.
Suppose ∅ 6= X ⊂ A. We say H = G [X ∪ N (X)] is a supercondenser (F. 16a) if
|X| = |N (X)| and every alternating cycle of H has length congruent to 2 modulo 4.

Theorem 13 If G is a bipartite graph with colour classes A and B, and G is A-matchable,
then G has a balanced 2-colouring of B if and only if G does not have a supercondenser.

Proof (⇒). Suppose G has a balanced 2-colouring. Let X be a nonempty subset of
A such that |X| = |N (X)|. We will show H = G [X ∪ N (X)] is not a supercondenser
(F. 16b). Since G is A-matchable, G has a matching that saturates all vertices in A.
Then some subset of this matching is a perfect matching M of H because |X| = |N (X)|.
Suppose P is a path b1x1 · · · bnxn of H such that {x1, . . . , xn} ⊂ X, {b1x1, . . . , bnxn} ⊂ M ,
and bi and bi+1 have different colours for i = 1, . . . , n − 1. (Such a path exists because
X is nonempty.) Choose P to have maximum length. We may assume bn is coloured
red. Since the 2-colouring of B is balanced, there exists a blue vertex b adjacent to xn.
Then there exists an edge bx in M . If b is not on P , then b1x1 · · · bnxnbx contradicts the
maximality of P . Hence, b is on P . Then C = P [b, xn] + xnb is an M-alternating cycle.
Furthermore, the length of C is congruent to 0 modulo 4 because the vertices of C in B
are alternately coloured red and blue. Hence, H is not a supercondenser.

H

b

x

x1

b1

xn

bn

H

P

M

(b)(a)

Figure 16: A supercondenser, and an example for the proof of Theorem 13.
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Figure 17: Examples for the proof of Theorem 13.

(⇐). Suppose G has no supercondenser, that is, suppose for every nonempty subset X of
A such that |X| = |N (X)|, there is an alternating cycle of G [X ∪ N (X)] whose length
is congruent to 0 modulo 4.

Call a subgraph H of G uncoloured (F. 17ac) if H has a perfect matching and
G−V (H) has a balanced 2-colouring of B −V (H). It follows from the definition that G
has a balanced 2-colouring of B if and only if the empty subgraph is uncoloured. First we
need to show G has an uncoloured subgraph. Since G is A-matchable, it has a matching
M which saturates all the vertices in A. Then the subgraph of G induced by the vertices
saturated by M is uncoloured. To complete the proof, we need to show that any nonempty
uncoloured subgraph can be replaced by a smaller uncoloured subgraph.

Suppose H is a nonempty uncoloured subgraph of G. Let f be a balanced 2-colouring
of B − V (H) for G − V (H), and let X = A ∩ V (H).

Suppose some x in X is adjacent to a vertex r in B − V (H) (F. 17a). Choose a
perfect matching M of H , and let b be the vertex such that xb ∈ M . Let H ′ = H −{x, b}
(F. 17b). We may assume f(r) is red. Extend f by colouring b blue. Then we have a
balanced 2-colouring of B−V (H ′) for the G−V (H ′). Furthermore, M−{xb} is a perfect
matching of H ′. Therefore, H ′ is an uncoloured subgraph which is smaller than H .

Suppose no vertex in X is adjacent to a vertex in B − V (H) (F. 17c). It follows
that |X| = |N (X)|. Since G has no supercondenser, H = G [X ∪ N (X)] has a perfect
matching M , and an M-alternating cycle C of whose length is congruent to 0 modulo 4.
Let H ′ = H−V (C) (F. 17d). Extend f by alternately colouring the vertices in B∩V (C)
red and blue. Then we have a balanced 2-colouring of B − V (H ′) for the G − V (H ′).
Furthermore, M − E (C) is a perfect matching of H ′. Therefore, H ′ is an uncoloured
subgraph which is smaller than H .

the electronic journal of combinatorics 11 (2004), #R79 31



Every conjunction F of not-all-equal clauses naturally corresponds to a hypergraph H ,
and a bipartite graph G (F. 15). Furthermore, a truth assignment satisfying F naturally
corresponds to a balanced 2-vertex colouring of H , and a balanced 2-colouring of a colour
class B of G. Hence, determining if H and G have such colourings is equivalent to
determining if there is a truth assignment satisfying F . Schaefer [39] proved these three
problems are NP-complete. It is easy to see that F is matchable if and only if H has a
system of distinct representatives, and if and only if G is A-matchable for some colour
class A. Thus, versions 20, 21, and 22 are equivalent. We will show versions 17 and 22
are equivalent with the aid of Theorem 13.

Suppose there exists a polynomial algorithm A17 for version 17. Then A17 determines
if a given bipartite graph G has an alternating cycle C whose length is divisible by 4, but
it can also be used to efficiently find C if it exists. Suppose A17 tells us that C exists.
Call an edge e critical if G − e has no alternating cycle whose length is divisible by 4.
Applying A17 to G − e determines if an edge e is critical. If all edges of G are critical,
then we are done because every component G is either C or a K2. Otherwise, we remove
a noncritical edge e, and repeat the process for G − e. Eventually we find C.

Now suppose A17 exists, and we have an instance of version 22, that is, we have a
bipartite graph G with colour classes A and B such that G is A-matchable, and we want
to determine if G has a balanced 2-colouring of B. We use the algorithm given on the
previous page to find a minimal uncoloured subgraph H of G. Here we need to apply
A17 to uncoloured subgraphs of G to determine if they have alternating cycles of length
divisible by 4, and to find such cycles when they exist. If H is the empty graph, then G
has a balanced 2-colouring of B. If H is nonempty, then it is a supercondenser; and so G
does not have a balanced 2-colouring of B by Theorem 13.

Suppose there exists a polynomial algorithm A22 for version 22, and suppose we have
an instance of version 17, that is, we want to determine if a bipartite graph G has an
alternating cycle whose length is divisible by 4. A bipartite graph has such a cycle if
and only if it has a perfect matching, and some maximal 1-extendible subgraph has such
a cycle. Hence, we may assume G is 1-extendible. Let A and B be the colour classes
of G. Since G is 1-extendible, it is also A-matchable. We use A22 to determine if G
has a balanced 2-colouring of B. By Theorem 13 we have also determined if G has a
supercondenser. Since G is 1-extendible, Theorem 3 implies that the only nonempty subset
X of A such that |X| = |N (X)| is A itself. Thus, G is the only possible supercondenser.
Hence, we have determined if G is a supercondenser. Since G is a supercondenser if and
only if every alternating cycle has length congruent to 2 modulo 4, we have determined if
G has an alternating cycle whose length is divisible by 4.

We prove the Fano plane (F. 4, p. 8) has no balanced 2-vertex colouring as follows.
Suppose we colour each vertex with red or blue. We may assume there are at most
three red vertices. If there are at most two red vertices, then at most five hyperedges
contain a red vertex. If there are three red vertices, and they in some hyperedge, then
that hyperedge contains no blue vertex. If there are three red vertices, and no hyperedge
contains all three, then exactly six hyperedges contain a red vertex. For all possibilities,
there is a monochromatic hyperedge. Hence, the 2-vertex colouring is not balanced.
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Alternatively, we can argue as follows. It is routine to show the Heawood graph H14

(F. 4) has no alternating cycle whose length is divisible by 4. Then Theorem 13 implies
H14 has no balanced 2-colouring of one of its colour class. This in turn implies the
corresponding hypergraph, the Fano plane, has no balanced 2-vertex colouring.

Consider the game of tic-tac-toe. Let H be the hypergraph whose vertices are the
nine squares and whose hyperedges are the eight winning triples (2 diagonals, 3 columns,
and 3 rows). Let “x” and “o” be our two colours. Neither player wins a game if and
only if each winning triple has a square with an “x” and a square with an “o”. Hence, a
game is a draw if and only if the 2-vertex colouring is balanced. A version of tic-tac-toe
can be played on any hypergraph. For all versions, a game is a draw if and only if the
resulting 2-vertex colouring is balanced. When the game is played using the Fano plane
(tic-tac-Fano), one player always wins because the Fano plane has no balanced 2-vertex
colouring.

Version 23. Does a given bipartite graph have a Pfaffian orientation?

Pfaffian orientations of graphs are defined on page 14.
Let G be a bipartite graph with colour classes R and C. A {−1, 1}-edge weighting w

of G corresponds to an orientation
→
G if for every edge rc of G, where r ∈ R and c ∈ C,

w(rc) = 1 if and only if rc ∈ A
(→
G

)
(F. 18). Thus, there is a natural bijection between

{−1, 1}-edge weightings and orientations of G.
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Figure 18: A Pfaffian orientation of a bipartite graph.
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The following result implies that version 23 is equivalent to version 8.

Theorem 14 Suppose w is a {−1, 1}-edge weighting of a bipartite graph G with colour

classes R and C. Let
→
G be the corresponding orientation. If G has a perfect matching,

then w is unbalanced if and only if
→
G is Pfaffian.

Proof. We first make some useful definitions. Let D be the symmetric digraph obtained
from G by replacing each edge rc by the arcs rc and cr (F. 18). Define a {−1, 1}-arc
weighting m of D by m (rc) = −w (rc) and m (cr) = w (rc), for every edge rc of G, where

r ∈ R and c ∈ C. A cycle of G is Pfaffian in
→
G if it has an odd number of arcs going in

each direction.
Suppose C = r0c0r1c1 · · · rk−1ck−1r0 is an alternating cycle of G, where ri ∈ R and

ci ∈ C for i = 0, . . . , k − 1, and let m (C) = m (r0c0) m (c0r1) · · ·m (rk−1ck−1) m (ck−1r0).
For i = 0, . . . , k − 1,

rici ∈ A
(→
G

)
⇔ w (rici) = 1 ⇔ m (rici) = −1, and

ciri+1 ∈ A
(→
G

)
⇔ w (ri+1ci) = −1 ⇔ m (ciri+1) = −1.

Thus, an edge uv of C is oriented in the forward direction around C if and only if

m (uv) = −1. It follows that C is Pfaffian in
→
G if and only if m (C) = −1. Furthermore,

m (C) = [m (r0c0)m (r1c1) · · ·m (rk−1ck−1)] · [m (c0r1) m (c1r2) · · ·m (ck−1r0)]

=
[
(−1)k w (r0c0) w (r1c1) · · ·w (rk−1ck−1)

]
· [w (r1c0) w (r2c1) · · ·w (r0ck−1)]

= (−1)k · w (C) .

Hence, m (C) = −1 ⇔ w (C) = (−1)k−1 ⇔ C is w-unbalanced.

Therefore, C is Pfaffian in
→
G if and only if C is w-unbalanced. It follows that

→
G is a

Pfaffian orientation if and only if w is unbalanced.
Theorem 14 gives a natural bijection between unbalanced {−1, 1}-edge weightings and

Pfaffian orientations of a bipartite graph. When such a weighting and orientation exist,
we can efficiently calculate the number of perfect matchings using the next result.

Corollary 15 Suppose w is an unbalanced {−1, 1}-edge weighting of a bipartite graph G.
If A is a matrix of (G, w), then |det (A)| is the number of perfect matchings of G.

Proof. (F. 18). Since w is unbalanced, Theorem 4 implies the terms of det (A) are
unbalanced. Hence, all nonzero terms of det (A) have the same sign. Furthermore, all
nonzero terms of det (A) have absolute value 1 because A is a {−1, 0, 1}-matrix. It follows
that |det (A)| is the number of nonzero terms of det (A). Since there is a natural bijection
between the nonzero terms of det (A) and the perfect matchings of G, |det (A)| is also the
number of perfect matchings of G.
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This result can be generalized to all (bipartite or nonbipartite) graphs with Pfaffian
orientations. To explain how this is done, we first need to define a new type of matrix.

Suppose
→
G is an orientation of a graph G. Let v1, . . . , vn be an ordering of V (G). The

skew-symmetric matrix of
→
G with respect to v1, . . . , vn is the n×n matrix S = [sij ]

such that

sij =




1 if vivj is an arc of
→
G,

−1 if vjvi is an arc of
→
G, and

0 otherwise.

for i, j = 1, . . . , n.
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v1

S =
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-1

0

0
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0
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v6

Pfaffian orientation  G
→

G wrt v1,v2,v3,v4,v5,v6

skew-symmetric matrix of
→

Figure 19: A Pfaffian orientation of a nonbipartite graph.

Theorem 16 (Kasteleyn [16]) Let m be the number of perfect matchings of a graph G.

Suppose S is a skew-symmetric matrix of an orientation
→
G of G (Figures 18 and 19).

If
→
G is Pfaffian, then m2 = det (S).

Corollary 15 can be derived from Theorem 16. Suppose w is an unbalanced edge
weighting of a bipartite graph G with row vertices r1, . . . , rn and column vertices c1, . . . , cn.

Let A and
→
G be the matrix and Pfaffian orientation, respectively, corresponding to (G, w).

Then the skew-symmetric matrix of
→
G with respect to r1, . . . , rn, c1, . . . , cn is

S =

[
0 A

−At 0

]
.

Now Theorem 16 implies m2 = det (S) = [det (A)]2. Hence, m = |det (A)|.
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5 Braces

This section contains some results about braces needed in the proof of the Main Theorem.
In particular, we state some results from [31] on generating braces.

The first result is a routine corollary of Theorem 3.

Corollary 17 If x and y are in different colour classes of a brace H, then H − {x, y} is
1-extendible.

Corollary 18 (Plummer [34]) For every positive integer k, every k-extendible graph is
(k + 1)-connected and has minimum degree at least k + 1.

Let H10 be the 4-cycle sum of three K3,3 graphs at a 4-cycle C such that no edge of
C is in E (H10).

Lemma 19 Let n ≥ 3, and let G, G1, . . . , Gn be bipartite graphs such that G is not an H10

and ν (Gi) ≥ 6 for i = 1, . . . , n. Suppose G is a 4-cycle sum of G1, . . . , Gn at C = abcda.
Then G is a brace if and only if G1, . . . , Gn are braces.

Proof (⇒). Suppose G is a brace. Then statement (b) of Theorem 3 implies G+E (C)
is also a brace. Suppose 1 ≤ i ≤ n. By assumption, ν (Gi) ≥ 6. Since Gi has the 4-cycle
C, it has two nonadjacent edges. Furthermore, Gi is connected because G + E (C) is
connected. Since G is a brace, it has a perfect matching containing ab and cd; and so
Gi − V (C) has the same number of vertices in each colour class.

Suppose e and f are nonadjacent edges of Gi. The brace G + E (C) has a perfect
matching M containing e and f . Since Gi − V (C) has the same number of vertices in
each colour class, M ∩ E (Gi) is a matching of Gi which saturates all vertices except an
even number of vertices on C, and the number of unsaturated vertices in each colour class
is the same. Hence, the union of M ∩ E (Gi) and an appropriate subset of E (C) is a
perfect matching of Gi containing e and f . Therefore, Gi is a brace.

(⇐). Suppose G1, . . . , Gn are braces. If n = 3 and G1, G2, and G3 are K3,3 graphs, then
it is easy to show G is a brace. (Remember, G is not an H10.) Hence, we will assume G
is not a 4-cycle sum of three K3,3 graphs. If we can prove G − E (C) is a brace, then G
is also a brace. Hence, we can also assume G does not use any edges of C.

First we show G is connected. Suppose 1 ≤ i ≤ n. By Corollary 18 we know Gi

is 3-connected. Then Gi − {a, c} is connected, and a and c are adjacent to vertices in
V (Gi) − V (C). Hence, Gi − E (C) is connected. Therefore, G =

∑n
i=1 [Gi − E (C)] is

connected.
Second we make the trivial observations that ν (G) ≥ ν (G1) ≥ 6 and G has two

nonadjacent edges.
Third we show that for any nonadjacent edges e and f of G, there is a perfect matching

of G containing e and f . We may assume e ∈ E (G1)−E (C) and f ∈ E (G1 + G2)−E (C).
There are two cases, where the second case has three subcases.
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Suppose e and f are in E (G1)−E (C). Since G1 is a brace, e and f are contained in
some perfect matching M1 of G1. We may assume M1 ∩E (C) ⊂ {ab, cd}. Next choose a
perfect matching M2 for G2 using the fact that G2 is a brace; but the choice of M2 depends
on whether M1 contains ab. If ab ∈ M1, choose M2 to include cd and some edge ay, where
y is not on C. If ab /∈ M1, choose M2 to include ab and cd. For both possibilities we get
a perfect matching M2 of G2 containing cd such that ab ∈ M2 if and only if ab /∈ M1.
Similarly, we can choose a perfect matching M3 of G3 containing ab such that cd ∈ M3 if
and only if cd /∈ M1. If n ≥ 4, then for every i in {4, . . . , n}, choose a perfect matching
Mi of Gi which includes ab and cd. Then (∪n

i=1Mi) − {ab, cd} is a perfect matching of G
which includes e and f .

Suppose e ∈ E (G1) − E (C) and f ∈ E (G2) − E (C). For this case there are three
subcases.

Suppose e or f is incident with C. We may assume e is incident with a. Then we may
assume that if f is incident with a vertex of C, then it is incident with c or d. Choose
a perfect matching M1 for G1 such that {e, cd} ⊂ M1, and a perfect matching M2 for G2

such that {f, ab} ⊂ M2. Then choose a perfect matching M3 for G3 containing ab such
that cd ∈ M3 if and only if cd /∈ M2. If n ≥ 4, then for every i in {4, . . . , n}, choose a
perfect matching Mi of Gi containing ab and cd. Then (∪n

i=1Mi) − {ab, cd} is a perfect
matching of G which includes e and f .

Suppose e and f are not incident with C, and G1 or G2 is not a K3,3. We may assume
G2 is not a K3,3. Then there exists an edge g in E (G2) − E (C) incident with C such
that f and g are nonadjacent. We may assume g is incident with c. Choose a perfect
matching M1 for G1 such that {e, ab} ⊂ M1. Next choose a perfect matching M2 for
G2; but the choice depends on whether cd is in M1. If cd /∈ M1, choose M2 to contain f
and cd. If cd ∈ M1, choose M2 to contain f and g. When ab, cd ∈ M1 and f, g ∈ M2,
there is symmetry between b and d because we can shift M1 on C; and so we may assume
M2 contains an edge incident with d but not on C. Then choose a perfect matching
M3 for G3 containing cd such that ab ∈ M3 if and only if ab /∈ M2. If n ≥ 4, then for
every i in {4, . . . , n}, choose a perfect matching Mi of Gi containing ab and cd. Then
(∪n

i=1Mi) − {ab, cd} is a perfect matching of G which includes e and f .
Suppose e and f are not incident with C, and G1

∼= K3,3
∼= G2. Let M1 = {e, ab, cd}

and M2 = {f, ab, cd}. Suppose G3 is not a K3,3. Then there exist nonadjacent edges ay
and cz incident with C. Choose a perfect matching M3 for G3 such that {ay, cz} ⊂ M3.
Then M3 ∩E (C) = ∅. If n ≥ 4, then for every i in {4, . . . , n}, choose a perfect matching
Mi of Gi containing ab and cd. Then (∪n

i=1Mi)−{ab, cd} is a perfect matching of G which
includes e and f . Otherwise, we may assume G3, . . . , Gn are K3,3 graphs. Since we are
assuming G is not a 4-cycle sum of three K3,3 graphs, n ≥ 4. Choose a perfect matching
M3 for G3 such that M3 ∩ E (C) = {ab}, and a perfect matching M4 for G4 such that
M4 ∩E (C) = {cd}. If n ≥ 5, then for every i in {5, . . . , n}, choose a perfect matching Mi

of Gi containing ab and cd. Then (∪n
i=1Mi) − {ab, cd} is a perfect matching of G which

includes e and f .
We have shown G is connected, G has two nonadjacent edges, ν (G) ≥ 6, and any two

nonadjacent edges of G are in a perfect matching of G. Therefore, G is a brace.
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Figure 20: Lemmas 21, 22, 23, and 25.

The next result is needed in [30, p. 57]. Its proof follows the proof of Theorem 19 in
the “easy” direction.

Lemma 20 Let G1 and G2 be bipartite graphs such that G1∩G2 is a 4-cycle, and G1 and
G2 are proper subgraphs of G1 ∪ G2. If G1 ∪ G2 is a brace, then G1 and G2 are braces.

Let H be a bipartite graph with δ ≥ 2. Suppose x is in V (H), and {Z1, Z2} is a
partition of N (x). Let H ′ = (H − x) + x1vx2 + {x1z |z ∈ Z1}+ {x2z |z ∈ Z2}, where x1,
v, and x2 are new vertices. We say H ′ is obtained from H by expanding x (to x1vx2).
If H ′′ is obtained from H via a sequence of vertex expansions, then we say H ′′ is an
expansion of H . Note that a bisubdivision is an expansion, and that for a graph with
maximum degree three, an expansion is a bisubdivision.

The next two lemmas are from [31, p. 154], and Lemma 23 follows easily from them.

Lemma 21 (F. 20a) If K is a well-fitted subgraph of a bipartite graph H, and H ′ is an
expansion of H, then K has an expansion K ′ which is well-fitted to H ′.

Lemma 22 (F. 20b) Let K, H, and G be bipartite graphs. If K is well-fitted to H, and
H is well-fitted to G, then K is well-fitted to G.

Lemma 23 (F. 20c) Let K, H, and G be bipartite graphs. If K has an expansion which
is well-fitted to H, and H has an expansion which is well-fitted to G, then K has an
expansion which is well-fitted to G.

Next we describe a method of generating braces. Four operations are needed (F. 21).
Let H be a brace with colour classes A and B. A bipartite graph obtained from H by
adding a new edge is called a type 1 augmentation of H . Suppose x and w are in A,
and H ′ is obtained from H by expanding x to x1vx2. If δ ≥ 3 for H ′ + wv, then we say it
is a type 2 augmentation of H . (We can also get a type 2 augmentation starting with
two vertices in B.)
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Figure 21: The four types of augmentations.

Suppose x ∈ A and y ∈ B, and H ′′ is a graph obtained from H by expanding x to x1vx2

and expanding y to y1uy2. If δ ≥ 3 for H ′′+uv, then we say it is a type 3 augmentation
of H when xy 6∈ E(H), and a type 4 augmentation of H when xy ∈ E(H).

If G is a type i augmentation of H for some i in {1, 2, 3, 4}, then we say G is an
augmentation of H , or an H augmentation. When using augmentations we will adopt
the notation of Figure 21. In particular, for a type 4 augmentation, we will assume
x1y1 is the unique edge with one end in {x1, x2} and one end in {y1, y2}.

Suppose G is a type 2, 3, or 4 augmentation H , and x is expanded to x1vx2 using
the partition {Z1, Z2} of N(x). An xi-edge is an edge xz of H such that xiz is an edge
of G for i = 1, 2. For a type 4 augmentation, this definition carefully excludes xy from
the set of x1-edges. Since {Z1, Z2} is a partition, no edge of H is both an x1-edge and an
x2-edge. By definition G has minimum degree 3; and so there are minimum numbers of
x1-edges and x2-edges. For type 2 and 3 augmentations, there are at least two xi-edges
for i = 1, 2. For a type 4 augmentation, x1y1 is an edge of G by assumption; and so there
is at least one x1-edge, and there are at least two x2-edges. There are similar definitions
and comments for y1-edges and y2-edges.

Ladders, Möbius ladders, and biwheels are defined in Figure 22. Let B be the
union of these three infinite sequences of bipartite graphs. Note that M6 = K3,3. Let
B2 be the set of bipartite graphs generated from the graphs in B using augmentations.
To make the definition of B2 precise (F. 5, p. 9), G is in B2 if and only if there exists a
sequence G0, G1, . . . , Gn of bipartite graphs such that G0 ∈ B, Gi+1 is a Gi augmentation
for i = 0, 1, . . . , n − 1, and G = Gn.

The next theorem is the principal result from [31, p. 127], and it is crucial for the
proof of the Main Theorem of this paper.

Theorem 24 B2 is the set of all braces.
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Define B8 to be L8, and B+
8 to be L8+xy, where x and y are nonadjacent vertices of L8

in different colour classes. For every even integer r ≥ 10, define B+
r to be Br + xy, where

x and y are the two vertices of Br with degree at least 4. Let B+ = B ∪
{
B+

8 , B+
10, . . .

}
.

For all integers r, s ≥ 8 such that r is even and s is divisible by 4, we say that Br, B+
r ,

Ls, and Ms−2 are the predecessors of Br+2, B+
r+2, Ls+4, and Ms+2, respectively.

The following result from [31, p. 162] will be needed once.

Lemma 25 (F. 20d) If G and H are braces, and some H expansion H ′ is a well-fitted
proper subgraph of G, then there exists a brace K such that some K expansion K ′ is
well-fitted to G and one of the following statements holds.

• K is an H augmentation.

• {H, K} ⊂ B+ and H is the predecessor of K.

L16L12L8

B14B12B10

M6 M10 M14

Ladders

Möbius Ladders

Biwheels

Figure 22: The base set B.
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6 Ear Paths

In this section we provide some technical lemmas needed in the proof of the Main Theorem.
We will generally use A and B to denote the colour classes of a bipartite graph. In

the figures the light vertices are in A and the dark vertices are in B. If P is a path with
an end x in A and an end y in B, then we will designate x as the origin and y as the
terminus of P .

Let M be a perfect matching of a bipartite graph H . If P = x1y1 · · ·xnyn is a path of
H such that {yixi+1 |1 ≤ i ≤ n − 1} ⊂ M , then we say P is an M-ear path. (Note that
n = 1 is possible, in which case no edge in M is on P .) Suppose K is a subgraph of H
which is well-fitted to M . We say P is an M-ear path of K if its ends are on K, but
none of its edges or intermediate vertices are on K. Suppose P1, . . . , Pr are paths of H ,
where r ≥ 1. We say P1, . . . , Pr are ear paths of K if there exists a perfect matching
M ′ of H such that K is well-fitted to M ′, and P1, . . . , Pr are all M ′-ear paths of K.
(It follows that K + P1 + · · ·+ Pr is well-fitted to M ′.)

Let G be a bipartite graph, and let P be a path of odd length with both ends on G,
but no edges or intermediate vertices on G. We say G + P is obtained from G by ear
path addition. The following result has a routine proof.

Lemma 26 Let K be a well-fitted subgraph of a brace H. Suppose K can be obtained
from an even cycle via a sequence of ear path additions. Then K is 1-extendible. Suppose
P , Q, and R are internally disjoint odd length 2-paths of K. K − P is well-fitted to H.
If P and Q have a unique common end, then K − (P + Q) is well-fitted to H. If P and
Q are disjoint and P + Q + R is a path, then K − (P + R) is well-fitted to H.

Let K be a well-fitted subgraph of a bipartite graph H . Suppose we have constructed
ear paths P and Q of K such that the ends of P are distinct from the ends of Q. We
would like P ∩ Q to be an “uncomplicated” graph. If P ∩ Q is “complicated”, then the
next lemma allows us to replace P and Q by ear paths P ′ and Q′ of K such that P ′ ∩Q′

is a path or the empty graph, P ′ has the same first and last edges as P , and Q′ has the
same first and last edges as Q. The lemma is proven in [31, p. 151].

Lemma 27 Let H be a bipartite graph with colour classes A and B, let x and u be distinct
vertices in A, and let y and v be distinct vertices in B. Suppose H has a perfect matching
M , an M-ear (x, y)-path P , and an M-ear (u, v)-path Q. Then H has a perfect matching
M ′, an M ′-ear (x, y)-path P ′, and an M ′-ear (u, v)-path Q′ such that

a) P ′ + Q′ is a subgraph of P + Q,

b) M − E (P + Q) = M ′ − E (P + Q), and

c) either P ′ ∩ Q′ is a path which is well-fitted to M ′, or P ′ and Q′ are disjoint.

Suppose H1 and H2 are disjoint subgraphs of H which are both well-fitted to a perfect
matching M of H . An M-ear path from H1 to H2 is an M-ear path of H1 + H2 with
origin on H1 and terminus on H2.
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Corollary 28 Suppose H is a k-extendible bipartite graph with a perfect matching M .
If H1 and H2 are disjoint subgraphs of H which are both well-fitted to M , then there exist
k internally disjoint M-ear paths from H1 to H2. If in addition ν (H1) ≥ 2k [respectively,
ν (H2) ≥ 2k], then the k paths can be chosen to have distinct origins [respectively, termini ].

Proof. Let D be the digraph corresponding to H , where M corresponds V (D). Since
H1 and H2 are well-fitted to M , they correspond to subdigraphs D1 and D2, respectively,
of D. Since H is k-extendible, D is strongly k-connected by Theorem 3. Then there are
k internally disjoint dipaths P1, . . . , Pk from V (D1) to V (D2) by Theorem 1. P1, . . . , Pk

correspond to paths of H which are well-fitted to M . Removing both ends of each of
these paths gives k internally disjoint M-ear paths Q1, . . . , Qk from H1 to H2.

Suppose ν (H1) ≥ 2k. Then V (D1) ≥ k; and so P1, . . . , Pk can be chosen to have
distinct origins by Theorem 1. Then Q1, . . . , Qk also have distinct origins. Similarly, if
ν (H2) ≥ 2k, then Q1, . . . , Qk can be chosen to have distinct termini.

Lemma 29 (F. 23, p. 43) Suppose M is a perfect matching of a brace H with colour class
A and B, and K is a subgraph of H with at least four vertices which is well-fitted to M .
If x ∈ A ∩ V (K), y ∈ B ∩ V (K), and xz is an edge incident with K, then there exists
an M-ear path of K which uses xz but not y.

Proof. Let wz and uy in M be incident with z and y. Since ν (K) ≥ 4, K − {u, y} is
nonempty. Also, H − {u, y} is 1-extendible by Corollary 17. Then H − {u, y} has an
M-ear path P from wz to K − {u, y} by Corollary 28. The required path is xzw + P .

Lemma 30 Let H be a brace with a perfect matching M , and colour classes A and B.
Suppose H1 and H2 are disjoint subgraphs of H which are well-fitted to M , and P is an
M-ear path from H1 to H2 with origin s and last edge wt, where s ∈ A and t ∈ B. Then
the following statements hold.

a) (F. 23) If H1 has at least four vertices, then there exist internally disjoint M-ear
paths Q and R from H1 to H2 such that s is the origin of Q or R, the origins of Q
and R are distinct, and wt is the last edge of Q or R.

b) If H2 has at least four vertices, then there exist internally disjoint M-ear paths Q
and R from H1 to H2 such that s is the origin of Q or R, the termini of Q and R
are distinct, and t is the terminus of Q or R.

Proof. We will only prove (a). The proof of (b) is similar. By Corollary 28 there exist
internally disjoint M-ear paths Q′ and R′ from H1 to H2 having distinct origins.

Suppose s is not the origin of Q′ or R′. If P and Q′ + R′ are disjoint, then P and Q′

are the required paths. Otherwise, let v be the first vertex of P on Q′ + R′. Note that
v ∈ B. We may assume v is on Q′. Let y be the terminus of Q′. Then P [s, v] + Q′ [v, y]
and R′ are internally disjoint M-ear paths from H1 to H2 such that s is the origin of one
of them and their origins are distinct. Thus, we may assume s is the origin of Q′ or R′.

Suppose wt is not the last edge of Q′ or R′. Let x be the last vertex of P − t on
Q′ +R′. (Such a vertex in A exists since s is on Q′ +R′.) We may assume x is on Q′. Let
s′ be the origin of Q′. Then Q′ [s′, x] + P [x, t] and R′ are the required paths.
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Figure 23: Ear path lemmas.

Let x and y be vertices of a graph H . If P1, . . . , Pn are internally disjoint (x, y)-paths,
then we say P1 + · · · + Pn is an (x, y)n-fan. Two (x, y)n-fans P1, . . . , Pn and P ′

1, . . . , P
′
n

are similar if Pi and P ′
i use the same edges incident with x and y for i = 1, . . . , n.

Lemma 31 (F. 23) Let H be a brace with colour classes A and B. Suppose x ∈ A,
y ∈ B, and x and y are nonadjacent. Suppose n ≥ 2 and P1, . . . , Pn are internally
disjoint (x, y)-paths such that P1 + · · ·+ Pn is well-fitted to H. Let wiy be the last edge of
Pi for i = 1, . . . , n. Then there exist ear paths Q1, . . . , Qn of P1 + · · · + Pn, [or a similar
well-fitted (x, y)n-fan] such that wi is the origin of Qi and the terminus of Qi is not on
Pi for i = 1, . . . , n. (Note that Q1, . . . , Qn may not be disjoint.)

Proof. Suppose 1 ≤ k ≤ n and there exist ear paths Q1, . . . , Qk−1 of P1 + · · · + Pn

satisfying the theorem. (If k = 1, then {Q1, . . . , Qk−1} = ∅.) We will prove there exist ear
paths Q′

1, . . . , Q
′
k−1, Qk of P1 + · · · + Pn [or a similar (x, y)n-fan] satisfying the theorem.

The result will then follow by induction on k.
Let M be a perfect matching of H such that P1 + · · · + Pn is well-fitted to M and

Q1, . . . , Qk−1 are M-ear paths. Let xzk be the first edge of Pk. Lemma 26 can be used
to show P1 + · · · + Pn is 1-extendible; and so we may assume that its perfect matching
M ∩E (P1 + · · · + Pn) contains xzk. It then contains wky as well. In the rest of the proof,
all well-fitted subgraphs will be well-fitted to M , and all ear paths will be M-ear paths.

Consider the well-fitted disjoint subgraphs H2 = ([P1 + · · · + Pn] − Pk [zk, y]) − y and
wky, and the ear path Pk [wk, zk] from wky to H2. By Lemma 30b, there exist internally
disjoint ear paths P and Qk from wky to H2 such that P and Qk have distinct termini
and zk is the terminus of P .
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Let P ′
k = xzk + P + wky and F = P1 + · · · + Pk−1 + P ′

k + Pk+1 + · · · + Pn. Then F is
well-fitted to H and similar to P1 + · · · + Pn. Furthermore, Qk is an ear path of F with
origin wk such that its terminus is not on P ′

k.
But now the ear paths Q1, . . . , Qk−1 of P1 + · · ·+Pn may not be ear paths of F ; and so

they may need modification. Let z be the terminus of Qi, where 1 ≤ i ≤ k− 1. If z is not
on Pk, then let z′ be the first vertex of Qi after wi which is on F , and let Q′

i = Qi [wi, z
′].

If z is on Pk, then let z′ be the first vertex of Qi + Pk [z, zk] after wi which is on F , and
let Q′

i = (Qi + Pk [z, zk]) [wi, z
′]. In either case Q′

i is an ear path of F such that wi is the
origin of Q′

i and the terminus of Q′
i is not on Pi.

In a future application of Lemma 31 to a given (x, y)n-fan P1 + · · · + Pn, we will be
able to replace P1 + · · ·+ Pn by any similar (x, y)n-fan. Hence, we will be able to assume
Q1, . . . , Qn are ear paths of P1 + · · ·+ Pn.

Lemma 32 (F. 24) Let K be a well-fitted subgraph of a brace H with colour classes A and
B. Suppose K can be obtained from an even cycle via a sequence of ear path additions.
Let P be a 2-path of K with first edge xz and last edge wy, where x ∈ A and y ∈ B. Then
K − P is well-fitted to H, ν (K − P ) ≥ 4, and the following statements hold.

a) If xz′ is an edge which is not on K, then there exist internally disjoint ear paths P ′

and Q of K − P such that xz and xz′ are on P ′ + Q and wy is the last edge of P ′.

b) If xz 6= wy, then there exists an ear path P ′ of K − P which uses xz and wy, and
an ear path Q of [K − P ] + P ′ with origin w and terminus in V (K) − V (P ′).

Proof. Lemma 26 can be used show K − P is well-fitted to H . Since P is a 2-path,
d (x) ≥ 3. Then ν (K − P ) ≥ 4.

We first prove (a). If z′ is on K−P , then we let P ′ = P and Q = xz′. If P = xz = wy,
then (a) follows from Lemma 29. Therefore, we may assume z and z′ are not on K − P .
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Choose a perfect matching M of H such that K − P is well-fitted to M , and P is an
M-ear path. Let uz and u′z′ be the edges in M incident with z and z′. We now apply
Lemma 30a to the subgraphs H1 = uz +u′z′ and H2 = K −P which are well-fitted to M ,
and to the M-ear path P [u, y]. We then get disjoint M-ear paths Q′ and R from uz+u′z′

to K −P such that R has origin u, Q′ has origin u′, and wy is on R or Q′. Then xzu + R
and xz′u′ + Q′ are the required ear paths of K − P .

The proof of (b) is similar, except we start with a perfect matching M of H such that
both K and P are well-fitted to M , and we use Lemma 30b.

In all future applications of Lemma 32a, it will not matter which of the edges xz and
xz′ is the first edge of P ′ and which is the first edge of Q, and we will be able to replace
K by [K − P ] + P ′. Hence, we will be able to assume P = P ′. Under this assumption,
Q will then be an ear path of K whose first edge is xz′ and whose terminus is not an
intermediate vertex of P . Similarly, in a future application of Lemma 32b, we will be able
to assume P = P ′ and Q is an ear path of K with origin w and terminus in V (K)−V (P ).

Lemma 33 (F. 24) Let H be a brace with colour classes A and B. Suppose H has a
well-fitted subgraph K which is 1-extendible. Suppose {s, t} is a 2-vertex cut of K such
that K −{s, t} has only two components Ka and Kb. If Ka has a vertex in A and Kb has
a vertex in B, then there exists an ear path of K with origin on Ka and terminus on Kb.

Proof. We will only prove the lemma when {s, t} ⊂ A. The other cases are similar.
Choose an edge sv of K such that v is on Ka. Since K is 1-extendible, there exists a
perfect matching M ′ of K containing sv. Let ty be the edge in M ′ incident with t.

Suppose y is on Ka. Then M ′ ∩ E (Kb) is a perfect matching of Kb. Hence, V (Kb)
contains an equal number of vertices in A and B. It follows that no perfect matching of
K can include an edge with one end in Kb and the other end in {s, t}. But now we have
contradicted the assumption that K is 1-extendible. Therefore, y is in Kb.

Since K is a well-fitted subgraph, M ′ is contained in some perfect matching M of H .
Then Ka − v and Kb + ty are well-fitted to the perfect matching M −{sv} of H −{s, v},
and V (Ka − v) is nonempty because Ka has a vertex in A. Furthermore, H − {s, v} is
1-extendible by Corollary 17. Now Corollary 28 implies H−{s, v} has an (M − {sv})-ear
path P from Ka − v to Kb + ty. Since t is in A, it is not the terminus of P . Hence, P is
the required ear path of K.

Lemma 34 (F. 24) Let H be a brace with colour classes A and B, and a perfect matching
M . Suppose K is a subgraph of H such that K is well-fitted to M , and H − V (K) is
1-extendible. If xz and wy are edges incident with K such that x ∈ A ∩ V (K) and
y ∈ B ∩ V (K), then there exists an M-ear path of K using xz and wy.

Proof. Let uz and wv be the edges in M incident with z and w. If uz = wv, then xzwy
is the required path. Suppose uz 6= wv. Since H − V (K) is 1-extendible, H − V (K) has
an M-ear path P from uz to wv by Corollary 28. Then xzu + P + vwy is the required
path.
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7 Plane Graphs

In this section we state some classical results and prove some technical lemmas about
plane graphs. They are needed in the proof of the Main Theorem. We assume the reader
knows the basics of plane graph theory. (See Tutte [48] or Bondy and Murty [3].)

A planar graph is a graph with a planar embedding, and a plane graph is a graph
embedded in the plane. A subgraph of a plane graph is called a plane subgraph.

Theorem 35 Every face boundary of a 2-connected plane graph is a cycle.

Let r1, r2, s1, and s2 be distinct vertices on a cycle C. If we have the cyclic order
r1, s1, r2, s2 on C, then we say r1 and r2 separate s1 and s2 on C.

Let K be a 2-connected plane subgraph of a plane graph H . Suppose P is a path of H
having both ends on K, but no edges or intermediate vertices on K. Then P is contained
in the closure of some face of K. By Theorem 35 the boundary of the face is a cycle C.
We say P is across C. If the ends of P separate vertices s1 and s2 on C, then we say P
separates s1 and s2 on C.

Theorem 36 Let H be a 2-connected plane graph. For every vertex v of H, there exists
a cyclic permutation ρv of the edges incident with v such the following properties hold.

a) Distinct edges e and f incident with a vertex v are on a common facial cycle if and
only if ρv (e) = f or ρv (f) = e.

b) If v1v2 · · · vnv1 is a facial cycle and ρv1 (vnv1) = v1v2, then ρv2 (v1v2) = v2v3,
ρv3 (v2v3) = v3v4, . . . , and ρvn (vn−1vn) = vnv1.

If ρ = (e1, e2, . . . , en) and 1 ≤ i1 < i2 < · · · < ik ≤ n, then ρ′ = (ei1 , ei2 , . . . , eik) is
called a subpermutation of ρ. In the preceding theorem, {ρv |v ∈ V (H)} is called a
planar map for H .

Theorem 37 Let H be a 2-connected plane graph, and let K be a 2-connected plane
subgraph of H. If {ρv |v ∈ V (H)} is a planar map for H, then K has a planar map
{ρ′

v |v ∈ V (K)} such that ρ′
v is a subpermutation of ρv for every v in V (K).

A set C of cycles of a 2-connected graph H is called a planar mesh if it has the
following properties.

1) Every edge of H is on exactly two cycles in C.

2) ν (G) − ε (G) + |C| = 2.

3) For every vertex v of H , there is a cyclic permutation ρv of the edges incident with
v such that for every edge e incident with v, some cycle in C uses both e and ρv (e).

Theorem 38 Suppose C is a set of cycles of a 2-connected graph H. Then C is the set
of facial cycles for some planar embedding of H if and only if C is a planar mesh for H.
A 2-connected graph is planar if and only if it has a planar mesh.
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Let Zn
2 be the vector space of n-tuples over {0, 1}. Let G be a graph with edge set

{e1, . . . , en}. For every cycle C of G, let a (C) = (a1, . . . , an), where

aj =

{
0 if ej is not on C, and
1 if ej is on C,

for j = 1, . . . , n. The subspace of Zn
2 generated by {a (C) |C is a cycle of G} is called the

cycle space of G.

Theorem 39 If G is a 2-connected plane graph and {C1, . . . , Cm} is its set of interior
facial cycles, then {a (C1) , . . . , a (Cm)} is a basis for the cycle space of G.

Theorem 40 If C is a facial cycle of a 3-connected plane graph H, then H − V (C) is
connected. If H is also bipartite, then H − V (C) has at least 4 vertices.

Theorem 41 Suppose R and S are disjoint paths and C is a facial cycle of a 2-connected
plane graph K. Let r1 and r2 be the ends of R, and s1 and s2 be the ends of S. If r1, r2,
s1, and s2 are on C, then r1 and r2 do not separate s1 and s2 on C. (Note that R and S
may also have intermediate vertices on C.)

Lemma 42 A facial cycle of a 1-extendible, bipartite, plane graph K is well-fitted to K.

Proof. Let C = x1y1x2y2 · · ·xnynx1 be a facial cycle of K. We will prove by induction
that for every j in {1, . . . , n}, there is a perfect matching of K containing x1y1, . . . , xjyj.
C is then well-fitted to K because it is well-fitted to the perfect matching for j = n.

Since K is 1-extendible, there is a perfect matching containing x1y1.
Suppose 2 ≤ j ≤ n, and x1y1, . . . , xj−1yj−1 are contained in a perfect matching M .

Let xjz and wyj be the edges in M incident with xj and yj . If xjz = wyj, then M is a
perfect matching containing x1y1, . . . , xj−1yj−1, xjyj. Hence, we may assume xjz 6= wyj.
By Corollary 28 there exists an M-ear path P with origin w and terminus z.

Suppose x1y1 · · ·xj−1yj−1 and P are not disjoint. Since x1y1 · · ·xj−1yj−1 is well-fitted
to M , and P is an M-ear path, w is in a different colour class than the first vertex of
P on x1y1 · · ·xj−1yj−1; and so this first vertex is some yi in {y1, . . . , yj−1}. Then P uses
the edge xiyi in M . Let R = yjw + P [w, yi] and S = P [xi, z] + zxj . Then R and S
are disjoint paths having their ends on C such that the ends yj and yi of R separate the
ends xj and xi of S on C. But now Theorem 41 is contradicted. Hence, x1y1 · · ·xj−1yj−1

and P are disjoint. Then shifting M on the alternating cycle P + zxjyjw gives a perfect
matching containing x1y1, . . . , xj−1yj−1, xjyj.

Corollary 43 If C is a facial cycle of a plane brace H, then H − V (C) is 1-extendible.

Proof. H is 3-connected by Corollary 18. Then H − V (C) is connected and has at least
four vertices by Theorem 40. Trivially, H − V (C) has an edge.

Suppose xy is an edge of H − V (C). By Corollary 17, the plane subgraph H −{x, y}
is 1-extendible. Furthermore, C is a facial cycle of H − {x, y}. Hence, C is well-fitted
to some perfect matching M of H − {x, y} by Lemma 42. Then [M − E (C)] ∪ {xy} is a
perfect matching of H − V (C) containing xy.
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Lemma 44 (F. 25) Let H be a plane brace with colour classes A and B, and let K be
a well-fitted, 2-connected plane subgraph of H. Suppose x and t are vertices on a facial
cycle C of K such that x ∈ A. If there is a path across C separating x and t, then K has
an ear path across C separating x and t.

Proof. We will only proof this lemma for the case when t ∈ B. The proof is similar when
t ∈ A.

Let F be the face of K bounded by C. We prove the lemma by induction on the
number of faces of H contained in F . Let P and Q be the two (x, t)-paths of C.

Let uv be the first edge of a path across C separating x and t. We may assume u is an
intermediate vertex of P . Since x ∈ A and t ∈ B, we may assume u ∈ A. By Lemma 29
there is an ear path R of K which uses uv but not t. Then R is a path across C because
K is a plane subgraph of H and uv is in the closure of F . Let z be the terminus of R.
Note that z 6= x because z ∈ B and x ∈ A. Furthermore, z 6= t because R does not use t.
Hence, z is an intermediate vertex of P or Q. If z is on Q, we are done.

Suppose z is an intermediate vertex of P . Then the plane subgraph K + R has a face
F ′ contained in F such that x and t are incident with F ′. By the induction hypothesis
K +R has an ear path R′ across F ′ separating x and t. If R′ has an end on R, then we can
get an ear path across C separating x and t by taking the sum of R′ and an appropriate
subpath of R. Otherwise, R′ is the required path.

Lemma 45 (F. 26a) Let H be a plane brace with colour classes A and B. Suppose x and
t are nonadjacent vertices on a facial cycle C of H, where x ∈ A. Let P and Q be the two
internally disjoint (x, t)-paths of C. Then C is well-fitted to H. Furthermore, if xzr and
xzs are edges incident with C, then there exist two internally disjoint ear paths of C such
that xzr and xzs are the first edges of the ear paths, some intermediate vertex of P is the
terminus of one of the ear paths, and some intermediate vertex of Q is the terminus of
the other ear path.
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Proof. C is well-fitted to some perfect matching M of H by Lemma 42. Let wrzr and wszs

be the edges in M incident with zr and zs. Since C has at least 4 vertices, Corollary 28
implies that there exist disjoint M-ear paths R′ and S ′ from wrzr + wszs to C, where wr

is the origin of R′ and ws is the origin of S ′. Let R = xzrwr + R′ and S = xzsws + S ′.
Then R and S are internally disjoint ear paths of C having first edges xzr and xzs.

Let yr and ys be the termini of R and S, respectively. If {yr, ys} consists of an
intermediate vertex of P and an intermediate vertex of Q, then we are done. If not, then
we may assume both yr and ys are on P , and we have the order x, yr, ys, t on P . Since
x and t are nonadjacent and x ∈ A, there exists an intermediate vertex y of Q in B.
Corollary 18 implies there is an edge wy which is not on C. Let wv be the edge in M
incident with w.

Suppose wv is not on R or S. Since C is a facial cycle, H − V (C) is 1-extendible by
Corollary 43. Then Corollary 28 implies H − V (C) has an M-ear path S ′

1 with origin u
on (R + S) − {x, yr, ys} and terminus v. Let S1 = S ′

1 + vwy. On the other hand, if wv is
on R or S, we let S1 = wy and u = w.

If u is on R, then the ends y and yr of S1 + R [u, yr] separate the ends x and ys

of S on the facial cycle C. But this contradicts Theorem 41. Therefore, u is on S.
Then S [x, u] + S1 is an M-ear path whose first edge is xzs and whose terminus y is an
intermediate vertex of Q. Since we have the order x, yr, ys, t on P , the terminus yr of R
is an intermediate vertex of P . Thus, R and S [x, u] + S1 are the required ear paths.

The proof of the following lemma is similar to that of Lemma 45.

Lemma 46 (F. 26b) Let H be a plane brace with colour classes A and B. Suppose x and
y are nonadjacent vertices on a facial cycle C of H such that x ∈ A and y ∈ B. If xzr,
xzs, and wy are edges incident with C, then there exist two internally disjoint ear paths
R and S of C such that xzr and xzs are on R + S, the terminus of S is not y, and wy is
the last edge of R.
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8 Well-Fitted Subgraphs

In this section we provide more technical lemmas needed in the proof of the Main Theorem.
First we explain some figure conventions used in the rest of the paper. Figure 30

(p. 57) illustrates these conventions. All remaining figures represent bipartite graphs with
colour classes A and B, where the light vertices are in A and the dark vertices are in B.
If a path has an end in A and an end in B, then we use the convention that the origin
is the end in A. A line joining two vertices represents an edge, while a line with three
gaps joining two vertices represents a path. (If the two ends of such a path are in the
same colour class, then the path may have length 0.) We use the notation of Figure 21
(p. 39) for augmentations. In this context, an edge labelled 1 which is incident with a
vertex labelled x represents an x1-edge. If x is an end of a path and there is an x1-edge on
the path, then we label the path with a 1 near x. Similar conventions hold for x2-edges,
y1-edges, and y2-edges. We remind the reader that the graph of Figure Ni is referred to
as HNi.

Lemma 47 Let H be a brace with colour classes A and B, and let L8 be the ladder with
8 vertices (F. 22, p. 40). Suppose H has a 4-cycle C = abcda such that a ∈ A and
H − V (C) is connected. Suppose az and wb are edges incident with C. Then H has a
well-fitted L8 bisubdivision with C +az +wb as a subgraph (F. 27a), or H has a well-fitted
K3,3 bisubdivision with C as a subgraph.

Proof. We first show that H has a well-fitted K3,3 bisubdivision with C as a subgraph,
or H − V (C) is 1-extendible.

Suppose uv is an arbitrary edge of H−V (C), where u ∈ A. In this paragraph we show
that uv is in a perfect matching of H − V (C), or H has a well-fitted K3,3 bisubdivision
with C as a subgraph. Since H is a brace, ab and cd are in some perfect matching M
of H . Since M − {ab, cd} is a perfect matching of H − V (C), we may assume uv /∈ M .
Then there are distinct edges xv and uy in M , for some x and y in V (H)−{a, b, c, d, u, v}
(F. 27b). By Corollary 28 there exist internally disjoint M-ear paths P and Q such that
P is an (x, b)-path and Q is an (x, d)-path, and there exist internally disjoint M-ear paths
R and S such that R is an (a, y)-path and S is an (c, y)-path. If P + Q and R + S are
disjoint, then C +P +Q+R+S +xvuy is a K3,3 bisubdivision which is well-fitted to M .
Hence, we may assume P intersects S. Let y′ be the first vertex of P on S. Note that
y′ ∈ B. Then C1 = P [x, y′] + S [y′, y] + xvuy is an M-alternating cycle which is disjoint
from C. Let M1 be the perfect matching obtained by shifting M on C1. Then uv is in
the perfect matching M1 − {ab, cd} of H − V (C).

By assumption, H − V (C) is connected. Since H is a brace, H is 3-connected by
Corollary 18. Hence, H − V (C) has an edge. Also, either H − V (C) has at least four
vertices, or H is a K3,3.

By the previous two paragraphs we can conclude that H −V (C) is 1-extendible, or H
has a well-fitted K3,3 bisubdivision with C as a subgraph. Since we are done if we have
the second possibility, we may assume H − V (C) is 1-extendible.
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Figure 27: Lemma 47.

Corollary 18 implies there exist edges ct and sd incident with C. Let M be a perfect
matching of H such that C is well-fitted to M . Since H−V (C) is 1-extendible, Lemma 34
implies that C has an M-ear path P using az and wb, and an M-ear path S using ct and
sd. By Lemma 27 we may assume that either P and S are disjoint, or P ∩ S is a path
which is well-fitted to M . If P ∩S is a path which is well-fitted to M , then C +P +S is a
well-fitted K3,3 bisubdivision with C as a subgraph. Therefore, we may assume P and S
are disjoint. We now apply Lemma 32b to C + P + S and its 2-path P . By the comment
after Lemma 32 we may assume C + P + S has an ear path Q with origin w such that its
terminus is on S. We may also assume Q is an M-ear path.

Since P + ab and S + cd are disjoint subgraphs which are well-fitted to M and which
each have at least 4 vertices, there exist two disjoint M-ear paths from S + cd to P + ab
by Corollary 28. Let R be one of these paths which does not have b as its terminus.
By Lemma 27 we may assume that either R ∩ Q is empty, or R ∩ Q is a path which is
well-fitted to M . Let u be the origin of R and let v be the terminus of Q.
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Two possibilities for R ∩ Q and two possibilities for the cyclic order of {c, d, u, v} on
S + cd give us the four possible well-fitted subgraphs H27c, H27d, H27e, and H27f . If H
has a well-fitted H27d or H27e, then Lemma 26 can be used to show H has a well-fitted
K3,3 bisubdivision with C has a subgraph. Similarly, if H has a well-fitted H27c or H27f ,
then H has a well-fitted L8 bisubdivision with C + az + wb as a subgraph.

Lemma 48 Suppose G, G1, . . . , Gn are braces, where n ≥ 3. If G is a 4-cycle sum of
G1, . . . , Gn at the 4-cycle C = abcda, then G has a well-fitted Gn expansion.

c

b

d

a a

d
(b)

b

c
(d)

a

d
(a)

b

c
(c)

a b

d c

G1 G2

M1

M2

Figure 28: Lemma 48.

Proof. (This lemma is trivial if E (C) ⊂ E (G); but we can not make that assumption.)
Lemma 47 implies that G1 and G2 each have a well-fitted L8 or K3,3 bisubdivision with
C as a subgraph. As shown in Figures 28a and 28b, we can apply Lemma 26 to an L8

or K3,3 bisubdivision to show G1 has a well-fitted H28c. It is routine to show that we
can choose a perfect matching M1 for G1 such that H28c is well-fitted to M1, and ab is
the only edge in M1 on C. Similarly, G2 has an H28d and a perfect matching M2 such
that H28d is well-fitted to M2, and cd is the only edge in M2 on C. For 3 ≤ i ≤ n,
there is a perfect matching Mi of Gi containing ab and cd because Gi is a brace. Then
(H28c + H28d + Gn)−E (C) is a Gn expansion which is well-fitted to the perfect matching
(∪n

i=1Mi) − {ab, cd} of G.

Lemma 49 Let H be a brace with colour classes A and B. Let x and y be nonadjacent
vertices such that x ∈ A and y ∈ B. Suppose the edges incident with x (respectively, y) are
partitioned into x1-edges and x2-edges (respectively, y1-edges and y2-edges). Furthermore,
suppose there are at least two xi-edges and at least two yi-edges for i = 1, 2. If H has a
well-fitted (x, y)4-fan K, then it can be chosen so that it uses two x1-edges, two x2-edges,
two y1-edges, and two y2-edges.

Proof. Let nx be the absolute value of the difference between the number of x1-edges and
the number of x2-edges on K. Define ny similarly. If nx + ny = 0, then we are done. If
nx + ny ≥ 1 we may assume K uses at most one x1-edge. We will prove the lemma by
showing K can be replaced by an (x, y)4-fan K ′ for which nx + ny is smaller.
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Suppose K does not use an x1-edge. Choose an x1-edge e. K has an ear path R using
e whose terminus v is not y by Lemma 29. Let S be the (x, y)-path of K using v, and let
K ′ be the (x, y)4-fan (K + R) − S [x, v]. We can use Lemma 26 to show K ′ is well-fitted
to H . Since v 6= y, K and K ′ use the same edges incident with y. Hence, ny is the same
for K and K ′. Since K ′ uses one x1-edge and three x2-edges, nx + ny is smaller for K ′

than for K.
Suppose K uses a unique x1-edge f . Let P be the (x, y)-path of K which uses f , and

let g be an x1-edge which is not on K. Lemma 26 can be used to show K is 1-extendible.
Hence, we can apply Lemma 32a to K, its 2-path P , and g. By the comment after
Lemma 32 we may assume K has an ear path Q whose first edge is g and whose terminus,
z, is not an intermediate vertex of P .

If z = y, then K +Q is an (x, y)5-fan which uses two x1-edges and three x2-edges. We
may assume K + Q uses more y2-edges than y1-edges. Hence, there exists an (x, y)-path
P2 of K which uses an x2-edge and a y2-edge. Let K ′ = (K + Q) − P2. Then K ′ is an
(x, y)4-fan which uses two x1-edges and two x2-edges. Furthermore, ny for K ′ is the same
or one less than ny for K. Since K ′ is well-fitted to H by Lemma 26, we are done.

If z 6= y, then z is an intermediate vertex of some (x, y)-path P1 of K other than P .
Then (K + Q) − P1 [x, z] is an (x, y)4-fan which uses two x1-edges and two x2-edges, has
the same value of ny as K, and is well-fitted to H .

Lemma 50 Let H be a brace with colour classes A and B. If x and y are nonadjacent
vertices such that x ∈ A and y ∈ B, then H has a well-fitted (x, y)3-fan K. If the edges
of H incident with x are partitioned into x1-edges and x2-edges, and the edges incident
with y are partitioned into y1-edges and y2-edges, then K can be chosen so that it uses
an x1-edge, an x2-edge, a y1-edge, and a y2-edge (F. 35a, p. 66). Furthermore, if K uses
a unique xj-edge e and a unique yk-edge f , then we may assume e and f are not on the
same (x, y)-path of K.

Proof. Let M be a perfect matching of H . There exist vertices w and z such that xz
and wy are in M . By Corollary 28 there exists an M-ear (w, z)-path P , and there exist
internally disjoint M-ear (x, y)-paths Q and R. Let K = xz + wy + P + Q + R. Assume
M , P , Q, and R are chosen so that E (K) is minimal. If P and Q + R are disjoint, then
K is an (x, y)3-fan which is well-fitted to M .

Suppose P and Q + R are not disjoint. Let v be the first vertex of P on Q + R. We
may assume v is on Q. Let u be the last vertex of P on Q [v, y]. Since P and Q are
M-ear paths, it is easy to show v ∈ B and u ∈ A. Furthermore, P [w, v] + Q [v, y] + wy
is an M-alternating cycle. Let M ′ be the perfect matching obtained by shifting M on
this cycle. Let w′ be the second to last vertex on Q, let P ′ = Q [w′, u] + P [u, z], let
Q′ = Q [x, v] + P [v, w] + wy, and let K ′ = xz + w′y + P ′ + Q′ + R. Observe that xz
and w′y are in M ′, P ′ is an M ′-ear (w′, z)-path, Q′ and R are internally disjoint M ′-ear
(x, y)-paths, and K ′ is a subgraph of K − Q [v, u]. But now we have contradicted the
minimality of E (K).

The rest of the proof is similar to the proof of Lemma 49, except for a tricky case
where Corollaries 17 and 28 are applied to an (x, y)4-fan.
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The proof of the following lemma is similar to that of Lemma 50.

Lemma 51 If xy, xv, and xz are edges of a brace H, then H has a well-fitted (x, y)3-fan
K which uses xy, xv, and xz. If the edges incident with y other than xy are partitioned
into y1-edges and y2-edges, then K can be chosen so that it uses a y1-edge and a y2-edge.

Lemma 52 Let x and w be vertices in the same colour class of a brace H. Suppose the
edges incident with x are partitioned into x1-edges and x2-edges, and suppose there are at
least two xi-edges for i = 1, 2. Then H has a well-fitted H32a (p. 62), H32b, H32d, or H32e

(where the roles of x1-edges and x2-edges may be interchanged for H32d and H32e).

Proof. Choose a vertex y adjacent to w. Then H has a well-fitted (x, y)3-fan K by
Lemma 50 or 51. Suppose wy is not on K. By Lemma 29 we know K has an ear path
S using wy. Let w′ be the origin of S, and P ′ be the (x, y)-path of K using w′. Then
(K − P ′ [w′, y]) + S is an (x, y)3-fan which uses wy, and Lemma 26 can be used to show
it is well-fitted to H . Therefore, we may assume wy is on K.

Let P be the (x, y)-path of K using wy, and let wz be the second to last edge of P .
We can use Lemma 26 to show K is 1-extendible. Thus, we can choose a perfect matching
M for H such that K is well-fitted to M and wz ∈ M . Then K − P is well-fitted to M .
By Lemma 30a there are internally disjoint M-ear paths Q and R from K −P to wz such
that x is the origin of Q or R. Let K ′ = (K − P [x, z]) + Q + R. Then K ′ is well-fitted
to M . Observe that K ′ is an H32a, H32b, H32d, or H32e provided that K ′ uses the correct
number of x1-edges and x2-edges. If not, then the completion of the proof is similar to
the proof of Lemma 49. (Note that if K ′ is an H32d or H32e using only x1-edges or only
x2-edges, then applying the methods in the proof of Lemma 49 to K ′ might result in an
H32a or H32b.)

Lemma 53 Let G be an augmentation of a brace H. Suppose x is in {a, b, . . . , `}, and
let nx be the number beside the arrow from Figure 29x to Figure 29x′ (pages 55 and 56).
If H has a well-fitted H29x bisubdivision, and G is a type nx augmentation of H, then G
has a well-fitted K3,3 bisubdivision.

Proof. Note that we use the augmentation notation of Figure 21 (p. 39). Let x be in
{a, b, . . . , `}. Suppose H has a well-fitted H29x bisubdivision K, and G is a type nx

augmentation of H . Then G has an H29x′ bisubdivision K ′. It is easy to verify that K ′

(or a subgraph of K ′ if x ∈ {f, j, k}) is a K3,3 bisubdivision.
Choose a perfect matching M of H such that K is well-fitted to M . The perfect

matching M ∩ E (K) of K can be slightly modified to give a perfect matching M ′ of K ′.
Then K ′ is well-fitted to the perfect matching M ′ ∪ [M − E (K)] of G. It follows that K ′

(or a subgraph of K ′ if x ∈ {f, j, k}) is a K3,3 bisubdivision which is well-fitted to G.

Lemma 53 will be used throughout the proof of Theorem 56 in the next section.
In each instance, we will only refer to the relevant part of Figure 29.
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Lemma 54 Let C = abcda be a 4-cycle of a brace H, and let x be a vertex of H which is
not on C. Suppose the edges incident with x are partitioned into x1-edges and x2-edges,
and there are at least two x1-edges and at least two x2-edges. Then H has a well-fitted
H30a (where the roles of x1-edges and x2-edges may be interchanged). Furthermore, if H
does not have a well-fitted K3,3 bisubdivision, then H30a has an ear path whose origin is
in {a, c} and whose terminus is not the leaf, z1, of H30a (F. 40a, p. 73).

Proof. We will prove H has a well-fitted H30a for the case in which x is not adjacent to
b or d. When xb or xd is an edge the proof is similar and easier.

Since H is a brace, ab and cd are in some perfect matching M of H . Let xz1 be
the edge in M incident with x. We may assume xz1 is an x1-edge. Let xv and xz be
x2-edges incident with x, and let uv and wz be the edges in M incident with v and z.
By Corollary 28 there exist disjoint M-ear paths P and Q from uv + wz to ab + cd.
We may assume P is a (u, b)-path and Q is a (w, d)-path. If xz1 is not on P or Q, then
C + P + Q + uvxzw + xz1 is an H30a which is well-fitted to M . Hence, we may assume
xz1 is on P (F. 30b). Let xv1 be the other edge on P which is incident with x. If xv1 is
an x2-edge, then C + P [z1, b] + xzw + Q is an H30a which is well-fitted to M . Hence, we
may assume xv1 is an x1-edge (F. 30c). Corollaries 17 and 28 imply that H − {x, z1} has
an M-ear path R from P (z1, u] + uv to C + P [v1, b] + wz + Q. Let s and t be the origin
and terminus, respectively, of R. By symmetry, we may assume t is on P [v1, b]. Then
H30c − (P [s, z1] + P [x, t]) is an H30a which is well-fitted to M .

By Corollary 18 we know a and c have degree at least 3. Hence, az1 and cz1 are edges
of H , or there exists an edge e incident with a or c which is not on C and not incident
with z1. If az1 and cz1 are edges of H , then H30a + az1 + cz1 is a K3,3 bisubdivision which
is well-fitted to M . If the edge e exists, then Lemma 29 implies H30a has an ear path
using e such that z1 is not the terminus of the ear path.
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9 The Main Theorem

In this section we prove the Main Theorem. Most of the work is done in Theorem 56,
where we prove that every brace that is not in G has a well-fitted K3,3 bisubdivision.

Theorem 55 Every graph in G is a brace with an unbalanced {−1, 1}-edge weighting.

Proof. It is routine to verify H14 is a brace. (Up to isomorphism, there are only two ways
to choose two nonadjacent edges of H14.) Lemma 19 and induction are used to show the
other graphs in G are braces.

When showing that every graph in G has an unbalanced {−1, 1}-edge weighting, it
is easier to work with the additive group {0, 1} than the multiplicative group {−1, 1}.
(This will be less confusing if the reader remembers that the “1” of {−1, 1} does not
correspond to the “1” of {0, 1}.) Let w be a {0, 1}-edge weighting of a bipartite graph G.
For a cycle C, define w (C) to be the sum

∑
e∈E(C) w (e). We say w is unbalanced if G

has a perfect matching and w (C) ≡ 1 + 1
2
ν (C) (mod 2) for every alternating cycle C.

Showing G has an unbalanced {−1, 1}-edge weighting is then equivalent to showing G
has an unbalanced {0, 1}-edge weighting.

We use induction to prove that every graph G in G has an unbalanced {0, 1}-edge
weighting. It is routine to verify H14 has no 4-cycle, and no alternating cycle of length
8 or 12. Hence, every alternating cycle of H14 has length congruent to 2 modulo 4.
Therefore, we get an unbalanced {0, 1}-edge weighting of H14 when every edge is given
weight 0 (or every edge is given weight 1).

Suppose G is a plane brace. Then the face boundaries of G are cycles by Corollary 18
and Theorem 35. Let {C1, . . . , Cm} be the set of interior facial cycles of G and let
E (G) = {e1, . . . , en}. For every (i, j) in {1, . . . , m} × {1, . . . , n}, let

aij =

{
0 if Ci does not use ej , and
1 if Ci uses ej .

Let ri be the least residue modulo 2 of 1 + 1
2
ν (Ci) for i = 1, . . . , m. Consider the system

n∑
j=1

aijxj = ri, i = 1, . . . , m,

of linear equations over Z2. The set {(ai1, . . . , ain) |i = 1, . . . , m} of n-tuples is linearly
independent by Theorem 39; and so the rank of the m×n matrix [aij] is n. Therefore, the
system of linear equations has a solution (x1, . . . , xn) = (b1, . . . , bn) in Zn

2 . Let w (ej) = bj

for j = 1, . . . , n. We will show w is an unbalanced {0, 1}-edge weighting of G.
Suppose M is a perfect matching of G, and C is an M-alternating cycle. We prove C

is unbalanced by induction on the number of faces of G in the interior of C. If there is
only one face in the interior of C, then C is its facial cycle; and so C is unbalanced by
the choice of w. If there are at least two faces in the interior of C, then there is an edge e
with one or two ends on C, and all other points in the interior of C. By Lemma 29 there
is an M-ear path P of C using e. All points on P except its ends are in the interior of C.
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Let C1 and C2 be the cycles of C + P using P . Then C1 and C2 are alternating cycles
because C is an M-alternating cycle and P is an M-ear path. Furthermore, the faces of
G in the interior of C are partitioned into those in the interior of C1 and those in the
interior of C2. Hence, C1 and C2 are unbalanced by the induction hypothesis. Therefore,

w (C) =
∑

e∈E(C)

w (e) ≡ ∑
e∈E(C)

w (e) + 2
∑

e∈E(P )

w (e) =
∑

e∈E(C1)

w (e) +
∑

e∈E(C2)

w (e)

= w (C1) + w (C2) ≡
[
1 + 1

2
ν (C1)

]
+

[
1 + 1

2
ν (C2)

]
≡ 1

2
[ν (C1) + ν (C2)]

= 1
2
[ν (C) + 2ν (P ) − 2] = ν (P ) − 1 + 1

2
ν (C) ≡ 1 + 1

2
ν (C) (mod 2).

Thus, C is unbalanced.
Suppose G is a 4-cycle sum of graphs G1, . . . , Gn in G at C = abcda, where n ≥ 3. By

the induction hypothesis, Gi has an unbalanced {0, 1}-edge weighting wi, for i = 1, . . . , n.
We will use w1, . . . , wn to construct an unbalanced {0, 1}-edge weighting w of G. It suffices
to construct w for the case in which E(C) ⊂ E(G) for the following reason. If a bipartite
graph H has an unbalanced {0, 1}-edge weighting w, then any subgraph H ′ with a perfect
matching has an unbalanced {0, 1}-edge weighting, namely, the restriction of w to E(H ′).

Suppose i is in {1, . . . , n}. If we switch wi at a vertex v, then we get another unbalanced
weighting. Hence, we may assume wi(ab) = wi(bc) = wi(cd) = 0. Since Gi is a brace,
Gi has a perfect matching Mi which includes ab and cd. Then C is a wi-unbalanced
alternating cycle of Gi; and so w(C) ≡ 1 + 1

2
ν(C) ≡ 1 (mod 2) implies wi(da) = 1.

Then w = ∪n
i=1wi is a well-defined {0, 1}-edge weighting of G because w1, . . . , wn agree

on the edges of C. Furthermore, M = ∪n
i=1Mi is a perfect matching of G.

We will show that every M-alternating cycle C0 of G is w-unbalanced. If C0 is a cycle
of some Gi, then C0 is an Mi-alternating cycle. Then C0 is wi-unbalanced; and so it is
w-unbalanced. Suppose C0 is not a cycle of Gi for i = 1, . . . , n. Then we may assume C0

uses edges of G1 − E(C) and G2 − E(C). Since ab and cd are in M , C0 must have the
form ab + cd + P1 + P2, where Pi is an M-ear path using only edges in Gi − E(C) for
i = 1, 2. We may assume P1 is an (a, d)-path and P2 is a (c, b)-path. Let C1 = P1 + da
and C2 = P2 + bc. For i = 1, 2, let M ′

i be the perfect matching of Gi obtained by shifting
Mi on C. Then Ci is w-unbalanced because it is an (M ′

i)-alternating cycle of Gi. Hence,

w (C0) = w (ab + cd + P1 + P2) ≡ w (abcda) + w (P1 + da) + w (P2 + bc)

= w (C) + w (C1) + w (C2) ≡ 1 +
[
1 + 1

2
ν(C1)

]
+

[
1 + 1

2
ν(C2)

]
≡ 1 + 1

2
[ν(C1) + ν(C2)] = 1 + 1

2
ν(C0) (mod 2).

Since every M-alternating cycle is w-unbalanced, Theorem 4 implies w is unbalanced.
Therefore, all graphs in G have unbalanced {0, 1}-edge weightings.
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Theorem 56 Every brace has a well-fitted K3,3 bisubdivision or is in G.

Proof. Let G be a brace. We prove the theorem by induction on ε (G). If G is a Möbius
ladder (F. 22, p. 40), then it is easy to show G has a well-fitted K3,3 bisubdivision. If G
is a ladder or a biwheel, then G is in G because it is planar. Thus, we may assume G is
not in B. Then G is an augmentation of some smaller brace H by Theorem 24.

Suppose H has a well-fitted K3,3 bisubdivision. Since G is an augmentation of H , there
is an expansion H ′ of H and an edge e of G such that G = H ′ + e. Then H ′ is well-fitted
to G because V (H ′) = V (G). (We remind the reader that a bisubdivision of a graph is
also an expansion of the graph, and that an expansion of a graph with maximum degree
3 is also a bisubdivision of the graph.) Since G has a well-fitted H expansion, and H has
a well-fitted K3,3 bisubdivision (expansion), Lemma 23 implies G has a well-fitted K3,3

expansion (bisubdivision). Hence, G satisfies the theorem. Therefore, we may assume
H has no well-fitted K3,3 bisubdivision. Hence, H is in G by the induction hypothesis.
Then either H = H14, or H is planar, or H is a 4-cycle sum of three or more smaller
braces in G. Thus, there are three possibilities for H and four possibilities for the type of
augmentation used in obtaining G from H . In the rest of the proof we will deal with these
possible cases, as well as one special case. We will use the augmentation terminology of
Figure 21 and the figure conventions discussed on pages 1 and 50. In particular, we refer
to the graph of Figure Ni as HNi. We will also make extensive use of Lemma 53. In each
instance, we will only refer to the appropriate part of Figure 29 (pages 55 and 56).

Special Case. Suppose G has vertices a, b, c, and d such that a and c are in one colour
class, b and d are in the other colour class, and G−{a, b, c, d} has components G′

1, . . . , G
′
n,

where n ≥ 3. Let C be the 4-cycle abcda, and let Gi = C + G [V (G′
i) ∪ {a, b, c, d}], for

i = 1, . . . , n. Then G is a 4-cycle sum of G1, . . . , Gn at C. Since G is a brace, G 6= H10

(p. 36), and ν (Gi) ≥ 6 for i = 1, . . . , n. Then G1, . . . , Gn are also braces by Lemma 19. By
the induction hypothesis, G1, . . . , Gn are all in G, or we may assume Gn has a well-fitted
K3,3 bisubdivision.

Suppose G1, . . . , Gn are in G. Since H14 has no 4-cycle, none of these graphs is an
H14. Hence, each of G1, . . . , Gn is a planar brace, or can be generated from planar braces
using 4-cycle sums. Then G is generated from planar braces using 4-cycle sums; and so
G is in G.

Suppose Gn has a well-fitted K3,3 bisubdivision. G has a well-fitted Gn expansion by
Lemma 48. Then G has a well-fitted K3,3 expansion (bisubdivision) by Lemma 23.

Case 1. Suppose there exists an H14 bisubdivision H ′
14 which is a well-fitted proper

subgraph of G. (This case includes the possibility that H = H14. This expanded case will
be useful in Case 5.) Since H14 /∈ B+, Theorem 25 implies there exists an augmentation
K of H14 such that some expansion K ′ of K is well-fitted to G (F. 31a). Since H14 only
has vertices of degree three, K is a type 1 augmentation of H14. Using the symmetry of
H14 we can show K is an H31b. Furthermore, the figure shows H31b has a well-fitted K3,3

bisubdivision. Then G has a well-fitted K3,3 bisubdivision by Lemma 23.
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Figure 31: Cases 1 and 2.

Case 2. Suppose G is a type 1 augmentation of a plane graph H . If x and y are on
a facial cycle of H , then G = H + xy is planar; and hence is in G. Therefore, we may
assume x and y are not on a common facial cycle of H . Since H is a brace, H − {x, y}
is 1-extendible by Corollary 17. Then H − {x, y} is 2-connected by Corollary 18; and
so every face boundary of H − {x, y} is a cycle by Theorem 35. Let F be the face of
H − {x, y} containing x and let C = v1w1 · · · vnwnv1 be the boundary of F . Since x and
y are not on a common facial cycle of H , we know that y is not on C, and not in F .

C is well-fitted to some perfect matching M of H − {x, y} by Lemma 42. We may
assume v1w1, . . . , vnwn are the edges of C in M . Then M∪{xy} is a perfect matching of G.
By Lemma 51, there exist internally disjoint (x, y)-paths P and Q such that P 6= xy 6= Q
and P + Q + xy is well-fitted to M ∪ {xy}. We may assume v1w1 is the first edge
of P on C. Let viwi be the last edge of P on C, and let vjwj and vkwk be the first
and last edges, respectively, of Q on C (F. 31c). We complete this case by showing
C + P [wi, y] + Q [wk, y] + xv1 + xvj + xy is a K3,3 bisubdivision which is well-fitted to
the perfect matching M ∪ {xy} of G. This subgraph is well-fitted to M ∪ {xy} because
P [wi, y] and Q [wk, y] are M-ear paths and C is well-fitted to M . We will be done if we
can show we have the cyclic order v1, wi, vj , wk on C.

Consider the disjoint paths P [v1, vi] and P [wi, y]+Q [y, vj] of the plane graph H −x.
Both these paths have their ends on the facial cycle C of H − x. Then by Theorem 41
the ends v1 and vi of the first path can not separate the ends wi and vj of the second
path. Hence, we have the cyclic order v1, vi, wi, vj on C. Similarly, we must have the
cyclic order vj , vk, wk, v1 on C. Therefore, we have the cyclic order v1, wi, vj , wk on C.

Case 3. Suppose G is a type 2 augmentation of a plane graph H , where x and w are not
on a common facial cycle of H . By Lemma 52 we know that H has a well-fitted H32a,
H32b, H32d, or H32e. (Note that we have added names for three vertices of H32e.)

Since H32a is an H29c bisubdivision, and H32d is an H29d bisubdivision, G has a well-
fitted K3,3 bisubdivision for these possibilities by Lemma 53.
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Suppose H has a well-fitted H32b. Theorem 38 can be used to show H32b has the four
facial cycles C1, C2, D1, and D2 shown in Figure 32b. Lemma 44 implies there are ear
paths R1 and R2 across C1 and C2, respectively, which separate x and w (F. 32c). We
would like the origin of one of these ear paths to be on D1, and the origin of the other
to be on D2 as shown in Figure 32c. If this is not true, then we may assume the origins
of R1 and R2 are on D2. By Lemma 33 we know H32b has an ear path R with origin on
D1 − x and terminus on D2 − x. Furthermore, R is an ear path across either C1 or C2

which separates x and w. Then R1 or R2 can be replaced by R. Hence, we can assume H
has a well-fitted H32c. Let ti be the terminus of Ri for i = 1, 2. Since H32c − (Pxt1 + Pxt2)
is well-fitted to H by Lemma 26, and it is an H29e bisubdivision, we are done.
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Figure 32: Case 3
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Suppose H has a well-fitted H32e. Since G is a type 2 augmentation of H , there are
at least two x2-edges. Let e be an x2-edge which is not on H32e. Lemma 26 implies
H32e is 1-extendible. Hence, we can apply Lemma 32a to H32e, its 2-path Pxz2, and e.
By the comment after Lemma 32 we may then assume H32e has an ear path Q whose
first edge is e and whose terminus, z, is not an intermediate vertex of Pxz2. Considering
all the possibilities for z, we see that H has a well-fitted H32f , H32h, or H32i (where
{α, β} = {1, 2}).

Suppose H has a well-fitted H32f . Let R be the 2-path of H32f with ends x and z
which uses an x1-edge. Since H32f −R is well-fitted to H by Lemma 26, and it is an H32d

(with the symmetric roles of x1-edges and x2-edges reversed), we have a previous subcase.
Suppose H has a well-fitted H32h. Let C = Pxz1 + z1wz2 + Pxz2. It is easy to show

C is a facial cycle of H32h using Theorem 38. Since x and w are not on a common facial
cycle of H , Lemma 44 implies there is an ear path across C which separates x and w.
By symmetry, we may assume the origin, s, of this ear path is an intermediate vertex of
Pxz2; and so H has a well-fitted H32g. Since H32g − (Psz2 + Puz1) is well-fitted to H by
Lemma 26, and it is an H29c bisubdivision, we are done.

Suppose H has a well-fitted H32i. Then Lemma 26 implies H32i − Puz is a well-fitted
H32a or H32b subgraph of H ; and so we have a previous subcase.

Case 4. Suppose G is a type 2 augmentation of a plane graph H , where x and w are on
a facial cycle C of H . By Theorem 36 there is a planar map {ρv |v ∈ V (H)} for H . Let
ρx = (xz1, . . . , xzm). Let P and Q be the two internally disjoint (x, w)-paths of C. We
may assume xz1 is on P and xz2 is on Q. Without loss of generality, xz1 is an x1-edge.

RP RQ

zjzizk+1zkzk+1zj

RP RQ

(a) (d)

x

w

zi

1

2

1

2

z1z2

Q P

x

w

2

1

1

2

z1z2

Q P

(b)

x

w

zk

2

2

1

1

z1z2

(c)

x

w

z1z2

x2 x1

z2

Figure 33: Case 4

Suppose xz2 is an x1-edge. By the definition of a type 2 augmentation, there exist
x2-edges xzi and xzj , where 2 ≤ i < j ≤ m. Then H has a well-fitted H33a by Lemma 45.
Since H33a is an H29c bisubdivision, we are done. Thus, we may assume xz2 is an x2-edge.

Suppose there exists k in {3, . . . , m − 1} such that xz2, . . . , xzk are x2-edges and
xzk+1, . . . , xzm, xz1 are x1-edges (F. 33b). Then G is planar as shown in Figure 33c.
(This can be rigorously proven by using Theorem 38 and showing that a planar mesh for
H can be modified to give a planar mesh for G.) Hence, G ∈ G.
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If such a k does not exist, then there exists an x1-edge xzi and an x2-edge xzj such that
3 ≤ i < j ≤ m (F. 33d). By Lemma 45, there exist internally disjoint ear paths RP and
RQ of C such that xzi and xzj are their first edges, the terminus of RP is an intermediate
vertex of P , and the terminus of RQ is an intermediate vertex, z, of Q. We need to show
xzi is the first edge of RQ, and xzj is the first edge of RP , as shown in Figure 33d. Let
K = C + RP + RQ. By Theorem 37 there is a planar map {ρ′

v |v ∈ V (K)} for K such
that ρ′

v is a subpermutation of ρv for every v in V (K). Hence, ρ′
x = (xz1, xz2, xzi, xzj).

It is easy to verify RQ + Q [x, z] is a facial cycle using Theorem 38. Hence, the first edge
of Q [x, z] (namely, xz2) gets mapped to the first edge of RQ by ρ′

x or its inverse; and so
xzi is the first edge of RQ. Therefore, H has a well-fitted H33d. Since H33d is an H29c

bisubdivision, we are done.
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Case 5. Suppose G is a type 3 augmentation of a plane graph H , where x and y are
not on a common facial cycle of H . We first deal with a special subcase. Suppose there
exist four internally disjoint (x, y)-paths P0, P1, P2, and P3 such that P0 + P1 + P2 + P3

is well-fitted to H . We will show that for this special subcase, either G is an H14 or we
have Case 1.

By Lemma 49 we may assume P0 + P1 + P2 + P3 uses two x1-edges, two x2-edges, two
y1-edges, and two y2-edges. If for every (i, j) in {1, 2} × {1, 2} there is a k in {0, 1, 2, 3}
such that Pk uses an xi-edge and a yj-edge, then P0+P1+P2+P3 is an H29g bisubdivision,
and we are done. Therefore, we may assume (by the symmetry of type 3 augmentations)
that two paths in {P0, P1, P2, P3} use both an x1-edge and a y1-edge. Then the other
two paths must use an x2-edge and a y2-edge. Theorem 38 implies the plane subgraph
P0 + P1 + P2 + P3 of H has four facial cycles, each of which is the sum of two paths
in {P0, P1, P2, P3}. If one of these facial cycles uses two x1-edges, then we may assume
P0 + P1 + P2 + P3 = H34a. Otherwise, we may assume P0 + P1 + P2 + P3 = H34c.

Suppose H has a well-fitted H34a. Lemma 44 implies there are ear paths Q and R
across P0 + P1 and P2 + P3, respectively, which separate x and y (F. 34b). We would like
the origin of one of these ear paths to be on P0 + P3, and the origin of the other to be on
P1 + P2 as shown in Figure 34b. If this is not true, then we may assume the origins of
both Q and R are on P1 +P2. By Lemma 33 we know H34a has an ear path S with origin
on P0 +P3−{x, y} and terminus on P1 +P2−{x, y}. Furthermore, S is an ear path across
either P0 + P1 or P2 + P3 which separates x and y. Then Q or R can be replaced by S.
Hence, we can assume H has a well-fitted H34b. Let s and t be the origin and terminus,
respectively, of R. Since H34b − (P2 [s, y] + P3 [x, t]) is well-fitted to H by Lemma 26, and
it is an H29i bisubdivision, we are done.

Suppose H has a well-fitted H34c. Let wk be the second to last vertex on Pk for
k = 0, 1, 2, 3. By Lemma 31 and the comment after it, we may assume H34c has an ear
path Qk with origin wk and a terminus, tk, that is not on Pk for k = 0, 1, 2, 3. Each of Q0,
Q1, Q2 and Q3 is an ear path across a facial cycle of H34c. Hence, tk is an intermediate
vertex of either Qk−1 or Qk+1 for k = 0, 1, 2, 3, where addition is modulo 4. By symmetry,
we may assume t0 is on P1. Suppose t3 is on P2 (F. 34d). Since H34d − (w0y + P1 [x, t0])
is well-fitted to H by Lemma 26, and it is an H29i bisubdivision, we are done. Therefore,
we may assume t3 is on P0. Similarly, we may assume t1 is on P2, and t2 is on P3. Now H
has a well-fitted H34e. Then G has a well-fitted H34f . Since H34f is an H14 bisubdivision,
either G is an H14 or we have Case 1.

Now that the special subcase is done, we proceed with the rest of this case. H has a
well-fitted H35a by Lemma 50. [Note the names given to the three (x, y)-paths of H35a.]
Since G is a type 3 augmentation of H , there exists an x2-edge e which is not on H35a.
Furthermore, Lemma 26 implies H35a is 1-extendible. Hence, we can apply Lemma 32a
to H35a, its 2-path P2, and e. By the comment after Lemma 32 we may assume H35a has
an ear path Q whose first edge is e and whose terminus, z, is not an intermediate vertex
of P2. If z = y, then we have the special subcase. For the other two possibilities for z, we
see H has a well-fitted H35b or H35c. Since H35b is an H29` bisubdivision, we may assume
H has a well-fitted H35c.
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Figure 35: Case 5

Using Lemma 32a again, we may assume H35c has an ear path P whose last edge is
an y2-edge and whose origin, w, is not an intermediate vertex of P0. By analogy with
the previous paragraph, we are done if w is on P2. If w is an intermediate vertex of Q or
P1 [x, z], then H has a well-fitted H35d. Then H35d−Pwz is well-fitted to H by Lemma 26;
and so we have the special subcase. The only other possibility is that w is on P1 (z, y),
and then H has a well-fitted H35e. The planar embedding of H35e might not be exactly as
shown in Figure 35e, but P0+P2 is a facial cycle of H35e in any embedding by Theorem 38.
By assumption, x and y are not on a common face; and so x and y are separated by some
ear path S across P0+P2 by Lemma 44. If the origin of S is on P0, then H has a well-fitted
H35f . Since H35f − (P2 [x, z] + P2 [w, y]) is well-fitted to H by Lemma 26, and it is an
H29i bisubdivision (with the symmetric roles of x1-edges and x2-edges interchanged), we
are done. The possibility of the origin of S being on P2 is handled in a similar fashion,
except P and Q are removed instead of P2 [x, z] and P2 [w, y].
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Case 6. Suppose G is a type 3 augmentation of a plane graph H , where x and y are on a
facial cycle C of H (F. 36c). Since G is a type 3 augmentation, x and y are nonadjacent.
By Theorem 36 there is a planar map {ρv |v ∈ V (H)} for H . Let ρx = (xz1, . . . , xzm) and
ρy = (w1y, . . . , wny). Let P and Q be the two internally disjoint (x, y)-paths of C. We
may assume xz2 and w1y are on Q, and xz1 is on P . Then w2y is on P by Theorem 36b.
Without loss of generality, xz1 is an x1-edge and w1y is a y1-edge.

Suppose xz2 is an x1-edge. By the definition of a type 3 augmentation there exist
x2-edges xzi and xzj , where i and j are in {3, . . . , m}. If w2y is a y2-edge, then H
has a well-fitted H36a by Lemma 45. Since H36a is an H29h bisubdivision, we are done.
Therefore, we may assume w2y is a y1-edge. By the definition of a type 3 augmentation
there exists a y2-edge wky, where 3 ≤ k ≤ n. Then H has a well-fitted H36d by Lemma 46.
(By symmetry, we may assume Lemma 46 gives us ear paths R and S of C such that xzi

and wky are on R, and the terminus, z, of S is on P .) Since C is a facial cycle of H , it
is also a facial cycle of H36d. Theorem 38 can then be used to determine the other facial
cycles. In particular, R + Q is a facial cycle of H36d. By Lemma 33 there is an ear path
T of H36d with origin on Q [z2, w1] and terminus on another component of H36d − {x, y}.
Then T is across either C or R+Q. But T can not be across C because C is a facial cycle
of H . Thus, T is across R + Q. Therefore, H has a well-fitted H36f . Since H36f −P [x, z]
is well-fitted to H by Lemma 26, and it is an H29i bisubdivision (with the roles of x1-edges
and x2-edges interchanged, and the roles of y1-edges and y2-edges interchanged), we are
done. Thus, we may assume xz2 is an x2-edge. Similarly, we may assume w2y is a y2-edge.

Suppose there exists k in {3, . . . , m − 1} such that xz2, . . . , xzk are x2-edges and
xzk+1, . . . , xzm, xz1 are x1-edges (F. 36e), and there exists ` in {3, . . . , n − 1} such that
w2y, . . . , w`y are y2-edges and w`+1y, . . . , wny, w1y are y1-edges. Then G is planar as
shown in Figure 36g. (This can be rigorously proven by using Theorem 38 and showing
that a planar mesh for H can be modified to give a planar mesh for G.) Hence, G ∈ G.
If such a k and ` do not both exist (F. 36b), then we may assume there exists an x1-edge
xzi and an x2-edge xzj such that 3 ≤ i < j ≤ m. By Lemma 45, there exist internally
disjoint ear paths RP and RQ of C such that xzi and xzj are their first edges, the terminus
of RP is an intermediate vertex of P , and the terminus of RQ is an intermediate vertex
of Q. Using the same argument used in the last paragraph of Case 4, we can show xzi is
the first edge of RQ, and xzj is the first edge of RP , as shown in Figure 36b. Since H36b

is an H29h bisubdivision, we are done.

Case 7. Suppose G is a type 4 augmentation of a plane graph H . By Theorem 36, H has
a planar map {ρv |v ∈ V (H)}. Let ρx = (xy, xz1, . . . , xzm) and ρy = (xy, w1y, . . . , wny).
We start with three observations.

First, suppose H37a is a plane subgraph of H . Note the vertex names, and that P and Q
are (x, y)-paths. We will show that 1 ≤ i < j ≤ m implies 1 ≤ k < ` ≤ n. By Theorem 37
there is a planar map {ρ′

v |v ∈ V (H37a)} for H37a such that ρ′
v is a subpermutation of ρv

for every v in V (H37a). Then 1 ≤ i < j ≤ m implies ρ′
x = (xy, xzi, xzj). Theorem 38 can

be used to show Q + xy is a facial cycle of H37a. Now we apply Theorem 36b to Q + xy.
Since ρ′

x (xzj) = xy, we have ρ′
y (xy) = wky. Hence, ρ′

y = (xy, wky, w`y). Finally, since ρ′
y

is a subpermutation of ρy, we have 1 ≤ k < ` ≤ n.
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Second, we will show that if H has a well-fitted H37a, then we may assume i = 1.
Suppose 2 ≤ i < j ≤ m and 1 ≤ k < l ≤ n. By Lemma 29 there is an ear path R of
H37a with first edge xz1 and terminus, z, not equal to y (F. 37b). If z is on Q, then P
and R + Q [z, y] contradict the observation of the previous paragraph. Hence, z is on P .
Then H37b − P [x, z] is well-fitted to H by Lemma 26. Similarly, we may assume j = m,
k = 1, and ` = n in H37a.

Third, we will show that if H has a well-fitted H37c, then H has a well-fitted K3,3

bisubdivision. By Lemma 33 there is an ear path of H37c whose ends are in different
components of H37c − {x, y}. Without loss of generality, H then has a well-fitted H37d.
Since H37d is an H29a bisubdivision, we are done. Now that we have made the three
observations we proceed with the rest of this case.

Suppose xz1 is an x1-edge and wny is a y2-edge. Theorem 36 can be used to show
wnyxz1 is a subgraph of some facial cycle C of H (F. 38a). Then C is well-fitted to H by
Lemma 42, and H − V (C) is 1-extendible by Corollary 43. By the definition of a type
4 augmentation, there exists an x2-edge xzj and a y1-edge wky. By Lemma 34 there is
an ear path Q of C using xzj and wky. Then C + Q is a well-fitted H37c subgraph of H .
Hence, G has a well-fitted K3,3 bisubdivision by the third observation.

Suppose xz1 is an x1-edge and xzm is an x2-edge. By the previous paragraph we may
assume wny is a y1-edge, and by a very similar argument we may assume w1y is a y2-edge
(F. 38b). Suppose there exists k in {1, . . . , m − 2} such that xz1, . . . , xzk are x1-edges and
xzk+1, . . . , xzm are x2-edges, and there exists ` in {2, . . . , n − 1} such that w1y, . . . , w`y
are y2-edges and w`+1y, . . . , wny are y1-edges (F. 38e). Then G is planar as shown in
Figure 38d. (This can be rigorously proven by using Theorem 38 and showing that a
planar mesh for H can be modified to give a planar mesh for G.) Hence, G ∈ G. If such
a k and ` do not both exist (F. 38c), then we may assume there exists an x2-edge xzi and
an x1-edge xzj such that 2 ≤ i < j ≤ m − 1. By Lemma 51, there are internally disjoint
(x, y)-paths P and Q (where P 6= xy 6= Q) such that P +Q+xy is a well-fitted subgraph
of H , xzi is on P , and xzj is on Q (F. 38f). We may assume wny and w1y are the last
edges of P and Q by the second observation. By the first observation wny is on P and
w1y is on Q. Hence, G has a well-fitted K3,3 bisubdivision by the third observation.
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Figure 38: Case 7

By the previous paragraph we may assume xz1 and xzm are either both x1-edges or
both x2-edges. Suppose they are both x1-edges. By the definition of a type 4 augmentation
there exist x2-edges xzi and xzj , where 2 ≤ i < j ≤ n − 1 (F. 39a). Then H has a well-
fitted H39b by Lemma 51. [Without loss of generality, a y2-edge is the last edge of the
(x, y)-path using xzi.] Using the second observation we can “replace” i by 1 to obtain
a well-fitted H37c subgraph of H . Hence, G has a well-fitted K3,3 bisubdivision by the
third observation. Similarly, we can complete this case if xz1 and xzm are both x2-edges,
and there exist at least two x1-edges. But there may be only one x1-edge for a type 4
augmentation. Therefore, we may assume xz1 and xzm are x2-edges and there is a unique
x1-edge xzi, where 2 ≤ i ≤ m − 1 (F. 39d). Similarly, we may assume w1y and wmy are
y2-edges and there is a unique y1-edge wky, where 2 ≤ k ≤ n − 1.

Let K = H − {zi, x, y, wk}. With the aid of Figures 39d and 39e we see that the
components of G − {zi, x2, y2, wk} are the 4-cycle uvx1y1u and the components of K.
Hence, if K has at least two components, then G − {zi, x2, y2, wk} has at least three
components; and so we have the Special Case. Thus, we may assume K is connected.
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Suppose wz is an arbitrary edge of K. Since H is a brace, Corollary 17 implies
H − {w, z} is 1-extendible. Then H − {w, z} has perfect matchings Mxzi

and Mwky

containing xzi and wky, respectively. Suppose H [Mxzi
∪ Mwky] has an alternating cycle

C using xzi and wky. Each (x, y)-path of C has odd length; and so each is well-fitted to
either Mxzi

or Mwky. Hence, xzi and wky are on different (x, y)-paths of C. It follows that
C + xy is a well-fitted H37c subgraph of H ; and so we are done by the third observation.
Therefore, we may assume xzi and wky are on different components of H [Mxzi

∪ Mwky].
It is then easy to obtain a perfect matching M of H − {w, z} containing xzi and wky.
Then (M − {xzi, wky}) ∪ {wz} is a perfect matching of K which includes wz. Thus, we
may assume for every edge e of K, some perfect matching of K contains e.

Since H is a planar brace, ν (H) ≥ 8; and so ν (K) ≥ 4. Then the last sentences of the
previous two paragraphs imply K is 1-extendible. Now consider the well-fitted subgraph
zixywk of H (F. 39c). Since K is 1-extendible, we can use Lemma 34 to obtain an ear
path R of zixywk using xz1 and w1y, and an ear path S of zixywk with ends wk and zi.
Using Lemma 27 we may assume either R and S are disjoint, or R ∩ S is a path. But
if R and S are disjoint, then we contradict the first observation. Therefore, R ∩ S is a
path, and H39c is a well-fitted subgraph of H . Since H39c − (R ∩ S) is well-fitted to H by
Lemma 26, and it is an H37c, we are done by the third observation.
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Case 8. Suppose G is a type 3 augmentation of a graph H in G which is a 4-cycle sum
of H1, . . . , Hn at C = abcda, where n ≥ 3.

Suppose x and y are not on C. We may assume x is in V (H1) − V (C). If y is in
V (H1)−V (C), then G−{a, b, c, d} has n components; and so we have the Special Case.
Hence, we may assume y is in V (H2) − V (C). We now apply Lemma 54 to H1 and H2.
By symmetry, we may assume H1 has an H40a subgraph which is well-fitted to a perfect
matching M1 of H1, and H2 has an H40b subgraph which is well-fitted to a perfect matching
M2 of H2. Lemmas 47 and 26 imply H3 has an H40c subgraph which is well-fitted to a
perfect matching M3 of H3. H40a and H40b have perfect matchings containing ab and cd,
and H40c has a perfect matching which contains no edge of C. Hence, we may assume M1

and M2 contain ab and cd, and M3 contains no edge of C. If 4 ≤ k ≤ n, then the brace
Hk has a perfect matching Mk containing ab and cd. Then (H40a + H40b + H40c) − E (C)
is an H40j subgraph of H which is well-fitted to the perfect matching ∪n

k=1Mi − {ab, cd}.
Since H40j is an H29j bisubdivision, we are done.

Suppose x is on C and y is not on C. We may assume x = a and y is in V (H3)−V (C).
By applying Corollary 18 to Hk, we know there is at least one edge of Hk−E (C) incident
with x for k = 1, 2. Furthermore, if all the edges of (H1 + H2) − E (C) incident with
x are xi-edges for some i in {1, 2}, then G − {xi, b, c, d} has at least three components;
and so we have the Special Case. Therefore, we may assume there exists an xk-edge xzk

of Hk − E (C) for k = 1, 2. As in the previous paragraph, we can use Lemmas 26, 47,
and 54 to show that H1, H2, and H3 have well-fitted H40d, H40e, and H40f subgraphs,
respectively, and furthermore, H40k = (H40d + H40e + H40f ) − E (C) is well-fitted to H .
Since H40k is an H29k bisubdivision, we are done.

Suppose x and y are on C. We may assume x = a and y = b. Suppose E (Hk)−E (C)
contains an xk-edge and a yk-edge for k = 1, 2, and E (H3) − E (C) contains an x1-edge
and a y2-edge (F. 40ghi). As before, we can show H40` = (H40g + H40h + H40i)−E (C) is
well-fitted to H . Since H40` is an H29i bisubdivision, we are done.

Finally, we show that if the situation of the previous paragraph does not occur when
x = a and y = b, then we have the Special Case. To do this we construct an auxiliary
bipartite graph K. The colour classes of K are A = {(1, 1) , (1, 2) , (2, 1) , (2, 2)} and
B = {H1, . . . , Hn}. Vertices (i, j) and Hk are adjacent if and only if there is an xi-edge
and a yj-edge in E (Hk) − E (C), for 1 ≤ i, j ≤ 2 and 1 ≤ k ≤ n. If K has a matching
of size three, we have the situation of the previous paragraph. (There may be a reversal
of the symmetric roles of x1-edges and x2-edges, or of y1-edges and y2-edges. There may
also be a permutation of B.) Suppose K does not have such a matching. Then there
is a subset S of A such that |N (S)| ≤ |S| − 2. (This is proven by applying Theorem 2
to the graph obtained from K by adding a new vertex adjacent to all vertices in A, and
observing that the new graph has a matching saturating all vertices in A if and only if K
has a matching of size three.) We have 2 ≤ |N (S)| + 2 ≤ |S| ≤ |A| = 4.

Suppose |S| = 4, that is, S = A. Let k be in {1, . . . , n}. Hk has minimum degree at
least three by Corollary 18; and so x and y are incident with edges in E (Hk) − E (C).
Then the vertex Hk of K is adjacent to some vertex in A. Hence, N (S) = N (A) = B.
But then 3 ≤ n = |B| = |N (S)| ≤ |S| − 2 = 2, and we have a contradiction.
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Suppose |S| = 3. Then |N (S)| ≤ |S| − 2 = 1 and S = A − {(i, j)} for some i and j
in {1, 2}. Without loss of generality, N (S) ⊂ {Hn}. Then H1 and H2 are only adjacent
to (i, j) in K. Hence, Hk −E (C) has only xi-edges incident with x and yj-edges incident
with y, for k = 1, 2. Then G−{xi, yj, c, d} has at least three components; and so we have
the Special Case.

Suppose |S| = 2. Hence, |N (S)| ≤ |S| − 2 = 0. Then N (A − S) = B because
every vertex in B is adjacent to some vertex in A. We may assume (2, 2) is in A − S.
Suppose A − S = {(1, 1) , (2, 2)}. If some vertex Hk in B is adjacent to both (1, 1) and
(2, 2), then Hk is also adjacent to (1, 2) and (2, 1) by the definition of adjacency in K.
But then N (S) 6= ∅. Thus, every vertex in B is adjacent to either (1, 1) or (2, 2). We
may assume two vertices in B are only adjacent to (1, 1). Then G − {x1, y1, c, d} has
at least three components; and so we have the Special Case. Therefore, we may assume
A − S = {(2, 1) , (2, 2)}. Then ab and ad are the only possible x1-edges of H . But since
G is a type 3 augmentation of H , there are at least two x1-edges, and ab (that is, xy) is
not an edge of H . We have a contradiction.

Case 9. Suppose G is a type 4 augmentation of a graph H in G which is a 4-cycle sum
of H1, . . . , Hn at C = abcda, where n ≥ 3. This case is the same as Case 8 up until the
last paragraph of Case 8. This paragraph must be modified for the present case because
x1 and x2 (and y1 and y2) do not have symmetric roles for type 4 augmentations as they
do for type 3 augmentations.

In the last paragraph of Case 8 we are assuming the auxiliary graph K does not have
a matching of size three because there is a subset S of A such that |S| = 2 and N (S) = ∅.
As in Case 8, we can show N (A − S) = B, and A − S is not {(1, 1) , (2, 2)}. Similarly,
we can show A − S is not {(1, 2) , (2, 1)}. Thus, A − S is {(i, 1) , (i, 2)} or {(1, j) , (2, j)}
for some i or j in {1, 2}. Using the symmetry between the roles of x and y in a type
4 augmentation, we may assume A − S = {(i, 1) , (i, 2)} for some i in {1, 2}. Thus,
∪n

k=1 [E (Hk) − E (C)] contains only xi-edges by the definition of K.
Suppose i = 1. Then ab and ad are the only possible x2-edges of H . But since G is a

type 4 augmentation of H , there are at least two x2-edges, and ab (that is, xy) is not by
definition an x2-edge. We have a contradiction. Thus, i = 2 and A − S = {(2, 1) , (2, 2)}.
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If all the edges of (H1 + H2)−E (C) incident with y are yj-edges for some j in {1, 2},
then G − {x2, yj, c, d} has at least three components; and so we have the Special Case.
Thus, we may assume there is a yk-edge wky of Hk −E (C) for k = 1, 2. We use H41a and
H41b to show H has a well-fitted H41c. Since H41c is an H29b bisubdivision, we are done.

Case 10. Suppose G is a type 2 augmentation of a graph H in G which is a 4-cycle sum
of H1, . . . , Hn at C = abcda, where n ≥ 3. We will only give an outline for this case
because it is similar to Case 8.

Suppose x is not on C. We may then assume x is in V (H1)−V (C). If w is in V (H1),
then G − {a, b, c, d} has n components; and so we have the Special Case. Hence, we may
assume w ∈ V (H2) − V (C). We use H42a, H42b, and H42c to show H has a well-fitted
H42i. Since H42i is an H29f bisubdivision, we are done.

Suppose x is on C and w is not on C. We may assume x = a and w is in V (H3)−V (C).
If all the edges of (H1 + H2)−E (C) incident with x are xi-edges for some i in {1, 2}, then
G−{xi, b, c, d} has at least three components; and so we have the Special Case. Thus, we
may assume there is an xk-edge xzk of Hk − E (C) for k = 1, 2. We use H42d, H42e, and
H42f to show H has a well-fitted H42j . Since H42j is an H29e bisubdivision, we are done.

Suppose x and w are on C. We may assume x = a and w = c. As in the previous
paragraph we may assume there is an xk-edge xzk of Hk − E (C) for k = 1, 2. We use
H42g and H42h to show H has a well-fitted H42k. Since H42k is an H29e bisubdivision, we
are done.

Case 11. Suppose G is a type 1 augmentation of a graph H in G which is a 4-cycle sum
of H1, . . . , Hn at C = abcda, where n ≥ 3. We will only give an outline for this case
because it is similar to Case 8. If x and y are in V (Hk), where 1 ≤ k ≤ n, then we
have the Special Case because G − {a, b, c, d} has n components. Thus we may assume
x ∈ V (H1) − V (C) and y ∈ V (H2) − V (C). In Figure 43 we show H has a well-fitted
H43d. Then H43d + xy is a K3,3 bisubdivision which is well-fitted to G = H + xy.
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Main Theorem. The following statements are equivalent for a bipartite graph G.

1) G is a brace which has an unbalanced {−1, 1}-edge weighting.

2) G is a brace which does not have a well-fitted K3,3 bisubdivision.

3) G is in G.

Proof. Theorem 12 (in the “easy” direction) shows that (1) implies (2). Theorem 56
shows that (2) implies (3). Theorem 55 shows that (3) implies (1).

10 Obstructions

Brualdi and Shader [5] have shown that the results of Little (Theorem 12) and Seymour
and Thomassen (Theorem 11) can be derived from one another. In this section we combine
their proof with the Main Theorem to prove Theorems 11 and 12.

The set {M6, M10, M14, . . .} of Möbius ladders is defined in Figure 22. Suppose n ≥ 2.
An edge of M4n+2 which is on two 4-cycles is called a rung of M4n+2. The rungs of a
M4n+2 bisubdivision are its 2-paths which have replaced the rungs of M4n+2.

Lemma 57 (F. 44) Suppose G is a bipartite graph with a perfect matching M and a
well-fitted K3,3 bisubdivision K. (Note that K is not necessarily well-fitted to M .) Then
G has an M4n+2 bisubdivision L which is well-fitted to M for some n ≥ 1. Furthermore,
the rungs of L are well-fitted to M when n ≥ 2.

Proof. Choose a minimal subgraph H of G such that M ⊂ E (H) and H has a well-fitted
K3,3 bisubdivision K. Choose a perfect matching M ′ of H such that K is well-fitted to
M ′. Let A and B be the colour classes of G (and H). Let a1, a2, a3, b1, b2, and b3 be the
vertices of degree three of K, where {a1, a2, a3} ⊂ A and {b1, b2, b3} ⊂ B. For a path with
ends in A and B, we assume the end in A is the origin. Let Tij be the 2-path of K with
origin ai and terminus bj for i = 1, 2, 3 and j = 1, 2, 3.

G

M

L G

M

rungs
a1

a2

a3

b1

b2

b3

K

Figure 44: An example for Lemma 57.
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Suppose e is an edge in M which has an end on K but is not in E (K). Then e is not
in M ′ because K is well-fitted to M ′. Hence, e is on a cycle C whose edges are alternately
in M and M ′. Let P be the path of C such that e is on P , the ends of P are on K, and
no intermediate vertex of P is on K. Let P be the set of all such paths P .

Note that every path in P is well-fitted to M and is an M ′-ear path of K. Consequently,
the paths in P are disjoint, and each has odd length. If P = ∅, then K is well-fitted to
M and we are done. Thus, we may assume there is a path P in P. Let u and v be the
ends of P , where u ∈ A and v ∈ B.

Suppose u and v are on some 2-path Tij of K. Let K ′ be the K3,3 bisubdivision
(K − Tij [u, v]) + P and let f be the first edge of Tij [u, v]. Lemma 26 can be used to
show K ′ is well-fitted to H . Then K ′ is well-fitted to H − f since f is incident with K ′.
Furthermore, f is not in M because it is adjacent to the first edge of P , which is in M .
But now H − f contradicts the minimality of H .

Suppose u and v are on two different 2-paths of K which share an end. We may
assume u is on T11 and v is on T12. Let g be the last edge of T12 [a1, v]. As in the previous
paragraph, we can contradict the minimality of H by showing (K − T12 [a1, v]) + P is a
K3,3 bisubdivision which is well-fitted to H − g.

Suppose u and v are intermediate vertices of Tij and Tk`, respectively, where Tij and
Tk` are disjoint. Let K ′′ be the K3,3 bisubdivision [K − Ti`] + P . Lemma 26 can be used
to show K ′′ is well-fitted to some perfect matching M ′′ of H . If Ti` is not well-fitted to M ,
then Ti` has edge h which is not in M ∪M ′′. But then H − h contradicts the minimality
of H . Hence, Ti` is well-fitted to M .

In the three previous paragraphs we have shown that the ends of a path P in P are
intermediate vertices of disjoint 2-paths of K, and that if the origin and terminus of P
are on Tij and Tk`, respectively, then Ti` is well-fitted to M . We refer to this last fact as
property ∗. Let A12 be the intermediate vertices of T12 which are origins of paths in P,
and let B12 be the intermediate vertices of T12 which are termini of paths in P. Since P
is nonempty, we may assume A12 in nonempty.

Let P be a path in P whose origin, u, is in A12. We may assume the terminus of P is
an intermediate vertex of T21. Then T11 is well-fitted to M by property ∗. Now consider
T12 [a1, u]. The first and last edges of this path are not in M . Furthermore, the number
of intermediate vertices in B on this path is one more than the number of intermediate
vertices in A. Hence, some intermediate vertex of T12 [a1, u] is in B12. Similarly, we can
show that if u′ is a vertex in A12 distinct from u, then T12 [u, u′] has an intermediate vertex
in B12. Thus, every nontrivial subpath of T12 with ends in A12 ∪{a1} has an intermediate
vertex in B12. Similarly, every nontrivial subpath of T12 with ends in B12 ∪ {b2} has an
intermediate vertex in A12. Therefore, there exist paths P1, . . . , P2p in P (F. 45a), where
Pi has origin ui and terminus vi for i = 1, . . . , 2p, such that B12 = {v1, v3, . . . , v2p−1},
A12 = {u2, u4, . . . , u2p}, and we have the order a1, v1, u2, v3, u4, . . . , v2p−1, u2p, b2 on T12.

We may assume u1 is an intermediate vertex of T21. We know the terminus v2 of P2

is an intermediate vertex of some 2-path of K which is disjoint from T12. Hence, v2 is an
intermediate vertex of T21 [a2, u1], T21 [u1, b1], T31, T33, or T23. We will show the last four
possibilities lead to a contradiction.
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Figure 45: The proof of Lemma 57.

Suppose v2 is on T21 [u1, b1] (F. 45b). Lemma 26 can be used to show that the K3,3

bisubdivision [K − (T11 + T23)] + P1 + P2 is well-fitted to a perfect matching M ′′ of H .
Considering P1, property ∗ implies T22 is well-fitted to M . Hence, the first edge, e, of T23

is not in M∪M ′′. But then H−e contradicts the minimality of H . We also contradict the
minimality of H when v2 is an intermediate vertex of T31, T33, or T23 (F. 45cde). Therefore,
v2 is an intermediate vertex of T21 [a2, u1]. Similarly, we can show that u3, v4, . . . , u2p−1, v2p

are on T21, and that we have the order a2, v2p, u2p−1, . . . , v4, u3, v2, u1, b1 on T21. As well,
P1, . . . , P2p are the only paths in P with an end on T21.

Considering P1 and P2p, property ∗ implies T11 and T22 are well-fitted to M . We have
shown that the ends of any path in P are intermediate vertices of disjoint 2-paths of K.
Hence, if there is a path in P with an end on T33, then the other end of the path is on
T12, T22, T21, or T11. But T11 and T22 are well-fitted to M , while P1, . . . , P2p are the only
paths in P with an end on T12 or T21. Thus, no path in P has an end on T33.

the electronic journal of combinatorics 11 (2004), #R79 79



Suppose there is a path in P with ends on T13 and T32. Then by previous arguments
there is a path in P with origin on T13 and terminus on T32. Property ∗ then implies
T12 is well-fitted to M . But then the existence of P1 is contradicted. Therefore, no
path in P has ends on T13 and T32. Similarly, no path in P has ends on T31 and T23.
It follows that P = {P1, . . . , P2p, Q1, . . . , Q2q, R1, . . . , R2r}, where Qj has ends on T32

and T23 for j = 1, . . . , 2q, and Rk has ends on T13 and T31 for k = 1, . . . , 2r (F. 45f).
Arguments applied to {P1, . . . , P2p} can be applied to {Q1, . . . , Q2q} and {R1, . . . , R2r} to
show K +

∑
P∈P P is an M4n+2 bisubdivision which is well-fitted to M for some n ≥ 2.

Also, its rungs, that is, the paths in P ∪ {T11, T22, T33}, are all well-fitted to M .

Theorem 58 If D is a digraph, and G is the corresponding bipartite graph, then the
following statements are equivalent.

a) D does not have a negative {−1, 1}-arc weighting.

b) G does not have an unbalanced {−1, 1}-edge weighting

c) D has a weak odd double dicycle.

d) G has a well-fitted K3,3 bisubdivision.

Proof (a ⇔ b). This follows from Lemma 5 and Theorem 4.

(c ⇔ d). Let M be the perfect matching of G corresponding to V (D). Suppose G has
a well-fitted K3,3 bisubdivision. By Lemma 57, G has an M4n+2 bisubdivision L which is
well-fitted to M for some n ≥ 1, and furthermore, the rungs of L are well-fitted to M if

n ≥ 2. Then L corresponds to a weak
↔
C2n+1 subdigraph of D, where the vertex set of the

weak
↔
C2n+1 corresponds to the perfect matching M ∩ E (L) of L.

Conversely, suppose D has a weak
↔
C2n+1, for some n ≥ 1. Then G has an M4n+2

bisubdivision L which is well-fitted to M . Lemma 26 can then be used to show that some
subgraph of L is a well-fitted K3,3 bisubdivision of G.

(d ⇒ b). This is Theorem 12 in the “easy” direction, which we have already proven.

(a ⇒ [c or d]). We prove this by induction. It is trivial if ν (D) ≤ 2. Suppose ν (D) ≥ 3
and D does not have a negative {−1, 1}-arc weighting. If D is not strongly connected,
then some strong component of D does not have a negative {−1, 1}-arc weighting. By the
induction hypothesis, this component has a weak odd double dicycle. Hence, the same is
true for D. Thus, we may assume D is strongly connected.

If D is not strongly 2-connected, then D has a vertex v such that D−v is not strongly
connected. Let D1 and D2 be the reductions of D at v. (See pages 23 and 24.) Then
D1 or D2 does not have a negative {−1, 1}-arc weighting by Lemma 8. By the induction
hypothesis, D1 or D2 has a weak odd double dicycle. It is then routine to show D has
a weak odd double dicycle. Thus, we may assume D is strongly 2-connected. Then G
is a brace by Theorem 3. Furthermore, G does not have an unbalanced {−1, 1}-edge
weighting by the equivalence of (a) and (b). Hence, G has a well-fitted K3,3 bisubdivision
by the Main Theorem.
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[8] G. Frobenius. Über matrizen aus nicht negativen elementen. Sitzungsber. König.
Preuss. Akad. Wiss., 26:456–477, 1912.
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