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Abstract

The packing density of a permutation π of length n is the maximum proportion
of subsequences of length n which are order-isomorphic to π in arbitrarily long
permutations σ. For the generalization to patterns π which may have repeated
letters, two notions of packing density have been defined. In this paper, we show
that these two definitions are equivalent, and we compute the packing density for
new classes of patterns.

1 Definition of packing density

A pattern or word is a string of letters from a totally ordered alphabet Σ. Two patterns π1

and π2 are said to be order-isomorphic (or simply isomorphic) if they have the same length
and any two symbols of π1 have the same order relation (<, >, or =) as the symbols in the
corresponding positions in π2. An occurrence of a pattern π in a word σ is a subsequence
of symbols of σ (not necessarily consecutive) which form a pattern order-isomorphic to π.

We use the notation [k]n for the set of all n-letter words on the standard k-letter
alphabet [k] := {1, 2, . . . , k}. The terms “pattern” and “word” are interchangeable, but
we will generally use them as in the last sentence of the previous paragraph, that is, we
are counting occurrences of patterns in words. Note that since σ can contain repeated
symbols, multiple occurrences of π in σ can be equal as sequences of letters in Σ, but
should be counted as distinct occurrences. For example, the word σ = 122 contains the
pattern π = 12 twice, not once.

Definition 1 Let Π be a collection of patterns of length m, no two of which are isomor-
phic. For a word σ ∈ [k]n, we define ν(Π, σ) to be the total number of occurrences of

patterns π ∈ Π in σ. The density of Π in σ is then d(Π, σ) := ν(Π, σ)/
(

n
m

)
.
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We require that patterns in Π be non-isomorphic to ensure that any subsequence of
σ of length m matches at most one pattern in Π. It is then easy to see that d(Π, σ)
is the probability that a randomly selected subsequence of σ of length m will be order-
isomorphic to some π ∈ Π. In particular, 0 ≤ d(Π, σ) ≤ 1. In the remainder of this paper,
we will always implicitly assume that the patterns in Π are non-isomorphic.

Definition 2 For Π a collection of patterns of length m, define

δ(Π, k, n) := max { d(Π, σ) | σ ∈ [k]n }.
Our general goal in studying packing density problems is to understand the behavior

of this function δ(Π, k, n). We call a pattern σ ∈ [k]n such that d(Π, σ) = δ(Π, k, n) a Π-
maximizer among all patterns in [k]n. For specific sets of patterns Π, one can often show
that there exists a Π-maximizer σ of a form similar to the form of the patterns π ∈ Π,
and then compute δ(Π, k, n) by maximizing d(Π, σ) over all such words of this form. We
now investigate the behavior of δ(Π, k, n) for general Π, specifically how it varies with k
and n. The following result is standard in the literature, but we reproduce it here for
completeness.

Proposition 1 Let Π be a collection of patterns of length m. Then

(a) δ(Π, k + 1, n) ≥ δ(Π, k, n), with equality for k ≥ n;

(b) δ(Π, k, n + 1) ≤ δ(Π, k, n) for n ≥ m.

Proof. Part (a) is clear, since every σ ∈ [k]n is also in [k + 1]n, and when k ≥ n, every
σ ∈ [k + 1]n contains at most n distinct letters and is therefore order-isomorphic to an
element of [k]n.

For part (b), assume n ≥ m, and let σ ∈ [k]n+1 be a Π-maximizing word, i.e., one
for which d(Π, σ) = δ(Π, k, n + 1). For 1 ≤ i ≤ n, let σi ∈ [k]n be the word obtained
by omitting the ith symbol of σ. Since n + 1 > m, we can select a random subsequence
of σ of length m by first throwing out one of the n + 1 symbols of σ at random and
then randomly selecting a subsequence of length m from the resulting word. Using the
probabilistic interpretation of d(Π, σ), we conclude that d(Π, σ) equals the average of
the d(Π, σi). In particular, for some i we have d(Π, σi) ≥ d(Π, σ) = δ(Π, k, n + 1), so
δ(Π, k, n) ≥ δ(Π, k, n + 1), as desired.

These inequalities allow us to define various limits of δ(Π, k, n) as k and n increase.
First, note that for n ≥ m, we have δ(Π, n, n) = δ(Π, n + 1, n) ≥ δ(Π, n + 1, n + 1), so
the sequence δ(Π, n, n) is nonincreasing and bounded, hence converges. Also, for fixed
k, the sequence δ(Π, k, n) is nonincreasing, and the limit is an increasing function of k.
Therefore the following limits are all defined.

Definition 3 For Π a collection of patterns of length m, define

δ(Π) = lim
n→∞ δ(Π, n, n),

δ(Π, k) = lim
n→∞ δ(Π, k, n),

δ′(Π) = lim
k→∞

δ(Π, k).
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Note that δ(Π) = lim
n→∞ lim

k→∞
δ(Π, k, n) and δ′(Π) = lim

k→∞
lim

n→∞ δ(Π, k, n); the only differ-

ence is in the order of limiting operations.

Example 1 [2, Example 1.3] Let Π be the collection containing the single pattern π =
12 · · ·m. Note that for any n ≥ m, the word σ = 12 · · ·n gives d(Π, σ) = 1, so δ(Π, n, n) =
1 and therefore δ(Π) = 1.

To compute δ′(Π), let k ≥ m and r ≥ 1, and consider the word σ = 1r2r · · · kr; this
notation means that each of the symbols 1, 2, . . . , k is repeated r times. We obtain an
occurrence of π in σ by first picking m of the letters 1, 2, . . . , k, and then for each letter
picking one of its r occurrences; thus ν(Π, σ) =

(
k
m

)
rm and

δ(Π, k, rk) ≥ d(Π, σ) =

(
k
m

)
rm(

rk
m

) .

Therefore

δ(Π, k) = lim
r→∞ δ(Π, k, rk) ≥ lim

r→∞

(
k
m

)
rm(

rk
m

) =

(
k
m

)
km/m!

which approaches 1 as k → ∞. Hence δ′(Π) = 1.

Observe that for this Π, δ(Π) = δ′(Π). In [2], the authors extend this result to sets of
patterns Π of a special type and raise the question of whether equality holds in general.
Theorem 3 answers this question in the affirmative, using the technique of repeating letters
as in the example above.

Lemma 2 Let Π be a collection of patterns of length m and let σ ∈ [n]n be a Π-maximizer.
Then (

n

m

)
δ(Π) ≤ ν(Π, σ) ≤ nm

m!
δ′(Π).

Proof. Since δ(Π, n, n) ≥ δ(Π) there exists σ ∈ [n]n with d(Π, σ) ≥ δ(Π), so ν(Π, σ) =(
n
m

)
d(Π, σ) ≥

(
n
m

)
δ(Π), proving the left-hand inequality. For the other inequality, let

σ ∈ [n]n be any word; we must show that ν(Π, σ) ≤ nm

m!
δ′(Π). For r ≥ 1, define the word

σr ∈ [n]rn by repeating each letter of σ r times. Every occurrence of a pattern π ∈ Π in
σ gives rise to rm occurrences of π in σr, so ν(Π, σr) ≥ rm ν(Π, σ). Therefore

δ(Π, n) = lim
r→∞ δ(Π, n, rn) ≥ lim

r→∞ d(Π, σr) ≥ lim
r→∞

rm ν(Π, σ)(
rn
m

) =
m!

nm
ν(Π, σ).

Since δ′(Π) ≥ δ(Π, n), we obtain the right-hand inequality.

Theorem 3 Let Π be a collection of patterns of length m. Then δ(Π) = δ′(Π).

Proof. First note that δ(Π, k, k) ≥ δ(Π, k) for k ≥ m, so

δ(Π) = lim
k→∞

δ(Π, k, k) ≥ lim
k→∞

δ(Π, k) = δ′(Π).

On the other hand, letting n → ∞ in the lemma shows that δ(Π) ≤ δ′(Π).

Definition 4 The packing density of Π is the common value δ(Π) = δ′(Π).
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2 Layered permutations and clumpy patterns

In the study of packing densities of permutations, it has been found that the easiest
permutations to analyze are the so-called layered permutations.

Definition 5 A layered permutation is an increasing sequence of decreasing segments, in
other words, a permutation which can be written π = π1π2 · · ·πl where π1 < π2 < · · · < πl

and each πi is a decreasing sequence. Here πi < πi+1 means that every letter in πi is less
than every letter in πi+1. The segments πi are called the layers of π.

A typical example of a layered permutation is π = 321465; this permutation has three
layers, with sizes 3, 1, and 2. Note that a layered permutation is uniquely determined by
its sequence of layer sizes. We will use the notation [k1, . . . , kl] for the layered permutation
with layer sizes k1, . . . , kl.

The basic tool in the study of layered permutations is the following theorem of
Stromquist. We give a proof which is somewhat shorter than the proof in [1], both
for its own interest and because we will reuse the method of proof when studying clumpy
and layered patterns.

Theorem 4 Let Π ⊂ Sm be a set of layered permutations. Among all permutations
σ ∈ Sn which maximize ν(Π, σ), there exists one which is layered.

Proof. Given a permutation σ ∈ Sn, we represent σ by its graph { (i, σ(i)) | 1 ≤ i ≤ n }.
More generally, any set of n points P = {(x1, y1), . . . , (xn, yn)} with distinct x-coordinates
and distinct y-coordinates defines a permutation in Sn, namely the permutation order-
isomorphic to y1y2 · · · yn if we label the points so that x1 < x2 < · · · < xn. This permuta-
tion is layered if and only if the set P has the following property: for any two points u,
v ∈ P with u above and to the left of v, if u and v have consecutive x-coordinates, then
they also have consecutive y-coordinates. We will work with permutations in this planar
representation, so we will write ν(Π, P ) for ν(Π, σ) where σ ∈ Sn is the permutation
corresponding to P .

Let P be a planar set with n points which maximizes ν(Π, P ). We will show that we
can make a series of moves of points of P , preserving ν(Π, P ), such that the resulting set
P ′ is layered. Suppose u and v are points of P with consecutive x-coordinates such that
u lies above and to the left of v. Consider the two sets P1 and P2 obtained from P by the
following moves: to obtain P1, we move v up to be just below u; to obtain P2, we move
u down to be just above v. In each case, u and v have the same order relation as before
the move (u is still above and to the left of v), and after the move, u and v have identical
order relation to every other point w. See Figure 1.

An occurrence of Π in P is a subset of m points of P which corresponds to a permu-
tation π ∈ Π. We classify these occurrences into four types; those which contain neither
u nor v, those which contain u but not v, those which contain v but not u, and those
which contain both u and v. Denote the number of occurrences of each of these types by
ν(Π, P, ū, v̄), ν(Π, P, u, v̄), ν(Π, P, ū, v), and ν(Π, P, u, v), respectively; then

ν(Π, P ) = ν(Π, P, ū, v̄) + ν(Π, P, u, v̄) + ν(Π, P, ū, v) + ν(Π, P, u, v).
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Figure 1: The planar sets P , P1, and P2

Let us now consider ν(Π, P1) and ν(Π, P2). Every occurrence of Π in P not containing v
corresponds to an occurrence in P1 not containing v, so ν(Π, P1, ū, v̄) = ν(Π, P, ū, v̄) and
ν(Π, P1, u, v̄) = ν(Π, P, u, v̄). In P1, u and v have the same order relation to every other
point, so ν(Π, P1, ū, v) = ν(Π, P1, u, v̄) = ν(Π, P, u, v̄). Finally, consider an occurrence of
Π in P which contains both u and v, in other words, a subset Q ⊂ P containing u and
v such that Q is isomorphic to a permutation π ∈ Π. Since u and v have consecutive
x-coordinates in P , they must correspond to two consecutive letters in π, say π(i) and
π(i + 1). Also, since u is above and to the left of v in P , we have π(i) > π(i + 1). Now
π is layered, so π(i) and π(i + 1) are consecutive letters in the same layer of π; therefore
there is no letter π(j) in π with π(i) > π(j) > π(i + 1), so there is no point w ∈ Q with
y-coordinate between those of u and v. Since the new y-coordinate of v in P1 is in this
range, the order relation of v to every other vertex w ∈ Q is unchanged, so Q is also an
occurrence of Π in P1. Therefore ν(Π, P1, u, v) ≥ ν(Π, P, u, v). So considering the total

ν(Π, P1) = ν(Π, P1, ū, v̄) + ν(Π, P1, u, v̄) + ν(Π, P1, ū, v) + ν(Π, P1, u, v),

we obtain
ν(Π, P1) ≥ ν(Π, P, ū, v̄) + 2ν(Π, P, u, v̄) + ν(Π, P, u, v).

Similarly,
ν(Π, P2) ≥ ν(Π, P, ū, v̄) + 2ν(Π, P, ū, v) + ν(Π, P, u, v).

Adding the last two inequalities, we obtain

ν(Π, P1) + ν(Π, P2) ≥ 2ν(Π, P, ū, v̄) + 2ν(Π, P, u, v̄)

+ 2ν(Π, P, ū, v) + 2ν(Π, P, u, v)

= 2ν(Π, P ).

But P was chosen to maximize ν(Π, P ); therefore ν(Π, P1) and ν(Π, P2) are each less than
or equal to ν(Π, P ). So equality must hold and we obtain ν(Π, P1) = ν(Π, P2) = ν(Π, P ).
Hence P1 and P2 are also Π-maximizing sets. Thus we have shown that if P is a planar
set maximizing ν(Π, P ) and u and v are points in P with consecutive x-coordinates such
that u lies above and to the left of v, then we may move v to just below u or u to just
above v and in either case the Π-maximality is preserved.

Now let P be a planar set which maximizes ν(Π, P ), and consider all points in P which
are higher than any point to the left. Label these points u1, . . . , uk, in increasing order of
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x-coordinate; then u1 is the leftmost point of P , and ui+1 lies above and to the right of ui

for each i. Now, from left to right, move each point v which is not among the ui to be just
less than the point immediately to its left. For each i, this process will move the points
with x-coordinate between those of ui and ui+1 to form a decreasing sequence starting at
ui with all its points higher than any point before ui. Thus, after performing this process
for each i = 1, . . . , k, the resulting planar set P ′ is layered, and ν(Π, P ′) = ν(Π, P ), so
P ′ is a Π-maximizer, proving the theorem.

We define layered patterns by analogy with layered permutations.

Definition 6 A layered pattern is a strictly increasing sequence of nonincreasing seg-
ments, in other words, a pattern which can be written π = π1π2 · · ·πl where π1 < π2 <
· · · < πl and each πi is a nonincreasing sequence. The segments πi are called the layers
of π.

A proof of the following conjecture would allow us to compute d(π) for many layered
patterns π.

Conjecture 5 ([2, Conjecture 2.8]) If Π is a set of layered patterns, then among all
Π-maximizers σ ∈ [k]n, there exists one which is layered.

As a first step in this direction, we have the following definition and result.

Definition 7 A pattern π ∈ Σn is clumpy if for any letter x ∈ Σ, all occurrences of x in
π are consecutive. Equivalently, if the ith and jth letters of π are both x, then all letters
of π between the ith and the jth are x as well.

Theorem 6 Let Π be a set of clumpy patterns. Among all words σ ∈ [k]n which maximize
ν(Π, σ), there exists one which is clumpy.

Proof. Let σ ∈ [k]n be a word which maximizes ν(Π, σ). Suppose that some letter x
appears more than once in σ. Consider two particular appearances of x in σ; write σ =
τ1x1τ2x2τ3, where the τi are words on the alphabet [k], and we label the two appearances
of x in question x1 and x2 for ease of reference. We divide the occurrences of Π in σ into
four types according to whether they contain x1 and x2; using notation analogous to that
used in the proof of Theorem 4, we have

ν(Π, σ) = ν(Π, σ, x̄1, x̄2) + ν(Π, σ, x1, x̄2) + ν(Π, σ, x̄1, x2) + ν(Π, σ, x1, x2).

Now consider the two new words

σ1 = τ1x1x2τ2τ3, σ2 = τ1τ2x1x2τ3.

Let us compute ν(Π, σ1). Since the only difference between σ and σ1 is the location of x2,
we have ν(Π, σ1, x̄1, x̄2) = ν(Π, σ, x̄1, x̄2) and ν(Π, σ1, x1, x̄2) = ν(Π, σ, x1, x̄2). Also, the
letters x1 and x2 are consecutive in σ1 and equal, so ν(Π, σ1, x̄1, x2) = ν(Π, σ1, x1, x̄2) =
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ν(Π, σ, x1, x̄2). Finally, consider an occurrence of π ∈ Π in σ containing both x1 and
x2. We can write π = π1y1π2y2π3, where πi is the part of π which occurs in τi and the
letter yi corresponds to xi. Since x1 and x2 are the same letter, y1 and y2 are equal, say
y1 = y2 = y; and since π is clumpy, every letter of π2 is y, so π2 = yj for some j. Therefore
taking the corresponding letters in σ1 gives an occurrence of π1y1y2π2π3 = π1y

j+2π3 = π,
so ν(Π, σ1, x1, x2) ≥ ν(Π, σ, x1, x2). It follows that

ν(Π, σ1) ≥ ν(Π, σ, x̄1, x̄2) + 2ν(Π, σ, x1, x̄2) + ν(Π, σ, x1, x2).

Similarly,
ν(Π, σ2) ≥ ν(Π, σ, x̄1, x̄2) + 2ν(Π, σ, x̄1, x2) + ν(Π, σ, x1, x2).

Adding these yields ν(Π, σ1) + ν(Π, σ2) ≥ 2ν(Π, σ); since σ was chosen such that ν(Π, σ)
was maximal, we must have equality, so ν(Π, σ1) = ν(Π, σ2) = ν(Π, σ). Thus we have
shown that we may move together any two equal letters of σ and preserve the maximality
of ν(Π, σ). By repeating this process we may move all equal letters into blocks, giving us
a clumpy pattern σ′ ∈ [k]n with ν(Π, σ′) maximal.

Note that any layered pattern π is clumpy, because any given letter x can appear in
at most one layer πi, and πi is nonincreasing so all occurrences of x in πi are consecutive.
Therefore, if Π is a set of layered patterns, then among all Π-maximizers σ ∈ [k]n, there
exists one which is clumpy.

We can think of clumpy patterns as “weighted permutations” as follows: If π ∈ [l]m

is a clumpy pattern, then we can write π = πa1
1 · · ·πal

l where π1 · · ·πl is a permutation
of [l] and the ai are nonnegative integers. We call π1 · · ·πl the underlying permutation
of π. By the previous result, when computing d(π, k, n), we need only consider words
σ ∈ [k]n which are clumpy. If we write σ as a weighted permutation σ = σb1

1 · · ·σbk
k , then

we can count occurrences of π in σ by the corresponding occurrences of the permutation
π̄ = π1 · · ·πl in σ̄ = σ1 · · ·σl; more precisely, we have

ν(π, σ) =
∑(

bi1

a1

)
· · ·

(
bil

al

)

where the sum is taken over all subsequences σi1 · · ·σil of σ̄ isomorphic to π̄. The difficulty
in extending Theorem 4 to layered patterns seems to lie in the fact that a single weight
bj may appear in the sum above as

(
bj

ai

)
with different ai in different terms. Indeed, when

the values ai are all equal, we can prove that Conjecture 5 holds.

Theorem 7 Let Π̄ be a set of layered permutations, and let Π be the set of patterns
obtained by repeating each letter of each permutation π̄ ∈ Π̄ r times. Then among all
Π-maximizers σ ∈ [k]n, there exists one which is layered.

Proof. By Theorem 6, we only need to consider words σ ∈ [k]n which are clumpy.
So let σ ∈ [k]n be a clumpy Π-maximizer. Write σ = σb1

1 · · ·σbk
k where σ̄ = σ1 · · ·σk

is a permutation of [k] and the bi are nonnegative integers. Let P be the planar set
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corresponding to σ̄ as in the proof of Theorem 4, and assign the weight bi to each point
(i, σi). We call this the weighted planar set corresponding to the clumpy word σ.

We first use induction on k to remove all points with weight less than r. If k = 1,
then σ is automatically layered, so suppose k > 1 and assume the theorem holds for k−1.
Suppose some point (i, σi) has weight bi less than r. Since every letter in any pattern
π ∈ Π is repeated r times, there is no occurrence of π in σ which uses the letters σbi

i . So
removing these letters and adding bi to the weight of another letter in σ yields a word
σ′ on an alphabet of k − 1 letters with at least as many occurrences of Π as σ. By the
induction hypothesis, there exists a layered word σ′′ in [k − 1]n with at least as many
occurrences of Π as σ′. So ν(Π, σ′′) ≥ ν(Π, σ), and σ′′ ∈ [k − 1]n ⊂ [k]n is a layered
Π-maximizer, as desired. Therefore we may assume that every point (i, σi) has weight at
least r.

Now we emulate the proof of Theorem 4. Suppose u and v are points of P with
consecutive x-coordinates such that u lies above and to the left of v. We form new planar
sets P1, P2 as before, P1 by moving v up to just below u, and P2 by moving u down to
just above v. Then we write

ν(Π, P ) = ν(Π, P, ū, v̄) + ν(Π, P, u, v̄) + ν(Π, P, ū, v) + ν(Π, P, u, v).

As in Theorem 4, we have

ν(Π, P1, ū, v̄) = ν(Π, P, ū, v̄), ν(Π, P1, u, v̄) = ν(Π, P, u, v̄),

and ν(Π, P1, u, v) ≥ ν(Π, P, u, v).

However, in general ν(Π, P1, ū, v) 6= ν(Π, P1, u, v̄), because the points u and v may not
have equal weight. Instead, writing |u| and |v| for the weights of points u and v, we have

ν(Π, P1, ū, v) =
(|v|r )
(|u|

r )
ν(Π, P1, u, v̄), because any occurrence of a pattern π ∈ Π counted by

ν(Π, P1, u, v̄) uses exactly r of the |u| letters at the point u, so we can group these into

sets of size
(|u|

r

)
, each of which corresponds to a set of

(|v|
r

)
occurrences in ν(Π, P1, ū, v).

(Note that since |u| ≥ r, the denominator
(|u|

r

)
is nonzero.) Therefore we have

ν(Π, P1) ≥ ν(Π, P, ū, v̄) + ν(Π, P, u, v̄) +

(|v|
r

)
(|u|

r

)ν(Π, P, u, v̄) + ν(Π, P, ū, v̄).

Similarly

ν(Π, P2) ≥ ν(Π, P, ū, v̄) +

(|u|
r

)
(|v|

r

)ν(Π, P, ū, v) + ν(Π, P, ū, v) + ν(Π, P, ū, v̄).

Multiply the first inequality by
(|u|

r

)
, the second by

(|v|
r

)
, and add; we obtain

(|u|
r

)
ν(Π, P1)+(|v|

r

)
ν(Π, P2) ≥ (

(|u|
r

)
+
(|v|

r

)
)ν(Π, P ). Since σ is a Π-maximizer, it follows that ν(Π, P1) =

ν(Π, P2) = ν(Π, P ). Therefore P1 and P2 are both Π-maximizing planar sets, and we
finish the proof as in Theorem 4. So there exists a layered Π-maximizer σ ∈ [k]n.
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3 The patterns 1p3q2r

We can think of a clumpy pattern π = πa1
1 · · ·πal

l ∈ [l]m as a weighted version of its
underlying permutation π̄ = π1 · · ·πl. When π̄ is the identity 12 . . . l, the pattern π is
nondecreasing. This case was handled in [2], where the following result is proved.

Proposition 8 Define a one-to-one correspondence between nondecreasing patterns of
length n and layered permutations of length n by

nondecreasing pattern π = 1a1 · · · lal ↔ layered permutation π̂ = [a1, . . . , al].

Then for any π and σ, ν(π, σ) = ν(π̂, σ̂), and there is a nondecreasing π-maximizer in
[n]n. In particular, δ(π) = δ(π̂).

Thus the packing density problem for such patterns can be reduced to the case of
layered permutations. It is natural to next consider other short permutations π̄. Since
packing density is invariant under the symmetries of reversal (π(i) → π(m − i + 1)) and
complement (π(i) → l−π(i)+1), there is only one other case with l ≤ 3, namely π̄ = 132.
We will show here that Conjecture 5 holds for these patterns.

Theorem 9 Let Π = {1p3q2r}, where p, q, r ≥ 1. Among all Π-maximizers σ ∈ [k]n,
there exists one which is layered.

Proof. First we show that we may assume q ≥ r. If π = πa1
1 · · ·πal

l is a clumpy pattern
where π̄ = π1 · · ·πl ∈ Sl, let π′

1 · · ·π′
l = π̄−1 and define π−1 = π′

1

aπ′
1 · · ·π′

l

aπ′
l ; in graphical

terms, π−1 is obtained from the weighted planar set corresponding to π by reflection in
the line x = y. (The point (i, πi) with weight ai reflects to the point (πi, i) with weight
ai, so for each j = 1, . . . , n we get the point (j, π′

j) with weight aπ′
j
.) The graphical

interpretation makes it clear that if π and σ are clumpy then ν(π, σ) = ν(π−1, σ−1).
Since the inverse of a layered word in [k]n is another layered word in [k]n, we can replace
π = 1p3q2r by π−1 = 1p3r2q in the statement of the theorem. Thus we may assume
without loss of generality that q ≥ r.

Given a clumpy word σ = σb1
1 · · ·σbk

k , where the σi are distinct and the bi are positive
integers, call the (unordered) partition n = b1 + · · ·+ bk the weight set of σ. We will prove
the following statement by induction on k:

Let σ ∈ [k]n be any clumpy word. Then there is a layered word σ′ ∈ [k]n with
the same weight set as σ such that ν(Π, σ′) ≥ ν(Π, σ).

For k ≤ 2 the claim is trivial, since ν(Π, σ) = 0 for all σ ∈ [k]n. So assume k ≥ 3
and let σ ∈ [k]n be a clumpy word. If some letter in [k] does not appear in σ, then
σ is order-isomorphic to a word in [k − 1]n and we can apply the inductive hypothesis.
So assume that every letter of [k] appears in σ, that is, σ is a weighted version of some
permutation σ̄ ∈ Sk. Let Σ ⊂ [k]n be the set of all clumpy words in [k]n with the same
weight set as σ. Then we may assume that ν(Π, σ) is maximal among all σ ∈ Σ. We will
say that σ is a Π-maximizer in Σ, since σ might not be a Π-maximizer in all of [k]n. Let P
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be the weighted planar set corresponding to σ. Consider the topmost point u1 of P . If u1

has weight less than q, then there cannot be any occurrences of 1p3q2r in P using u1, so
by removing the point u1 we obtain a word σ′ ∈ [k − 1]n−|u1| with as many Π-occurrences
as σ. By the inductive hypothesis we may replace σ′ by a layered word with at least as
many Π-occurrences and the same weight set. Now add a point u′

1 = (k, k) with weight
|u1|; this gives a layered word in [k]n with at least as many Π-occurrences and the same
weight set as σ. Therefore we will assume henceforth that u1 has weight at least q.

Now suppose σ is a Π-maximizer in Σ with weighted planar set P and there is a
sequence of points u1, . . . , uj such that

• u1 is the topmost point of P and has weight at least q;

• for each 2 ≤ i ≤ j, ui lies immediately below and to the right of ui−1.

Call such a sequence of points a chain of length j. First, suppose uj is the rightmost
point of P . Then the points u1, . . . , uj form a decreasing sequence above and to the
right of all other points of P . Let σ1 be the word corresponding to the points u1, . . . , uj

and let σ0 be the word corresponding to the other points of P ; then ν(Π, σ) = ν(Π, σ0) +
ν(1p, σ0)ν(3q2r, σ1). By the inductive hypothesis we may replace σ0 by a layered word
σ′

0 with the same weight set as σ0 such that ν(Π, σ′
0) ≥ ν(Π, σ0). Since σ0 and σ′

0 have
the same weight set, ν(1p, σ0) = ν(1p, σ′

0). Therefore the word σ′ = σ′
0σ1 has ν(Π, σ′) =

ν(Π, σ′
0) + ν(1p, σ′

0)ν(3q2r, σ1) ≥ ν(Π, σ). Now σ′ is a layered word with the same weight
set as σ, so the claim holds.

We now show that if σ is a Π-maximizer in Σ with weighted planar set P containing a
chain u1, . . . , uj, and uj is not the rightmost point of P , then we can find a Π-maximizer
σ′ ∈ Σ whose weighted planar set P ′ contains a chain of length j + 1. Introduce the
following notation: If P is a weighted planar set and U , V , W are subsets, let ν132(U, V, W )
be the number of occurrences of 1p3q2r in P such that 1 corresponds to a point u ∈ U ,
2 corresponds to a point v ∈ V , and 3 corresponds to a point w ∈ W . Symbolically, we
have

ν132(U, V, W ) =
∑(|u|

p

)(|v|
q

)(|w|
r

)

where the sum is taken over all triplets of points u ∈ U , v ∈ V , w ∈ W such that
ux < vx < wx and uyvywy is order-isomorphic to 132. Here we use ux and uy to denote
the x- and y-coordinates of a point u and |u| to denote its weight. Similarly we will

write ν13(U, V ), for example, to denote the sum of
(|u|

p

)(|v|
q

)
over pairs u ∈ U , v ∈ V

with u below and to the left of v, etc. (The notation ν132, ν13, . . . should be regarded as
shorthands for the unwieldy but more precise ν1p3q2r , ν1p3q , . . . ; in general 1 represents 1p,
3 represents 3q, and 2 represents 2r.) For example, if P is the planar set corresponding
to a clumpy word σ, then ν132(P, P, P ) = ν(Π, σ), and ν13(P, P ) = ν(1p3q, σ), etc.

Now let σ be a Π-maximizer in Σ whose weighted planar set P contains a chain u1,
. . . , uj . Let U = {u1, . . . , uj}, and let v be the topmost point among the points of P to
the right of U . Suppose that v is not the topmost point of P \ U ; that is, the set A of
points in P which lie above v and to the left of U is nonempty. We will show that moving

the electronic journal of combinatorics 11 (2004), #R80 10



U ′

V

V ′

U

A

B C

P2

P1

Figure 2: Lengthening a chain, part I

v up to lie above A but below U yields another Π-maximizer σ1 in Σ. Let V = {v}, let B
be the set of points in P to the left of U and below v, and let C be the set of points in P
to the right of U other than v (all of which lie below v). Then P = A ∪ B ∪ C ∪ U ∪ V .
Let V ′ = {v′}, where v′ is a copy of v, directly above v, and above A but below U ; and
let U ′ be a copy of U , directly below U , and below A but above v. See Figure 2. Set

P1 = A ∪ B ∪ C ∪ U ∪ V ′, P2 = A ∪ B ∪ C ∪ U ′ ∪ V.

Consider the quantity ν(Π, P1) − ν(Π, P ). We can expand ν(Π, P ) as the sum of the
terms ν132(X, Y, Z) over all X, Y , Z ∈ {A, B, C, U, V }. When we subtract this sum from
the corresponding expression for ν(Π, P1), all of the ν132 terms not involving V or V ′ will
cancel. Furthermore, since V and V ′ have different relative position only to A, all terms
not involving A will cancel. Finally, we can see in Figure 2 that all but two of the terms
involving both A and V or V ′ are zero, so

ν(Π, P1) − ν(Π, P ) = ν132(A, U, V ′) − ν132(B, A, V ).

Similarly, in P2 the only change is in the positions of U and U ′ relative to V , so

ν(Π, P2) − ν(Π, P ) = ν132(B, A, U ′) − ν132(A, U, U).

We want P1 to be a Π-maximizer as well, so assume for the sake of contradiction that
ν(Π, P1) < ν(Π, P ). Since ν132(A, U, V ′) − ν132(B, A, V ) = (ν13(A, U) − ν13(B, A))ν2(V

′),
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U

V ′

U ′

V

A B C

P4

P3

Figure 3: Lengthening a chain, part II

we conclude that ν13(A, U) < ν13(B, A). Now observe that

ν(Π, P2) − ν(Π, P ) = ν132(B, A, U ′) − ν132(A, U, U)

≥ (ν13(B, A) − ν13(A, U))ν2(U)

> 0

because ν13(B, A) > ν13(A, U) and U has a point u1 of weight |u1| ≥ q ≥ r so ν2(U) > 0.
This is a contradiction, as P is a Π-maximizer. Therefore ν(Π, P1) ≥ ν(Π, P ), so σ1 is
a Π-maximizer as claimed. So if v does not lie above all points to the left of U , moving
it above these points yields another Π-maximizer in Σ. Hence we will assume that v lies
immediately below uj.

Now we show by a similar argument that v can be moved to lie immediately to the
right of uj. If v does not already lie immediately to the right of uj, then the set B of
points of P which lie horizontally between uj and v is nonempty. We will show that
moving v horizontally past B yields another Π-maximizer σ3 ∈ Σ. Let A be the set of
points in P to the left of U and let C be the set of points in P to the right of v. Then
P = A∪B ∪C ∪ U ∪ V . Let V ′ = {v′} where v′ is a copy of v moved horizontally to the
left past B, and let U ′ be a copy of U moved horizontally to the right past B. Set

P3 = A ∪ B ∪ C ∪ U ∪ V ′, P4 = A ∪ B ∪ C ∪ U ′ ∪ V.

From Figure 3 we see that

ν(Π, P3) − ν(Π, P ) = ν132(A, V ′, B) − ν132(B, V, C)

and

ν(Π, P4) − ν(Π, P ) = ν132(B, U ′, U ′) + ν132(B, U ′, V ) + ν132(B, U ′, C) − ν132(A, U, B).

Suppose that P3 is not a Π-maximizer, so ν(Π, P3) < ν(Π, P ). Since ν(Π, P3)−ν(Π, P ) =
ν132(A, V ′, B) − ν132(B, V, C) = (ν12(A, B) − ν12(B, C))ν3(V ), we must have ν12(A, B) <
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ν12(B, C). Therefore

ν(Π, P4) − ν(Π, P ) = ν132(B, U ′, U ′) + ν132(B, U ′, V ) + ν132(B, U ′, C) − ν132(A, U, B)

≥ (ν12(B, C) − ν12(A, B))ν3(U)

> 0

because ν12(B, C) − ν12(A, B) > 0 and ν3(U) > 0. This is a contradiction, so P3 must be
a Π-maximizer. Now P3 has a chain of length j + 1, as desired.

To summarize the proof of the claim, we showed that if we start with a Π-maximizer
σ in Σ, we may assume that σ has topmost point u1 with weight at least q. Then u1 is a
chain of length 1 in σ. If we have a Π-maximizer σ with a chain of length j, then either
the last point of the chain is the rightmost point of σ, and the claim follows from the
inductive hypothesis, or we can find another Π-maximizer σ′ with a chain of length j +1.
Clearly the process of lengthening the chain must terminate at some point, proving the
claim.

The statement of the theorem follows, because by Theorem 6, there exists a clumpy
Π-maximizer σ ∈ [k]n, so by the claim, there is a layered Π-maximizer σ′ ∈ [k]n.

4 Computations of packing density

The results of the preceding two sections describe the structure of π-maximizers for certain
patterns π. Now we will use these tools to return to our original goal of computing values
of δ(π). We will need the following results on simple permutations, which can be found
in [3].

Definition 8 A layered permutation π with l layers is simple if there is a sequence of
permutations σn ∈ Sn such that each permutation σn has l layers and limn→∞ d(π, σn) =
δ(π).

Proposition 10 If π = [a1, . . . , al] ∈ Sm is a simple permutation, then

δ(π) =

(
m

a1, . . . , al

)
aa1

1 · · ·aal
l

mm
.

Theorem 11 Let π = [a1, . . . , al] ∈ Sm. If ai ≥ log2 (l + 1) for all i, then π is a simple
permutation.

We now show how the conclusion of Conjecture 5 can be used to bound δ(π) when π
is a layered pattern.

Proposition 12 Let π = π1 · · ·πl be a layered pattern, where π1 < · · · < πl are the
layers of π. Let mi be the length of πi, and let ρ = 1m1 · · · lml . Suppose there exists an
infinite sequence of layered words σ(j) of lengths |σ(j)| → ∞ such that d(π, σ(j)) → δ(π).
(In particular, this condition holds if for every n there is a layered π-maximizer in [n]n.)
Then

δ(π) ≤ δ(ρ)δ(π1) · · · δ(πl).
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Proof. For convenience let m = m1 + · · · + ml be the length of π, and write δ0 =
δ(ρ)δ(π1) · · · δ(πl). We first show that for any layered word σ, ν(π, σ) ≤ |σ|m

m!
δ0. Write

σ = σ1σ2 · · ·σk where σ1 < σ2 < · · · < σk are the layers of σ, and let si be the number of
letters in layer σi. Let n = |σ| = s1 + · · ·+ sk. We get an occurrence of π in σ by finding
an occurrence of π1 in σi1 , π2 in σi2 , . . . , πl in σil for some i1 < i2 < · · · < il; therefore

ν(π, σ) =
∑

1≤i1<···<il≤k

ν(π1, σi1) · · · ν(πl, σil)

≤ ∑
1≤i1<···<il≤k

sm1
i1

m1!
δ(π1) · · · s

ml
il

ml!
δ(πl) (by Lemma 2)

= δ(π1) · · · δ(πl)
∑

1≤i1<···<il≤k

sm1
i1 · · · sml

il

m1! · · ·ml!
.

Now let τc = 1cs1 · · · kcsk; then

∑
1≤i1<···<il≤k

sm1
i1 · · · sml

il

m1! · · ·ml!
. = lim

c→∞
∑

1≤i1<···<il≤k

(
csi1
m1

)
· · ·

(
csil
ml

)
cm

= lim
c→∞

ν(1m1 · · · lml , τc)

cm

≤ lim
c→∞

(cn)m

m!
δ(ρ)

cm
(by Lemma 2)

=
nm

m!
δ(ρ).

Combining these results gives

ν(π, σ) ≤ δ(π1) · · · δ(πl)
nm

m!
δ(ρ) =

nm

m!
δ0,

as claimed. Now σ(j) is layered for each j so therefore

δ(π) = lim
j→∞

d(π, σ(j)) = lim
j→∞

ν(π, σ(j))(|σ(j)|
m

) ≤ lim
j→∞

|σ(j)|m
m!(|σ(j)|
m

)δ0 = δ0,

proving the upper bound.

On the other hand, for certain classes of layered patterns we can explicitly construct
families of words which asymptotically attain the bound of Proposition 12, as shown
below.

Proposition 13 With the same notation as in Proposition 12, suppose that either the
permutation [m1, . . . , ml] is simple, or that mi > 1 for at most one value of i. Then

δ(π) ≥ δ(ρ)δ(π1) · · · δ(πl).

So if π also satisfies the conclusion of Conjecture 5 then equality holds.
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Proof. First we consider the case where the permutation [m1, . . . , ml] is simple. Let
ε > 0 and let N ≥ m. By the definition of a simple permutation, we can find an n > N
and τ̂ ∈ Sn with l layers such that

d([m1, . . . , ml], τ̂) ≥ δ([m1, . . . , ml]) − ε.

By Proposition 8, there is a corresponding nondecreasing word τ ∈ [l]n such that d(ρ, τ) ≥
δ(ρ)−ε. Write τ = 1s12s2 · · · lsl. For each j = 1, . . . , l, let σj ∈ [n]sj be a word maximizing

ν(πj , σj). By Lemma 2, ν(πj , σj) ≥
(

sj

mj

)
δ(πj). Relabel the symbols of σj so as to use

only symbols from the set {s1 + · · ·+ sj−1 +1, . . . , s1 + · · ·+ sj}; then σ1 < σ2 < · · · < σl.
Let σ = σ1σ2 · · ·σl. Then σ ∈ [n]n, and the number of occurrences of π in σ is

ν(π, σ) ≥ ν(π1, σ1)ν(π2, σ2) · · ·ν(πl, σl)

≥
(

s1

m1

)(
s2

m2

)
· · ·

(
sl

ml

)
δ(π1)δ(π2) · · · δ(πl)

= ν(ρ, τ)δ(π1)δ(π2) · · · δ(πl).

Since d(π, σ) = ν(π, σ)/
(

n
m

)
and d(ρ, τ) = ν(ρ, τ)/

(
n
m

)
,

d(π, σ) ≥ d(ρ, τ)δ(π1)δ(π2) · · · δ(πl)

≥ (δ(ρ) − ε)δ(π1)δ(π2) · · · δ(πl).

So δ(π, n, n) ≥ d(π, σ) ≥ (δ(ρ) − ε)δ(π1)δ(π2) · · · δ(πl). Since this holds for all n >
N , we obtain δ(π) ≥ (δ(ρ) − ε)δ(π1)δ(π2) · · · δ(πl), and ε > 0 is arbitrary so δ(π) ≥
δ(ρ)δ(π1)δ(π2) · · · δ(πl) as claimed.

The case where mi > 1 for at most one value of i is similar. Say mi = 1 for i 6= i0. Let
n ≥ m and let τ ∈ [n]n be a ρ-maximizer; since ρ is nondecreasing we may take τ to be

nondecreasing. By Lemma 2, ν(ρ, τ) ≥
(

n
m

)
δ(ρ). Write τ = 1s12s2 · · · rsr . For each j = 1,

. . . , r, let σj ∈ [n]sj be a word maximizing ν(πi0 , σj). By Lemma 2, ν(πi0 , σj) ≥
(

sj

mj

)
δ(πi0),

and for i 6= i0, mi = 1 so ν(πi, σj) = sj =
(

sj

mi

)
. Relabel the symbols of σj so as to use

only symbols from the set {s1 + · · ·+ sj−1 +1, . . . , s1 + · · ·+ sj}; then σ1 < σ2 < · · · < σl.
Let σ = σ1σ2 · · ·σl. Then σ ∈ [n]n, and

ν(π, σ) =
∑

1≤j1<···<jl≤r

ν(π1, σj1) · · ·ν(πl, σjl
)

≥ ∑
1≤j1<···<jl≤r

(
σj1

m1

)
· · ·

(
σjl

ml

)
δ(πi0)

= ν(ρ, τ)δ(πi0)

= ν(ρ, τ)δ(π1) · · · δ(πl)

since δ(πi) = 1 for i 6= i0. It follows that

δ(π, n, n) ≥ d(π, σ) ≥ d(ρ, τ)δ(π1) · · · δ(πl) ≥ δ(ρ)δ(π1) · · · δ(πl).

Since n is arbitrary, δ(π) ≥ δ(ρ)δ(π1) · · · δ(πl).
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Corollary 14 δ(1p3q2r) = δ([p, q + r])δ([q, r]).

Proof. Write π = 1p3q2r = π1π2 where π1 = 1p, π2 = 3q2r and ρ = 1p2q+r. By Theorem
9, the condition of Proposition 12 holds. When p > 1, the permutation [p, q + r] is simple
by Theorem 11, and when p = 1, the permutation [p, q + r] has only one part of size
greater than one; hence the condition of Proposition 13 holds as well. So we conclude
that

δ(π) = δ(ρ)δ(π1)δ(π2) = δ(1p2q+r)δ(1p)δ(3q2r) = δ([p, q + r])δ([q, r]),

as claimed.

Using the formulas δ([r, s]) =
(

r+s
r

)
rrss

(r+s)r+s for r, s ≥ 2 and

δ([r, 1]) = r(1 − α)αr−1, where 0 < α < 1, (1 − rα)r+1 = 1 − (r + 1)α,

we can compute exactly the packing density of any pattern of the form 1p3q2r.

Corollary 15 Let π̄ = [a1, . . . , al] be a layered permutation, and let π be the permutation
obtained by repeating each letter of π̄ r times. If [ra1, . . . , ral] is simple, then δ(π) =
δ([ra1, . . . , ral])δ(π1) · · · δ(πl), where πi is the layered permutation with ai layers of size r.

Proof. Follows from Theorem 7 and Propositions 12 and 13.
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