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Abstract

We extend the lower bound in [15] for the outerplanar crossing number (in other
terminologies also called convex, circular and one-page book crossing number) to
a more general setting. In this setting we can show a better lower bound for the
outerplanar crossing number of hypercubes than the best lower bound for the planar
crossing number. We exhibit further sequences of graphs, whose outerplanar cross-
ing number exceeds by a factor of log n the planar crossing number of the graph. We
study the circular arrangement problem, as a lower bound for the linear arrange-
ment problem, in a general fashion. We obtain new lower bounds for the circular
arrangement problem. All the results depend on establishing good isoperimetric
functions for certain classes of graphs. For several graph families new near-tight
isoperimetric functions are established.
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1 Introduction

This paper is a sequel to our paper with Shahrokhi [15]. We use similar notation as in that
paper: G = (V (G), E(G)) denotes a graph and dv denotes the degree of v ∈ V . A drawing
of G is a placement of the vertices into distinct points of the plane and a representation of
edges uv by simple continuous curves connecting the corresponding points and not passing
through any point corresponding to a vertex other than u and v. A crossing is a common
interior point of two edges of G. We also assume that any two curves representing the
edges of G have at most one interior point in common and that two curves incident to the
same vertex do not cross. Let cr(G) denote the crossing number of G, i.e. the minimum
number of crossings over all possible drawings of G in the plane with the above properties
(see [14] or [20]).

An important application area of crossing numbers is automated graph drawing. We
know that the number of crossings influences the aesthetical properties and readability of
graphs [6, 12].

An outerplanar (also called circular or convex) drawing of G places the vertices on a
circle and draws the edges as straight-line segments. The outerplanar crossing number of
G is the minimum number of pairs of crossing edges over all outerplanar drawings of G.

Let ν1(G) denote the outerplanar [10] crossing number of G. There are other nota-
tions and terminologies used for this quantity. In [15] we used the term convex crossing
number and notation cr∗(G). As the outerplanar drawing is topologically equivalent to
the one-page drawing, we returned to the one-page book crossing number notation ν1(G)
in accordance with [14].

In our paper with Shahrokhi [15] we showed the following upper bound for the outer-
planar crossing number through a divide-and-conquer algorithm:

Theorem 1. ν1(G) = O
(
(cr(G) +

∑
v∈V d2

v) log |V |).
We also showed on the example of the grid Pn×Pn, where Pn is the path on n vertices,

that Theorem 1 is the best possible, since ν1(Pn×Pn) = Θ(n2 log n). This example hinges
on a general lower bound for ν1(G) that we are going to present now.

We say that f(x) is an isoperimetric function for G, if for any k-vertex subset U of
V and k ≤ |V |/2, there are at least f(k) edges between U and V \ U . We require that
f(0) = 0. Define the difference function of f , denoted by ∆f as

∆f(i) = f(i + 1) − f(i)

for any i = 0, 1, ..., b |V |
2
c − 1, and set

∆2f(i) = (∆(∆f))(i) = ∆f(i + 1) − ∆f(i),

for any i = 0, 1, ..., b |V |
2
c − 2. In [15] we have found the following lower bound for the

outerplanar crossing number.
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Theorem 2. Assume that f(x) is an isoperimetric function for G = (V, E), |V | = n and
∆f is non-negative and decreasing till bn

2
c − 1. Then

ν1(G) ≥ −n

8

bn
2 c−2∑
j=0

f(j)∆2f(j) − 1

2

∑
v∈V

d2
v. (1)

In this paper we show an extension of Theorem 2 (Theorem 3), which allows three
different kind of improvement on Theorem 2. We will make use of all of them in Section 6.
In particular, one extension relaxes the condition that ∆(f) is decreasing till b |V |

2
c − 1.

This extension enables us to establish a near tight lower bound for the outerplanar crossing
number of the hypercube. Note that Theorem 2 cannot be applied to the hypercube, since
its isoperimetric function is not increasing till b|V |/2c−1. We also show in Subsections 6.1
and 6.5 that even if the isoperimetric function is increasing till this point, our extension
can improve the lower bound of Theorem 2 by a constant multiplicative factor.

In addition to the square lattice Pn × Pn, [15] showed that “fat finite chunks” of
the hexagonal lattice graph also have a logarithmic gap between cr(G) +

∑
v d2

v and the
outerplanar crossing number. The proof in [15] traced back this problem to that of the
square lattice by ad hoc methods. Now we give a more direct proof using Theorem 2, by
establishing isoperimetric functions.

In [15] the logarithmic gap between cr(G)+
∑

v d2
v and the outerplanar crossing number

was shown only for sparse graphs. We provide here two families of dense graphs (Theo-
rems 11, 12) with the same logarithmic gap. The basic tool is providing new isoperimetric
functions for these graphs (Theorems 7, 8).

We study the circular arrangement problem, which sets a lower bound for the usual
linear arrangement problem. Recall that the linear arrangement problem requires the
placement of the vertices of the graph into integer positions, and minimizes the sum of edge
lengths over all placements. The circular arrangement problem requires the placement of
the vertices of the graph into equidistant positions on a circle of perimeter |V (G)|, and
minimizes the sum of lengths of paths on the circle, into which the edges of the graph
G are embedded on the circle, over all placements; and edges are embedded onto the
shorter side of the circle. The circular arrangement problem has been introduced recently
by Ching-Jung Guu [3], who solved in his thesis the circular arrangement problem for
the hypercube, and Bezrukov and Schroeder [1], who showed that for trees the solutions
for the linear arrangement problem and the circular arrangement problem are the same.
The generalized F -linear arrangement and generalized F -circular arrangement problems
assume a given function F (x), and instead of summing up edge length, sum up F (x)
evaluated at the edge lengths. Probably the first occurence of the generalized F -linear
arrangement problem was in the paper of Crimmins, Horwitz, and Palermo [5], who solved
this problem in the case of F (x) = x2 for the hypercube. Juvan and Mohar [9] studied
the generalized F -linear arrangement problem for F (x) = xp for p > 0, and in particular
for p = 1, 2, and developed heuristics.

We show how to adapt our method of Theorems 2 and 3 to prove new lower bounds
for the circular arrangement problem. These lower bounds are particularly good when
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F (x) is near x1/2.

2 A Better Lower Bound

Theorem 3. Assume that we have a family of graphs G = Gn on n vertices for infinitely
many n such that f(x) = fn(x) is an isoperimetric function for G = (V, E), f(0) = 0 and
f(x) > 0 for x ≥ 1. For the sequences 0 ≤ s = s(n) ≤ bn

2
c−1 and 0 ≤ s0 = s0(n) ≤ s(n),

assume that ∆f is non-negative and decreasing till s and for each s ≤ x ≤ bn
2
c we have

f(x) ≥ f(s0). Define

mf,s(l) =
f(l)

f(min{b l
2
c + 1, s + 1}) and κ(f, s0, s) = min

s0≤l≤bn
2
c

mf,s(l). (2)

Assume that κ = κn has a universal upper bound as n → ∞, and in addition, as n → ∞,

ns0 = o(|E(G)|) or f(s0)|E(G)| = o
( ∑

uv∈E:
l(u,v)≥s0

f(l(u, v))
)
. (3)

Then we have

ν1(G) ≥ −κ(f, s0, s)(1 − o(1)) · n

8

s−1∑
j=1

f(j)∆2f(j) − 1

2

∑
v∈V

d2
v. (4)

Proof. We follow the proof in [15] and modify it where it is necessary. Let D be a
outerplanar drawing of G. Without loss of generality we may assume that vertices in D
are placed on the perimeter of the unit circle in equidistant positions. Label the vertices
by 0, 1, 2, ..., n − 1 according to their cyclic order. For simplicity, we will often identify
a vertex with its corresponding integer. For u, v ∈ V define the distance l(u, v) between
them by

l(u, v) = min{|u − v|, n − |u − v|}. (5)

Let us observe that (3) implies that∑
uv∈E:

l(u,v)<s0

f(l(u, v)) ≤
∑
uv∈E:

l(u,v)<s0

f(s0) ≤ f(s0) min

(
ns0, |E(G)|

)

= o

( ∑
uv∈E

l(u,v)≥s0

f(l(u, v))

)
, (6)

where the last equality follows from the fact that for x ≥ s0 we have f(x) ≥ f(s0).
For any uv ∈ E, let c(u, v) denote the number of crossings of the edge uv with other

edges in D, and observe, as in [15], that c(u, v) ≥ f(l(u, v)) − du − dv. Let c(D) denote
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the number of crossings in the drawing D. We conclude that

c(D) =
1

2

∑
uv∈E

c(u, v) ≥ 1

2

∑
uv∈E

(f(l(u, v)) − du − dv)

=
1

2

∑
uv∈E

f(l(u, v)) − 1

2

∑
v∈V

d2
v. (7)

We say that edge uv ∈ E in the drawing D covers a vertex i if the unique shortest path
between u and v (using only the edges on the boundary of the convex n-gon) contains i.
If the shortest path is not unique (this happens if n = 2l(u, v)), then we pick arbitrarily
one of the two shortest paths, and declare its vertices be covered by the uv edge. (Note
that an edge covers its endpoints.) For any edge e = uv and any vertex i define loadu,v(i),
as

loadu,v(i) =

{
∆f

(
min{l(u, i), l(i, v)}

)
if e covers i,

0 otherwise.
(8)

Let i ∈ V . For 0 ≤ t, Ei,t to be the set of all edges uv ∈ E covering vertex i in D such
that min{l(i, u), l(i, v)} ≤ t. Observe that Ei,j−1 ⊆ Ei,j. Note that for any i ∈ V , and any
uv ∈ Ei,j \ Ei,j−1, we have that i is at distance j from one of u and v, and at distance at
least j from the other one. Therefore, for any i ∈ V , and any uv ∈ Ei,j \ Ei,j−1, we have
loadu,v(i) = ∆f(j), according to the definition of the load. Let kt denote

∑
i∈V |Ei,t|.

It is easy to see that for any uv ∈ E

∑
i∈V : uv∈Ei,s

loadu,v(i) ≤ 2

min(b l(u,v)
2 c,s)∑

j=0

∆f(j) = 2f

(
min

(⌊
l(u, v)

2

⌋
, s

)
+1

)
. (9)

(The inequality uses the fact that ∆f ≥ 0 till s.)
We have∑

uv∈E

∑
i: uv∈Ei,s

loadu,v(i) =
∑
i∈V

s∑
j=0

∑
uv∈Ei,j\Ei,j−1

loadu,v(i)

=
∑
i∈V

∑
uv∈Ei,0

loadu,v(i) +

s∑
j=1

∑
i∈V

∑
uv∈Ei,j\Ei,j−1

loadu,v(i)

= k0∆f(0) +
s∑

j=1

(kj − kj−1)∆f(j),

where the last equality is obtained by observing that the number of terms in the sum∑
i∈V

∑
uv∈Ei,j\Ei,j−1

loadu,v(i), is kj − kj−1. It follows that

∑
uv∈E

2f

(
min

(⌊
l(u, v)

2

⌋
, s

)
+1

)
≥

s−1∑
j=0

kj(∆f(j) − ∆f(j + 1)) + ks∆f(s). (10)
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Note that up to (10) we did not use the assumption that ∆f is decreasing, we used only
the fact that ∆f is non-negative till s. Since ks∆f(s) ≥ 0, we can drop the last term
from the lower bound in (10). We also argue—as in [15]—that for all j ≤ n/2,

kj ≥ 1

2
nf(j). (11)

To see this, consider any j consecutive integers i, i + 1, ..., i + j − 1. Then at least f(j)
edges leave this j-set, and those edges must cover either i or i + j − 1. We may have
counted some cases twice, since a vertex i is an endpoint of two intervals of j, and if an
edge goes from the first interval to the second, then this edge is counted twice covering i.

Definition (2) implies that for l(u, v) ≥ s0

f

(
min(

⌊
l(u, v)

2

⌋
, s)+1

)
≤ 1

κ(f, s0, s)
f

(
l(u, v)

)
. (12)

Combining (6), (12), and the universal boundedness of κ = κn, we obtain∑
uv∈E

f

(
min(

⌊
l(u, v)

2

⌋
, s)+1

)
≤ 1 + o(1)

κ(f, s0, s)

∑
uv∈E

f

(
l(u, v)

)
. (13)

We conclude using (10), (11), (13) and (7), that

−n

2

s−1∑
j=0

f(j)∆2f(j) ≤ 2
∑
uv∈E

f

(
min(

⌊
l(u, v)

2

⌋
, s)+1

)

≤ 2 + o(1)

κ(f, s0, s)

∑
uv∈E

f

(
l(u, v)

)
≤ 4 + o(1)

κ(f, s0, s)

(
c(D) +

1

2

∑
v

d2
v

)
.

Note that in the first inequality we used (11) and the condition that ∆f(j)−∆f(j+1) ≥ 0,
i.e. that ∆f is decreasing till s. This, together with the fact that f(0) = 0, finishes the
proof.

Of course, the choice s0 = 0 is always possible, but then l = 1 in (2) does not allow
to have κ > 1, which is our goal to obtain improvement over (1) by (4). Alternatively, if
f(x) is a smooth function, one can get a more convenient estimation than in Theorem 3.

Theorem 4. Under the assumptions of Theorem 3, with additional assumptions that for
an s ≤ bn

2
c − 2 on the interval (0, s + 1) f ′ and f ′′ exist, f ′ ≥ 0, f ′′ ≤ 0 and increasing,

one can change the right hand side of (4) to

ν1(G) ≥ −n

8
κ(f, s0, s)(1 − o(1))

∫ s−1

0

f(x)f ′′(x + 3)dx − 1

2

∑
v∈V

d2
v. (14)
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Proof. Recall Taylor’s formula with remainder:

f(j + 2) = f(j + 1) + f ′(j + 1) +
1

2
f ′′(ξ) (j + 1 < ξ < j + 2),

f(j) = f(j + 1) − f ′(j + 1) +
1

2
f ′′(η) (j < η < j + 1),

∆f(j) − ∆f(j + 1) = −1

2
(f ′′(ξ) + f ′′(η)) > −f ′′(j + 2).

Now

−
s−1∑
j=1

f(j)∆2f(j) ≥ −
s−1∑
j=1

f(j)f ′′(j + 2), (15)

and for any 1 ≤ j ≤ s − 1, one has

−f(j)f ′′(j + 2) ≥ −
∫ j

j−1

f(x)f ′′(x + 3)dx. (16)

(14) is easily obtained from (4) using (15), and (16).

Even if f(x) is not as smooth as required above, Theorem 4 still applies with slight
modification, if we allow appropriate error terms arising at the “bad” points of f(x).
There are many ways to handle this problem. We may relax the additional assumptions
of Theorem 4 as follows. f ′ and f ′′ may be undefined in a bounded number of points in
(0, s+1), but f ′ ≥ 0, f ′′ ≤ 0 and f ′′ must be increasing in each of the subintervals between
the special points. Assume that max[1,s+1] |fn(x)∆2fn(x)| and max[1,s+1] |fn(x)f ′′

n(x + 3)|
are little-oh the right-hand side of (14) as n → ∞. Then Theorem 4 still holds. This
relaxation of Theorem 4 allows to prove Theorems 11 and 12 by integrating the piecewise
smooth isoperimetric functions from Theorems 7 and 8. Similar relaxation can be given
for the conditions of Theorem 5 as well.

3 Circular Arrangement Problem

We define the generalized F -linear arrangement problem as follows. Let us be given a
non-negative and increasing real function F (x). Let h be a bijection between V (G) and
the set of integers {1, 2, ..., |V |}. Define the generalized F -linear arrangement value as

LF (h, G) =
∑

uv∈E(G)

F (|h(u) − h(v)|). (17)

The generalized F -linear arrangement problem asks for

LF (G) = min
h

LF (h, G) = min
h

∑
uv∈E(G)

F (|h(u) − h(v)|). (18)

We define similarly the generalized F -circular arrangement problem as follows. Let us
be given a non-negative and increasing real function F (x). Let h be a bijection between

the electronic journal of combinatorics 11 (2004), #R81 7



V (G) and points {1, 2, ..., |V |} placed equidistantly on a circle in this order. Define the
generalized F -circular arrangement value as

Lo
F (h, G) =

∑
uv∈E(G)

F (l(h(u), h(v))), (19)

where l is the distance function defined in (5). The generalized F -linear arrangement
problem asks for

Lo
F (G) = min

h
Lo

F (h, G) = min
h

∑
uv∈E(G)

F (l(h(u), h(v))). (20)

It is clear that Lo
F (h, G) ≤ LF (h, G), and consequently Lo

F (G) ≤ LF (G). Therefore, it
is of interest to set lower bounds on the generalized F -circular arrangement problem.

Theorem 5. Assume that we have a family of graphs G = Gn on n vertices for infinitely
many n, f(x) = fn(x) ≥ 0 is an isoperimetric function for G = (V, E). Assume that
F (x) > 0 for x ≥ 1 and F (0) = 0, a function not dependent on n. For the sequences
0 ≤ s = s(n) ≤ bn

2
c − 1 and 0 ≤ s0 = s0(n) ≤ s(n), assume that ∆F is non-negative and

decreasing till ∞. Define

mF,s(l) =
F (l)

F (min{b l
2
c + 1, s + 1}) and κ(F, s0, s) = min

s0≤l≤bn
2
c

mF,s(l).

Assume that κ = κn has a universal upper bound as n → ∞, and in addition, as n → ∞,

ns0 = o(|E(G)|) or F (s0)|E(G)| = o
(∑

uv∈E:
l(u,v)≥s0

F (l(u, v))
)
. Then we have

Lo
F (G) ≥ −κ(F, s0, s)(1 − o(1)) · n

4

s−1∑
j=0

f(j)∆2F (j). (21)

Furthermore, with additional assumptions that for an s(n) ≤ bn
2
c − 2, on the interval

(0, s + 1) F ′ and F ′′ exist, F ′ ≥ 0, F ′′ ≤ 0 and increasing, one can change the right hand
side of (21) to

−κ(F, s0, s)(1 − o(1)) · n

4

∫ s−1

1

f(x)F ′′(x + 3)dx. (22)

Proof. Mutatis mutandis, we follow the proof of Theorem 3. We define the load as in (8),
but with ∆F instead of ∆f . Formula (9) is substituted by

∑
i∈V :uv∈Ei,s

loadu,v(i) ≤ 2

min{b l(u,v)
2 c,s}∑

j=0

∆F (j) = 2F

(
min

(⌊
l(u, v)

2

⌋
, s

)
+1

)
. (23)

We obtain∑
uv∈E

F (l(u, v)) ≥ κ(F, s0, s)(1 − o(1))
∑
uv∈E

F

(
min

(⌊
l(u, v)

2

⌋
, s

)
+1

)
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as we obtained (13). Using (23), the partial summation leading to (10), and formula (11)
as it is, we obtain:

1

2

∑
uv∈E

∑
i∈V : uv∈Ei,s

loadu,v(i) ≥ −n

4

s−1∑
j=0

f(j)∆2F (j).

Finally, (22) is easily obtained from (21) using Taylor’s formula with remainder, like in
the argument in the previous section.

4 Citing Isoperimetric Inequalities

It is clear that the complete graph Kn has isoperimetric function

f(x) = x(n − x). (24)

For the hypercube Qn on 2n vertices, Chung et al. [4] established the isoperimetric
function

f(x) = x(n − log2 x). (25)

Bollobás and Leader [2] established the isoperimetric function

f(x) =
√

2x (26)

for the n × n grid Pn × Pn, i.e. the Cartesian product of two n-vertex paths Pn. More
generally, they established the isoperimetric function f(x)

f(x) =

{√
2x if x ≤ 1

2
n2;

n if 1
2
n2 ≤ x ≤ kn

2

(27)

for the n× k grid Pn ×Pk, i.e. the Cartesian product of an n-vertex path with a k-vertex
path, for n ≤ k. Tillich [21] has made a substantial study of isoperimetric inequalities in
Cartesian product graphs. For Kn

p , the n-th Cartesian power of the complete graph Kn,
he proved

f(x) = (p − 1)x(n − logp x), (28)

which gives back the isoperimetric inequality (25) for the hypercube for p = 2. For
the Cartesian power P n of the Petersen graph P , Tillich [21] provided two isoperimetric
functions that are incomparable:

f1(x) = 2x(5n − x)/5n (29)

f2(x) = 2x(n − log5 x). (30)

Recall the definition of the edge-forwarding index π(G) of a graph G. For every ordered
pair of vertices (a, b), where a 6= b ∈ V (G), assign a path of G connecting a to b. The
congestion of an edge is the number of paths using this edge, and the congestion of the
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path system is the maximum congestion of edges. The edge-forwarding index π(G) of the
graph G is the minimum congestion of any such path system. Now, we have immediately
from the definition the following isoperimetric function:

f(x) =
2x(n − x)

π(G)
, (31)

where n is the number of vertices. Note that the edge-forwarding index is also studied
under the name optimal integral concurrent multicommodity flow.

5 Proving Relevant Isoperimetric Inequalities

In this section we prove isoperimetric inequalities for one sparse and two dense graphs
closely related to the grid. By applying Theorem 2 we get tight lower bounds in section
6.

First, we are going to study a relative of the grid, which we call a rhombus of hexagons,
see Fig. 1.

Figure 1: The 3 × 3 rhombus of hexagons.

Theorem 6. The following is an isoperimetric function for a rhombus of hexagons with
n > n0 vertices:

f(x) =
1

3

√
x. (32)
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Proof. Observe that by contracting all horizontal edges in the rhombus of hexagons, we
obtain an ordinary square grid. With two exceptions at the corners of the grid, vertices
of the square grid have two pre-images, and the exceptional vertices have just one.

Let us be given a subset X of vertices of the rhombus of hexagons, with x = |X|,
x ≤ n/2. Assume that x = a + 2b + c, where a denotes the number of vertices from X
which occur alone on a horizontal edge, b denotes the number of pairs of vertices from
X which occur on the same horizontal edge, and c denotes the number of exceptional
vertices from X.

If a ≥ 1
3

√
x, then we have a horizontal edges between X and X in the rhombus of

hexagons, and we are at home. Therefore we may assume a ≤ 1
3

√
x ≤ 1

3

√
n/2; and as we

noted above, c ≤ 2.
Let X ′ denote the set of vertices in the square grid, which have at least one pre-image

in X. Clearly |X ′| = a + b + c. It is easy to check that edges between X ′ and (X ′)
correspond to distinct edges between X and X, except in the case shown in Fig. 2, where
2 edges in the square grid correspond to a single edge in the rhombus of hexagons.

t

u v

w

t’

w’

u’=v’

Figure 2: t, u, w ∈ X, v ∈ X; t′, w′ ∈ (X ′), u′ = v′ ∈ X ′. A single edge in E(X, X) may
correspond to two edges in E(X ′, (X ′)).

Therefore, |E(X, X)| ≥ 1
2
|E(X ′, (X ′))|. The square grid has n

2
+ 1 vertices, and

|X ′| ≤ n
4

+ 1
3

√
n/2 + 2. Formula (26) applies to |E(X ′, (X ′))|, if |X ′| ≤ n

4
; and since

|X ′| can only slightly exceed n
4
, for sufficiently large n, a slightly weaker formula holds,

reducing 2 to 9/5: |E(X ′, (X ′))| ≥
√

9
5
(a + b + c). Combining the observations yields

|E(X, X)| ≥ 1
2

√
9
5
(a + b + c) ≥ 1

2

√
9
10

x ≥ 1
3

√
x.

Next we study the isoperimetric inequality of two graphs closely related to the grid.
Let P (n, k) denote the graph that we obtain from an n-vertex path by joining vertices
whose distance in the path is at most k. Let G(n, k) denote the Cartesian product
P (n, k) × P (n, k). We will find an isoperimetric function for G(n, k) in the case when k
is an even divisor of 2n. To set lower bounds, we first study the isoperimetric problem in
G(k

2
, k

2
) = K k

2
× K k

2
.
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Lemma 1. Let 0 < c < 1/2 and 2/3 ≤ d ≤ 1. We put the vertices of K k
2
× K k

2
into k

2

rows and k
2

columns in the natural way. For any X ⊂ V (K k
2
× K k

2
),

(i) If a row S has the property, that |X∩S| ≤ (1−c)k
2
, then |E(X∩S, X∩S)| ≥ ck

2
|X∩S|.

(ii) If at least c|X| elements of X fall into rows S such that |X ∩ S| ≤ (1 − c)k
2
, then

|E(X, X)| ≥ c2k
2
|X|.

(iii) If |X| ≤ (1 − 2c)3(k
2
)2, then |E(X, X)| ≥ c2k

2
|X|.

(iv) If |X| ≤ 1
3
(k

2
)2, then |E(X, X)| ≥ k

86
|X|.

(v) If |X| ≤ 2
3
(k

2
)2, then |E(X, X)| ≥ k

501
|X|.

(vi) If |X| = d(k
2
)2, then |E(X, X)| ≥ k(1−d)

86d
|X|.

Proof. (i) is trivial, (ii) is immediate from (i). Parts (iv) and (v) easily follow from
(iii) by setting c = 1

2
[1 − (1/3)1/3] and c = 1

2
[1 − (2/3)1/3], respectively. To show (iii),

assume that the conditions of (ii) fail for the rows as well as for the colums (otherwise
|E(X, X)| ≥ c2k

2
|X|). Then at least (1 − c)|X| vertices of X fall into rows S such that

|X ∩ S| ≥ (1 − c)k
2
. Let a denote the number of rows S such that |X ∩ S| ≥ (1 − c) · k

2
,

and let A denote the subset of elements of X which lie on such rows. Similarly, at least
(1− c) · |X| vertices of X fall into columns T such that |X ∩ T | ≥ (1− c)k

2
. Let b denote

the number of columns T with |X∩T | ≥ (1−c)k
2
, and let B denote the subset of elements

of X which lie on such columns. Clearly |X| ≥ (1 − c)ak
2

and |X| ≥ (1 − c)bk
2
. Since the

intersection of a rows and b columns contains ab vertices, by inclusion-exclusion we have:

|X| ≥ |A| + |B| − ab ≥ 2(1 − c)|X| −
( |X|

(1 − c)k
2

)2

which implies |X| ≥ (1 − 2c)(1 − c)2 k2

4
> (1 − 2c)3 k2

4
, a contradiction.

To show (vi), note that 1−d
d
|X| = |X| ≤ 1

3
(k

2
)2, so from (iv) we obtain that |E(X, X)| ≥

k(1−d)
d86

|X|.

We also make use of the following rather technical result:

Lemma 2. Put the vertices of K k
2
× Kk into k

2
rows and k columns in the natural way,

and divide this graph into two disjoint k
2
× k

2
squares, A and B. Let X be a subset of the

vertices such that |X ∩A| ≤ k2

6
and |X ∩B| > k2

6
. Then the number of (X, X)-type edges

not entirely in A is at least k3

1032
.

Proof. Let d = |X ∩ B| · 4
k2 , then by our assumptions 2

3
< d ≤ 1. By Lemma 1 (vi),

|E(X ∩ B, X ∩ B)| ≥ k3(1−d)
344

. By construction, A and B share their rows. Let xi (yi)
denote the proportion of elements from X in the ith row of B (A). (With other words,

the number of such elements is kxi

2
and kyi

2
, respectively.) Then

∑k/2
i=1 xi = dk/2, and∑k/2

i=1 yi ≤ k/3. We use the estimate

k/2∑
i=1

xi(1 − yi) ≥
k/2∑
i=1

(xi − yi) ≥ (3d − 2) · k

6
,
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and obtain that the number of (X ∩B, X ∩A) type edges is at least k2

4

∑k/2
i=1 xi(1− yi) ≥

(3d − 2)k3

24
. Therefore the number of (X, X) type edges not entirely in A is at least

k3(1−d)
344

+ k3(3d−2)
24

= (126d − 83) k3

1032
≥ k3

1032
.

Theorem 7. Let k be an even divisor of 2n. The following is an isoperimetric function
for G(n, k):

f(x) =

{ k
501

· x if 0 ≤ x ≤ (501k
2064

)2,
k2

2064
· √x if (501k

2064
)2 ≤ x ≤ n2/2.

(33)

Proof. We make a (2n/k)×(2n/k) grid G′ by cutting the original grid G into (k/2)×(k/2)
squares. Let us be given a set X of vertices of G, |X| = x (0 ≤ x ≤ n2/2). We have to
find f(x) edges in G(n, k) leaving the set X. Every v ∈ X falls into some (2n/k)× (2n/k)
square in G′. Let us denote this square by Sv. Set the density of the square Sv as
d(Sv) = |X ∩ Sv|/|Sv| = 4|X ∩ Sv|/k2. We distinguish cases:

(i) v is a small vertex, (Sv is a small square) if d(Sv) ≤ 2
3

(ii) v is large vertex, (Sv is a large square) if 2
3

< d(Sv).
Let xS (xL) denote the number of small (large) vertices of X. We have x = xS + xL.

It follows from Lemma 1 (v) that the number of (X, X) edges inside the small squares is
at least kxs/501 = k(x − xL)/501.

Let us estimate the number of large squares of G′. Clearly their number n′ falls
between xL/(k/2)2 and 3xL/[2(k/2)2]. According to the isoperimetric inequality for grids
(26), the number of (large square, small square) pairs that share a common side is at least√

2 min{n′, (2n/k)2 − n′} ≥ (2/k) · √2 min{xL, n2 − 3xL/2} ≥ 2
√

xL/k. Lemma 2 tells

us that at each such pair of squares there is at least k3

1032
edges of type (X, X) that are

not inside the small square. Observe that every large square shares side edges with at
most 4 small squares. Therefore, the number (X, X) type edges not in a small square is
at least 1

4
· k2

516
· √xL. Consequently, the number of (X, X) type edges is at least

T (xL) = k
x − xL

501
+

k2√xL

2064
. (34)

As T (xL) is quadratic in
√

xL, it is easy to see that T (xL) ≥ min{T (0), T (x)}. T (0) =

kx/501 and T (x) = k2
√

x/2064, so T (0) ≤ T (x) when x ≤ 5012k2

20642 , otherwise T (0) > T (x),
and so we arrived at (33).

Let H(n, k) denote the graph that we obtain by taking the n× n grid G in the plane,
joining vertices whose distance is at most k

We establish an isoperimetric inequality for H(n, k) when 3 divides k and k divides
3n. As before, we start with 2 lemmas.

Lemma 3. Let 0 ≤ d ≤ 1. For any X ⊂ V (K k
3
× k

3
),

(i) If |X| ≤ d(k
3
)2, then E(X, X)| ≥ (1−d)k2

9
|X|.

(ii) If |X| ≤ 2
3
(k

3
)2, then |E(X, X)| ≥ k2

27
|X|.
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Lemma 4. Arrange the vertices of K k
3
× 2k

3
into k/3 rows and 2k/3 columns and divide

them into two squares, A and B. Let X be a subset of the vertices such that |X∩A| ≤ 2k2

27

and |X ∩ B| > 2k2

27
. Then the number of (X, X)-type edges not in A is at least 4k4/729.

Proof. Let d denote 9|X∩B|/k2. Then, |E(X∩B, X∩B)| ≥ d(1−d)k4

81
. Also, |E(X∩B, X∩

A)| ≥ dk2

9
· (k2

9
−|X∩A|) ≥ dk2

9
· k2

27
= dk4

243
. The sum of these items is k4 d+3d(1−d)

243
≥ 4k4

729
.

Theorem 8. Let k, n be such that 3 divides k and k divides 3n. The following is an
isoperimetric function for H(n, k):

f(x) =

{
k2x
27

if 0 ≤ x ≤ k2

144
,

k3√x
324

if k2

144
≤ x ≤ n2/2.

(35)

Proof. We make a (3n/k)×(3n/k) grid G′ by cutting the original grid G into (k/3)×(k/3)
squares. Let us be given a set X of vertices of H(n, k), |X| = x (0 ≤ x ≤ n2/2). We
have to find f(x) edges in H(n, k) leaving the set X. Every v ∈ X falls into some
(3n/k) × (3n/k) square in G′, we call this square Sv. Set the density of the square Sv as
d(Sv) = |X ∩ Sv|/|Sv| = 9|X ∩ Sv|/k2. We distinguish cases:

(i) v is small vertex, (Sv is a small square) if d(Sv) < 2/3
(ii) v is large vertex, (Sv is a large square) if 2/3 ≤ d(Sv).
Let xS and xL denote the number of small (large) vertices of X. We have x = xS +xL.

It follows from Lemma 3 that the number of (X, X) type edges inside the small squares

is at least k2(x−xL)
27

.
Let us estimate the number of large squares of G′. Clearly their number n′ falls

between xL/(k/3)2 and 3xL/[2(k/3)2]. According to the isoperimetric inequality for
grids (26), the number of (small square, large square) pairs that share a side is at least√

2 min{n′, (3n/k)2 − n′} ≥ (3/k)
√

xL. As before, we get

|E(X, X)| ≥ k2(x − xL)

27
+

k3√xL

243
≥ min

(
k2x

27
,
k3
√

x

324

)
, (36)

and so we arrived at (35).

We remark here about the tightness of the new isoperimetric inequalities studied in
this Section. Theorem 6 is tight within a multiplicative factor of 3. To see this, consider
a cut with a vertical line through k horizontal edges of the rhombus of hexagons, as the
rhombus of hexagons is drawn as in Fig. 1. This cut separates k2 − 1 vertices from the
rest. For Theorems 7 and 8, an

√
x×√

x subgrid shows the tightness of the isoperimetric
functions within a constant multiplicative factor.

6 Specific Results

6.1 Warm-Up

The outerplanar crossing number of Kn is exactly
(

n
4

)
. This is a nice exercise that can be

found in many texts in a somewhat different formulation. Let us see what kind of lower
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bound our method can show. By (24), f(x) = x(n − x), f ′′(x) = −2, s = bn/2c − 3, and

κ(f, s0, s) = 4
3
+o(1) by s0 = n1/3. Theorem 4 yields ν1(Kn) ≥ −n

8
(4

3
+o(1))

∫ bn/2c−4

1
x(n−

x)(−2)dx = n4

36
(1+o(1)), which is 2/3 of the truth. (On the other hand, Theorem 2 would

yield only ν1(Kn) ≥ n4

48
.)

6.2 Estimating with Edge-Forwarding Index

Theorem 9. For any connected graph G, we have

ν1(G) ≥ n4(1 − o(1))

9π2(G)
− 1

2

∑
v

d2
v. (37)

Note that the isoperimetric function (31) is only by a multiplicative factor of 2
π(G)

off from the isoperimetric function (24) used in subsection 6.1. The multiplicative factor
squares in that calculation, since we multiply with the second derivative. Therefore, we
have for free from the calculations in subsection 6.1 that ν1(G) ≥ n4

36
(1+o(1))( 2

π(G)
)2, and

Theorem 9 follows.
Note that exact values or good upper bounds for edge forwarding indices are known for

many graph families, e.g. for the de Bruijn, Kautz, Butterfly and Cube-Connected-Cycles
graphs [8, 16, 17], also for the star and complete transposition graphs [7] and, in general,
for edge symmetric Cayley graphs [16, 17].
For comparison, let us see what kind of lower bound can be provided for cr(G) in terms of
π(G). Theorem 3.11 in [13] easily adapts to embedding of multigraphs. Embed 2Kn into
G, where 2Kn denotes the complete graph on n vertices, where every edge comes with
multiplicity two. Theorem 3.11 provides

cr(G) ≥ cr(2Kn)

π2(G)
− error term. (38)

However, it is well known that making k copies of all edges of a graph H to make multi-
graph kH , one has cr(kH) = k2cr(H), see [19]. Using this, (38) yields

cr(G) ≥ 4cr(Kn)

π2(G)
− error term. (39)

It is known that cr(Kn) ≤ (1 + o(1))n4

64
and equality is conjectured here [20]. Therefore,

the lower bound for ν1 in terms of edge forwarding index (37) is always better than the
the lower bound for cr in terms of edge forwarding index (39).

6.3 Hypercubes and Powers of Complete Graphs

Theorem 10. For the outerplanar crossing number of the n−dimensional hypercube
ν1(Qn), we have (.1914 + o(1)) · 4n ≤ ν1(Qn) ≤ .5 · 4n.
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Proof. Recall from [14] the drawing providing the upper bound. The drawing was con-
structed in the following way: put the vertices of Qn on the spine of a one-page book
according to the Gray-code order. Draw the edges in one page in the usual recur-
sive way. The number of crossings in the drawing is bounded from above by 4n/2.
By (25), f(x) = x(n − log2 x), f ′(x) = n − log2 x − 1

ln 2
, f ′′(x) = − 1

x ln 2
. Note that

f ′(x) > 0 only till 2n

e
, so f is not increasing on the entire interval [0, |V (G)|

2
− 1]; in

other words Theorem 2 does not apply. However, Theorem 3 still applies. We choose
s = 2n/e. One obtains κ(f, s0, s) ≥ 1 − o(1) by s0 = n1/3. Theorem 4 yields ν1(Qn) ≥
(1 − o(1))2n

8

∫ 2n/e−2

1
1

(x+3) ln 2
x(n − log2 x)dx = 4n 1

4e(ln 2)2
(1 + o(1)), which is more than

(.1914 + o(1)) · 4n.

The best lower bound for the crossing number of the hypercube is cr(Qn) ≥ 1
20

(1 −
o(1))4n [18]. This lower bound applies to ν1(Qn), but we are not aware of any improvement
for ν1. Analogues of Theorem 10 can be proved for Kn

p (as Qn = Kn
2 ), using isoperimetric

function (28) instead of (25)

6.4 Powers of Petersen Graphs

The isoperimetric function f1(x) in (29) is only a multiplicative factor 2
5n off from the

isoperimetric function of the complete graph K5n . Therefore, the calculations in subsec-
tion 6.1 apply and we obtain ν1(P

n) ≥ 54n

36
· ( 2

5n )2(1 − o(1)) = (1
9
− o(1))52n ≥ .1111 · 52n.

The isoperimetric function f2(x) in (30) is rather similar to the isoperimetric function
(25). f2(x) increases till 5n/e, and like in the proof of Theorem 10, we can take s0 = n1/3,
s = 5n/e, and obtain κ = 1. A calculation similar to the proof of Theorem 10 shows that
ν1(P

n) ≥ 52n

e(ln 5)2
(1 − o(1)) ≥ .1420 · 52n. The conclusion is, that the use of f2(x), which

is not increasing till 5n/2, yields better results. The hypercube is not the only example
where we have to deal with isoperimetric functions taking maximum before the middle,
since Kn

p and f2(x) for P n behaves similarly. However, the exact isoperimetric function of
P n is not known. The “natural” idea for improvement taking f3(x) = max (f1(x), f2(x))
fails, since this function is not concave down (see Fig. 5 in [21]). We have no idea how to
find an f4(x) ≤ f3(x) that satisfies the conditions of Theorem 4 and maximizes the lower
bound (14). Such an f4(x) might provide a better lower bound for ν1 than any of f1(x),
f2(x).

6.5 Theorem 3 is stronger than Theorem 2

As we have seen in the case of the hypercube, unlike Theorem 2, Theorem 3 remains
applicable when the isoperimetric function is not increasing till b |V (G)|

2
c − 1. When both

theorems are applicable, one cannot expect more than a multiplicative constant gain by
using Theorem 3, though, as we have seen above, we can obtain such a gain. In the two
applications above, the optimal choice of s was always the maximum possible. A natural
problem is the following: are there examples in which the optimal choice of s is not the
maximum possible allowed by the conditions?
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Consider the rectangular grid graph Pn × Pk with k = bn√ln nc. Simple calculation
based on (27) shows, that for any sufficiently small ε > 0 the choice s = b(1 − ε)n2/2c
beats s = bnk/2c − 1 in Theorem 3. Indeed, whatever is our choice for s, ∆2f(j) = 0 for
any j > n2/2. Approximating the summation with integral in (4), we have

ν1(Pn × Pk) ≥ −κ(f, s0, s)(1 − o(1)) · nk

8

∫ min(s,n2/2)

1

f(x)f ′′(x)dx − 1

2

∑
v∈V

d2
v. (40)

If s = bnk/2c − 1, we have to take κ = 1, since some mf,s(l) values in (2) are equal to 1
(say l = 2n2), but κ ≥ 1. However, for s = b(1 − ε)n2/2c and any s0 → ∞, we can take
κ = 1√

1−2ε
, which is realized by f(l)/f(s) = n/

√
2s for any l > 2s, according to (27). Our

claim boils down to the comparison of the integrals

1√
1 − 2ε

∫ (1−ε)n2/2

1

dx√
2x

and

∫ n2/2

1

dx√
2x

.

The first integral is asymptotically bigger as n → ∞, and this confirms our claim. We
still have to show that we can select an s0 → ∞ for s = b(1 − ε)n2/2c so that we satisfy
(3). We claim that any s0 =

√
ln n suffices. We have

f(s0)|E(G)| <
√

2s0 · 2nk = 2s0n
2 ln n = 2n2(ln n)3/4. (41)

On the other hand, Pn × Pk contains a Pn ×Pn subgraph. Observe that for x ≤ n2/2 the
same f(x) =

√
2x is isoperimetric function for both Pn × Pk and Pn × Pn. We already

know [15] for Pn × Pn that∑
e∈E(Pn×Pn)

f(l(e)) = Ω(n2 ln n). (42)

Formula (42) must be valid if the summation is extended for e ∈ E(Pn×Pk). Furthermore,
(42) must still be valid, if restricted for edges of length at least s0:∑

e∈E(Pn×Pk): l(e)≥s0

f(l(e)) = Ω(n2 ln n). (43)

The reason is that the last two summations differ by at most |E(Pn × Pk)| ≤ 2nk =
2n2

√
lnn terms, and each term is at most f(s0) =

√
2(lnn)1/4, and hence the two sum-

mations differ by O(n2(ln n)3/4) = o(n2 lnn). Finally, observe that (41) and (43) together
prove the second case of (3) for the graph Pn × Pk.

6.6 Rhombus of Hexagons

In [15] we did not establish an isoperimetric function for the rhombus of hexagons, instead,
we used an ad hoc technique (a variant of embedding) to show that the outerplanar
crossing number of the rhombus of hexagons is Ω(n2 log n). Based on the isoperimetric
function in (32), Theorem 2 or 3 yields this result immediately.
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6.7 Some Dense Geometric Graphs

Consider G(n, k) the graph defined in Section 5. We claim that cr(G(n, k)) = Θ(k4n2)
for 1 ≤ k ≤ n. The upper bound follows from a natural grid-like drawing, and the lower
bound follows from a bisection width argument (see [11]), since the (1/3-2/3) bisection
width of G(n, k) is at least Ω(k2n), which immediately follows from Theorem 7, for any
k ≤ n. We show here that ν1(G(n, k)) is bigger by a log n factor than cr(G(n, k)).

Theorem 11. For every ε > 0 and k ≤ n1−ε, as n → ∞, we have

ν1(G(n, k)) = Θ(k4n2 log n). (44)

Proof. The upper bound follows from Theorem 1. The lower bound follows from Theo-
rem 2 and the isoperimetric inequality in Theorem 7, (33).

Consider H(n, k) the graph defined in section 5. It is known that cr(H(n, k)) =
Θ(n2k6). The upper bound follows from the natural straight line drawing of the graph,
with infinitesimally small modification, to make sure that edges do not pass through
vertices. The lower bound follows from a bisection width argument (see [11]), since the
(1/3-2/3) bisection width of H(n, k) is at least Ω(k3n), which immediately follows from
Theorem 8, for any k ≤ n. We show here that ν1(H(n, k)) is bigger than cr(H(n, k)) by
a log n factor.

Theorem 12. For every ε > 0 and k ≤ n1−ε, as n → ∞, we have

ν1(H(n, k)) = Θ(k6n2 log n). (45)

Proof. The upper bound follows from Theorem 1. The lower bound follows from Theo-
rem 2 and the isoperimetric inequality in Theorem 8, (35).

Remark 1. Note that Theorems 11, 12 fail for k = n, and therefore a condition like
k ≤ n1−ε is necessary.

6.8 Linear Arrangement in Norms less than 1

Observe that F (x) = xα with 0 < α < 1 satisfies all the requirements of Theorem 5. For
simplicity, we abbreviate Lo

F (G) by Lo
α(G) (LF (G) by Lα(G)) for F (x) = xα. We show as

an application

Theorem 13. For the grid G = Pn × Pn, we have

Lα(G) =




Θ(n2) if 0 < α < 1/2;
Θ(n2 log n) if α = 1/2;
Θ(n2α+1) if 1/2 < α < 1.
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Proof. Apply the isoperimetric inequality (26) and formula (22) from Theorem 5 to obtain
the lower bound for Lo

α(G), and hence for Lα(G). The upper bound is given by the
following recursive layout of the grid. Divide the grid Pn ×Pn into four subgrids Pn

2
×Pn

2

by removing 2n edges, lay down the the subgrids recursively and add the 2n edges back.
We get the recurrence relation: Lα(Pn × Pn) ≤ 4Lα(Pn

2
× Pn

2
) + 2n2α+1. The solution of

the recurrence relation is

Lα(Pn × Pn) =




O(n2) if 0 < α < 1/2;
O(n2 log n) if α = 1/2;
O(n2α+1) if 1/2 < α < 1.
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