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Abstract

A natural problem in extremal combinatorics is to maximize the number of dis-
tinct subsequences for any length-n string over a finite alphabet Σ; this value grows
exponentially, but slower than 2n. We use the probabilistic method to determine
the maximizing string, which is a cyclically repeating string. The number of dis-
tinct subsequences is exactly enumerated by a generating function, from which we
also derive asymptotic estimates. For the alphabet Σ = {1, 2}, (1, 2, 1, 2, . . . )
has the maximum number of distinct subsequences, namely Fib(n + 3) − 1 ∼(
(1 +

√
5)/2

)n+3
/
√

5.
We also consider the same problem with substrings in lieu of subsequences. Here,

we show that an appropriately truncated de Bruijn word attains the maximum. For
both problems, we compare the performance of random strings with that of the
optimal ones.

1 Introduction

In this article we consider a natural problem in the extremal combinatorics of strings,
namely to find a string whose number of subsequences is as large as possible, and to
determine the number. Strings and texts are themselves one of the basic combinatorial
structures, and the sorting, searching, and compression of strings is even more important
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with strings comprising one of the most important facets of the World-Wide Web (and
the only facet currently indexable). We would thus have expected such an elementary
question already to have been considered, but we have been unable to find the problem
or its solution in print.

While the problem is not especially difficult, its solution is quite pretty. The string
maximizing the number of distinct subsequences is utterly regular (and unique, up to
the trivial symmetry among the characters of the language), yet the probabilistic method
provides an elegant way of establishing this fact, while giving no information about the
number itself. Once the maximizing string is known, however, the number of subse-
quences is described by a simple recursion relation; for binary strings, this is essentially
the Fibonacci recursion Fib(n) = Fib(n − 1) + Fib(n − 2) [FoP02], and the number of
distinct subsequences is Fib(n + 3) − 1, which is asymptotically equal to φn+3/

√
5 where

φ = (1 +
√

5)/2 is the so-called golden ratio (attributed by [Hor61] to Daniel Bernoulli,
1732, or by [Mil60], via [Ait27], to Bernoulli, by 1728). For strings over larger alphabets,
the recursion is analogous to the tribonacci numbers, tetranacci numbers, and similar gen-
eralizations of the Fibonacci numbers; again the growth is asymptotically exponential; and
we give tight bounds on the base, which is the largest root of an explicit polynomial.

The probabilistic argument also shows that, for any alphabet size, “everything can be
maximized at once”: there is a single (and essentially unique) infinite string whose n-long
prefixes are the maximizing strings, and each n-prefix not only maximizes the number of
subsequence, but simultaneously maximizes the number of m-long subsequences for every
m ≤ n.

We also consider producing a string maximizing the number of distinct substrings, or
the number of distinct m-long substrings. Here we exhibit such a string for each n using
a modified de Bruijn word [dB46]. For d ≥ 3 there is an infinite string where each n-long
prefix is a substring-maximizing string, but for d = 2 no such infinite string exists.

2 Strings with maximally many distinct subsequences

Let Σ be a finite alphabet of size d; without loss of generality we take Σ = [d]. Let
A = (a1, a2, . . . , an) ∈ Σn be an n-long string over Σ. A string B is a subsequence of A,
B 4 A, if there is a set of indices i1 < i2 < · · · < im such that

B = (ai1 , ai2, . . . , aim).

The empty string B, with |B| = 0, is a subsequence of any string. We define the set of
all subsequences of A as subseq(A) = {B : B 4 A}.

Aho [Aho03] poses the natural question, “What string A of length n has a largest set
of distinct subsequences?” We will generalize this slightly and also ask for an n-long string
having the maximum number of m-long subsequences, for any m ≤ n. Accordingly, with
Σ = [d], we define the maximum number of distinct subsequences any length-n string may
have by

fd(n) := max
A∈Σn

|subseq(A)|,
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and the maximum number of distinct m-long subsequences any length-n string may have
by

fd(m, n) := max
A∈Σn

|subseq(A) ∩ Σm|.

Note that fd(m, n) ≤ fd(n) ≤ 2n, since the multiset of all subsequences (not necessarily
distinct) is of size 2n.

We first dispense with a triviality: the minimization rather than maximization of the
number of distinct subsequences of fixed or arbitrary length.

Remark 1 Let Σ = [d], and let A ∈ Σn. Then for any 0 ≤ m ≤ n,

• the number of distinct m-long subsequences of A satisfies |subseq(A) ∩ Σm| ≥ 1;

• for any m with 0 < m < n, the lower bound is achieved uniquely (up to symmetry
over the alphabet) by the string A = (1, 1, . . . , 1);

• this string (uniquely) minimizes the number of distinct subsequences, giving

|subseq(A)| = n + 1;

• and thus (uniquely up to symmetry) the single infinite string (1, 1, . . .), truncated to
length n, simultaneously minimizes all the quantities considered.

All the statements in the above Remark are self-evident; what is surprising is that
they are largely paralleled for maximization, as per the following theorem.

Theorem 2 Let Σ = [d], and let A ∈ Σn. Then for any 0 ≤ m ≤ n,

• the maximum number of distinct m-long subsequences |subseq(A)∩Σm| is achieved
(and for m ≥ 2 achieved uniquely, up to symmetry over the alphabet) by the string
A?

n = (1, 2, . . . , d, 1, 2, . . . , d, . . . , an), where an = n mod d;

• this string (uniquely) maximizes the number of distinct subsequences |subseq(A)|;
• and thus (uniquely up to symmetry) the single infinite string

(1, 2, . . . , d, 1, 2, . . . , d, . . . ),

truncated to length n, simultaneously maximizes all the quantities considered.

Before commencing the proof, we recall that the obvious “greedy alignment” algorithm
suffices to determine if B = (b1, . . . , bm) is a subsequence of A = (a1, . . . , an); see for
example [CR94]. That is, we find the first appearance of character b1 in A, then find the
first appearance after that of the second character b2 in A, and so forth; B 4 A if and
only if we can match all the characters of B before “running off the end” of A. Formally,
for 0 ≤ j ≤ m, define Ij(A, B) by I0(A, B) = 0 and

Ij(A, B) = min{i : Ij−1 + 1 ≤ i ≤ n, ai = bj}, (1)

with the min defined to be n + 1 if no such value j exists. Then B 4 A if and only if
Im(A, B) ≤ n. When the arguments are clear, we will write Ij in lieu of Ij(A, B).
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Proof of Theorem 2. We will use a probabilistic argument to show that, for any m,

A?
n = (1, 2, . . . , d, 1, 2, . . . , d, . . . , an),

with an = n mod d, maximizes |subseq(A) ∩ Σm|.
Fix any string A = (a1, a2, . . . , an) ∈ Σn, and let B = (b1, b2, . . . , bm) ∈ Σm, B be a

random string, where the bj are chosen independently, uniformly at random. Note that
the probability B is a subsequence of A is given by

P[B ∈subseq(A)] =
|subseq(A) ∩ Σm|

dm
. (2)

For convenience, extend A to any infinite sequence Ā in which every character appears
infinitely often. Through Eq. (1), each (random) B defines a corresponding random
sequence I0, I1, . . . , Im, where Ij = Ij(Ā, B), and B 4 A if and only if Im ≤ n.

Define the “waiting time” to see bj by

Wj = Ij − Ij−1,

so B 4 A if and only if
∑m

j=1 Wj ≤ n. That is, Eq. (2) is equivalent to

|subseq(A) ∩ Σm| = dm
P

[ m∑
j=1

Wj ≤ n

]
. (3)

The key to our result is showing that the waiting times Wj are dominated by i.i.d. random
variables which are uniformly distributed on [d], and have exactly this distribution when
A = A?

n. To this end, let Yj denote the number of distinct values of ai, Ij−1 + 1 ≤ i ≤ Ij ,
observed during the jth waiting period:

Yj = |{āi : Ij−1 + 1 ≤ i ≤ Ij}|.

Necessarily, Yj ≤ Ij − Ij−1 = Wj , and thus the right-hand side of Eq. (3) is

≤ dm
P

[ m∑
j=1

Yj ≤ n

]
. (4)

For a random string B, the sequence Y1, . . . , Ym has the same distribution as a sequence
Z1, . . . , Zm of i.i.d. unif[d] random variables. To see this, observe that once character bj−1

has been matched, the number of distinct characters seen until bj is matched is 1 if bj

matches āIj−1+1, 2 if bj matches the first distinct character after that, 3 if it is the second
such distinct character, etc. Each of these “next distinct characters” is equally likely to
be bj , and every character is guaranteed to come up eventually in Ā. Thus, expression
(4) is

= dm
P

[ m∑
j=1

Zj ≤ n

]
, (5)
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where
Zj ∼ unif[d]

are a set of i.i.d. random variables. Thus Eq. (5), which is independent of A or Ā, provides
an upper bound on (3).

For the sequence A = A?
n, Yj ≡ Wj : no character is seen twice during any waiting

period. Thus A = A?
n gives equality in inequality (4); and expression (3) achieves the

upper bound given by (5), proving a main part of the theorem. That is, for any m,
A?

n maximizes |subseq(A) ∩ Σm|, and it immediately follows that A?
n also maximizes the

number of distinct subsequences of every length.
We wish also to show that, up to symmetry between the characters of Σ, A?

n is the
unique string maximizing the number of subsequences. We will do so by assuming that
the string A is not cyclic, and proving that inequality (4) is strict. Since over the set
of strings B the event that

∑m
j=1 Wj ≤ n is a subset of the event that

∑m
j=1 Yj ≤ n, it

suffices to demonstrate any string B for which the second event holds but the first does
not. Since A is not cyclic, it has some d-long substring S2 in which some character σ2

fails to appear; working now in the extension Ā, extend S2 to S ′
2 which includes the first

appearance of σ2, and write Ā as the concatenation S1, S
′
2, S3 where of course S3 is an

infinite string.
Let B̄ = S1, σ2, S3. By construction, all the values of Yi are 1 except the S1 + 1st,

which by definition of Y can be at most d, so

|S1|+1∑
i=1

Yi ≤ |S1| + d ≤ (n − d) + d = n,

and thus there exists some value m ≥ |S1| + 1 for which
∑m

i=1 Yi = n. For this value of
m, let B be the m-long prefix of B̄. Then W|S1|+1 > Y|S1|+1, and for every i, Wi ≥ Yi,
so

∑m
i=1 Wi >

∑m
i=1 Yi = n. This B demonstrates that inequality (4) is strict for the

non-cyclic string A, so expression (3) cannot achieve the bound given by expression (5).
�

A simple corollary holds for maximizing over a pair of strings.

Corollary 3 Let Σ = [d]. For any m ≤ n, maxA∈Σn,B∈Σm |subseq(A) ∩ subseq(B)| =
fd(m).

Proof. Trivially, |subseq(A) ∩ subseq(B)| ≤ |subseq(B)| ≤ fd(m). If B is the cyclic
sequence A?

m then the second inequality is tight; and if A is any extension of B (for
example if A = A?

n) thensubseq(A) ⊇subseq(B), the first inequality is also tight, and the
bound is attained. �

It remains to compute the value of fd(n), which we now know to be given by the string
A?

n.

Remark 4 The maximum number of distinct subsequences fd(n) of any n-long string
satisfies the recurrence

fd(n) = 1 + fd(n − 1) + fd(n − 2) + · · · + fd(n − d), (6)
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with initial conditions fd(n) = 2n for n = 0, . . . , d − 1.

Proof. We exploit the regular structure of A?
n. For any first character b1 of B, and

corresponding value of W1, there are exactly fd(n−W1) ways to choose the remainder of
B so that B 4 A?

n. (If n < 0, we define fd(n) = 0.) Allowing also the case that B is the
empty string, |B| = 0, which has no first character, Eq. (6) follows.

The initial conditions follow from observing that if n ≤ d − 1 (in fact, if n ≤ d), then
all 2n subsequences, given by independently accepting or rejecting each character, are
distinct. �

It follows that for d = 2, 3, 4, . . ., fd(n) + 1/(d − 1) obeys the recurrence relations for
the Fibonacci numbers, tribonacci numbers, tetranacci numbers, etc. (see for example the
citations in [SP95]), although the boundary conditions are different for d > 2 (and are
offset for d = 2).

A generating-function characterization of the numbers fd(n) and fd(m, n) is given by
the following theorem.

Theorem 5 Generating functions for fd(m, n) and fd(n) are given by

Fd(x, y) :=

∞∑
m=0

∞∑
n=0

fd(m, n)xnym =
1

1 − x − y − yx(1 − xd)
, and (7)

Fd(x) :=

∞∑
n=0

fd(n)xn =
1

1 − 2x + xd+1
. (8)

Proof sketch. The waiting-time characterization of subsequences (after (1)) means that
Fm

d (x) :=
∑

n fd(m, n)xn is obtained by summing xn over all W1, . . . , Wm and all n such
that 1 ≤ Wj ≤ d and n ≥ ∑

j Wj. Summing F m
d (x)ym gives Fd(x, y), and setting y = 1

yields Fd(x). The details are standard “generatingfunctionology”. �

The generating functions enumerate the subsequences exactly, but the asymptotic
growth rate may be useful and is given by the following theorem.

Theorem 6 For any d, there exists a constant 2 − 2−d+1 < φd < 2 such that

lim
n→∞

(
fd(n) + 1/(d − 1) − C

(d)
1 φn

d

)
= 0, (9)

with (1 + 1/φd)
−d ≤ C

(d)
1 ≤ (1 − 1/φd)

−d.

Proof sketch. Generalizing work of Miles [Mil60] and Miller [Mil71], Wolfram [Wol98,
Corollary 3.5] gives a solution to the generalized Fibonacci recurrence relation (our (6)
without the “1+”). This shows that fd(n)+1/(d−1) =

∑d
i=1 Cir

n
i , where ri are the roots

of the characteristic equation W (x) = xd−∑d−1
i=0 xi = 0, they are all distinct, the root r1 of

largest modulus is the dth generalized golden ratio φd and satisfies 2−2−d+1 < r1 = φd < 2
[Wol98, Lemma 3.6], and the other roots have modulus |ri| < 1. This proves (9).
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Consider (8). Since 1 − 2x + xd+1 = xd+1(1/x − 1)W (1/x), its d + 1 roots are 1/ri,
and r0 = 1. Since they are distinct, partial-fraction expansion gives Fd(x) =

∏d
i=0

1
1−rix

=∑d
i=0

ci

1−rix
. This gives f(n) = [xn]Fd(x) =

∑d
i=0 cir

n
i , so comparison with the previous

paragraph shows ci = Ci. Next, (1 − r1x)Fd(x) =
∏

i6=1
1

1−rix
= C1 +

∑
i6=1

Ci

1−rix
, and

evaluating at x = 1/r1 yields
∏

i6=1
1

1−ri/r1
= C1. From (9), C1 must be a positive real, so

C1 = |C1| =
∏

i6=1
1

|1−ri/φd| ; 1 − 1/φd ≤ |1 − ri/φd| ≤ 1 + 1/φd completes the proof. �

For example, for d = 2, φ2 = (1 +
√

5)/2, the golden ratio. At the other extreme, as
d → ∞, φd approaches 2 exponentially quickly, since 2−2−d+1 < φd < 2. This corresponds
to the case in which almost any subsequence, indicated by the presence or absence of each
character, is distinct. Note that (2/3 − εd)

d ≤ C
(d)
1 ≤ (2 + εd)

d, for some εd → 0.

3 Strings with maximally many distinct substrings

We close with a solution to a simpler problem, choosing an n-long string A with a maxi-
mum number of substrings rather than subsequences.

To avoid introducing further notation, within this section we will redefine the same
notation we used before. A string B is a substring of A, B 4 A, if there is an offset i such
that

B = (ai+1, ai+2, . . . , ai+m).

The empty string B, with |B| = 0, is a substring of any string. We define the set of all
substrings of A as substr(A) = {B : B 4 A}, and we redefine fd(n) and fd(m, n) to be
the maximum number of substrings (respectively m-long substrings) an n-long string over
Σ = [d] may have:

fd(n) := max
A∈Σn

|substr(A)|,
fd(m, n) := max

A∈Σn
|substr(A) ∩ Σm|.

Once again, the problem of minimization rather than maximization is trivial, and the
following remark needs no proof.

Remark 7 Let Σ = [d], and let A ∈ Σn. Then for any 0 ≤ m ≤ n: the number of
distinct m-long substrings of A satisfies |substr(A)∩Σm| ≥ 1; for any m with 0 ≤ m ≤ n,
the lower bound is achieved uniquely (up to symmetry over the alphabet) by the string
A = (1, 1, . . . , 1); this string (uniquely) minimizes the total number of distinct substrings,
giving |substr(A)| = n + 1; and thus (uniquely up to symmetry) the single infinite string
(1, 1, . . .), truncated to length n, simultaneously minimizes all the quantities considered.

We turn our attention back to the maximization problem.

Theorem 8 Let Σ = [d], and let A ∈ Σn. Then for any 0 ≤ m ≤ n,
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• the number of distinct m-long substrings of A satisfies |substr(A)∩Σm| ≤ min{dm, n−
m + 1};

• for all m with 0 ≤ m ≤ n, these upper bounds are simultaneously achieved by a
modified de Bruijn word;

• thus this string maximizes the number of distinct substrings, giving |substr(A)| =
dk+1−1

d−1
+

(
n−k+1

2

)
where k = blogd nc.

• For d ≥ 3 there is an infinite string whose prefixes simultaneously maximize all the
quantities considered. However, for d = 2 no such infinite string exists.

There are two contrasts with the previous cases. First, our modified de Bruijn word is
not unique: de Bruijn words [dB46] correspond to Eulerian tours of a certain graph and
many different tours will work in our construction. Second, when d = 2 there is not a
single infinite string whose n-long prefixes are the maximizing solutions: different values
of n require modifying different de Bruijn words. But when d ≥ 3 there is such a infinite
string.

Proof. Only the second and fourth points require proof, and we take them together. Recall
that a de Bruijn graph Gk has a vertex for each (k − 1)-long string over [d], and for each
k-long string, has a directed edge from the string’s (k−1)-prefix vertex to its (k−1)-suffix
vertex. Gk is Eulerian, and fixing any Euler tour T , the cyclic string defined by the first
letter of each edge, in order of visitation, is a cyclic de Bruijn word: it contains every
k-long string. Cutting this cyclic word anywhere and concatenating its (k − 1)-prefix
gives a (dk + k − 1)-long string Ak which is evidently “best possible” for n = dk + k − 1:
all k-long and shorter strings are present as substrings, and all (k + 1)-long and longer
substrings are distinct.

To extend this to a similar string Ak+1, interpret the dk k-long substrings of Ak (which
were the edge labels of the Eulerian tour T of Gk) as vertex labels in Gk+1, defining a
Hamilton path H . Gk+1 is (d − 1)-connected, so for d > 2, deleting the edges in H from
Gk+1 leaves it connected, implying that H may be extended to an Euler tour of Gk+1: call
it T ′. Now T ′ defines a dk+1-long cyclic de Bruijn word which can be cut anywhere and
its k-prefix concatenated to give a best-possible string Ak+1 for n = dk+1 + (k + 1) − 1.
Cutting the cyclic word at the original starting point (before the (k + 1)-prefix of Ak)
yields such a string Ak+1 whose (dk +k−1)-prefix is Ak. Thus the n-prefix of Ak+1 is best
possible for all n in the range dk + k − 1 ≤ n ≤ dk+1 + (k + 1)− 1. Repeating the process
results in an infinite string A? each of whose prefixes is best possible for its length.

For d = 2, however, deleting a path H can isolate the vertices (1, . . . , 1) and (2, . . . , 2);
indeed it is shown in [O’B01] that (for k > 1) no de Bruijn word Ak can be extended to
length 2k+1+(k+1)−1. In this case, choose Ak to end in (1, . . . , 1), so that (1, . . . , 1) is the
last vertex visited by the Hamilton path H . Then H can be extended to a circuit which
traverses every edge except the self-loop at (2, . . . , 2). The string associated with this
circuit, having length 2k+1+(k+1)−2, is again best possible. That is, for any k we can find
a string whose n-prefix is optimal for any n in the range 2k +k−1 ≤ n ≤ 2k+1+(k+1)−2
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(which ranges partition the natural numbers), but no string can bridge two such ranges
(and in particular no infinite string works for all n). �

4 Comparison with random strings

In extremal problems of any sort, an appropriate random structure is always a good
candidate for consideration. For both problems considered here, random strings are not
extremal, but it is interesting to see how close they come.

For the subsequence problem, reasoning as in the proof of Theorem 2, where the
“waiting times” in a cyclic string A are uniformly distributed in [d] and have mean (d +
1)/2, the waiting times in a random string A have geometric distribution with parameter
d and thus mean d. Perhaps surprisingly, this does not mean that a random string must
be twice as long as a cyclic one to have the same number of substrings. For a random
string A of length n, the probability that a random string B of length m is a subsequence
is precisely

∑
n′≤n

(
n′−1
m−1

)
(1/d)m(1−1/d)n′−m, as may be seen either from first principles or

by noting that the sum of geometrically-distributed random variables is beta-distributed.
The number of m-long strings B is dm, so the expected number of m-long subsequences
is

∑
n′≤n

(
n′−1
m−1

)
(1 − 1/d)n′−m. Summing over all m, this is dominated by n′ = n and by

m = cn for some fixed c. Substituting cn for m, taking logarithms, dividing by n, and
differentiating with respect to c yields c = d/(2d− 1), and that the logarithm of the total
number of subsequences is about n ln(2 − 1/d). For d = 2 this is n ln(3/2) as opposed to
n ln(φ) for a cyclic string A, a significant difference. For large d, though, n ln(2 − 1/d)
versus a cyclic string’s value of between n ln(2−2−d+1) and n ln(2) is not so dramatic. To
summarize: both a cyclic string and a random one have exponentially many subsequences;
the base of the exponent is larger for the cyclic string than for the random one, but for
large d both bases tend towards 2; and the factor by which a random string needs to be
longer than a cyclic one to have the same number of subsequences is more than 1 but
asymptotically at most ln(2 − 2−d+1) / ln(2 − 1/d), which tends to 1 as d → ∞.

For the substring problem, a random string’s performance is even better: the expected
number of distinct substrings of an n-long string is asymptotically maximal. In fact, for
each m ≥ 2 logd n, the probability that two m-long substrings (defined by starting and
ending indices in A) are equal is exponentially small in their length, and so the expected
number of m-long substrings is asymptotically maximal. Also, for any c < 1, a simple
calculation shows that each string of length m ≤ c logd n will occur as a substring of n
with high probability (probability exp(−n1−c)). In summary, an n-long random string
A gives an expected number of m-long substrings that is asymptotically optimal except
for m between about logd n and 2 logd n, thus giving asymptotically the right number of
substrings in all (summed over m = 0, . . . , n).

Finally, since the maximal number of subsequences is given by Fibonacci numbers and
related series, we remark that there is a notion of a Fibonacci string. These strings, with
A0 = (2), A1 = (1), and Ai = (Ai−1, Ai−2) (so A2 = (12), A3 = (121), A4 = (12112),
etc.) are the extremal examples for the Periodicity Lemma on strings (see [FW65] and
for example [CR94]), and are natural candidates for other extremal properties. However,
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they are not extremal for the number of distinct subsequences, nor for the number of
distinct substrings.
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