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Abstract

In this paper, we define two natural (p, q)-analogues of the generalized Stirling numbers
of the first and second kind S1(α, β, r) and S2(α, β, r) as introduced by Hsu and Shiue [17].
We show that in the case where β = 0 and α and r are nonnegative integers both of our
(p, q)-analogues have natural interpretations in terms of rook theory and derive a number of
generating functions for them.

We also show how our (p, q)-analogues of the generalized Stirling numbers of the second
kind can be interpreted in terms of colored set partitions and colored restricted growth
functions. Finally we show that our (p, q)-analogues of the generalized Stirling numbers
of the first kind can be interpreted in terms of colored permutations and how they can be
related to generating functions of permutations and signed permutations according to certain
natural statistics.

1 Introduction

In this paper we present a new rook theory interpretation of a certain class of generalized
Stirling numbers and their (p, q)-analogues. Our starting point is to develop two natural (p, q)-
analogues of the generalized Stirling numbers as defined by Hsu and Shiue in [17]. That is,
Hsu and Shiue gave a unified approach to many extensions of the Stirling numbers that had
appeared in the literature by defining analogues of the Stirling numbers of the first and second
kind which depend on three parameters α, β and r as follows. First define (z|α)0 = 1 and
(z|α)n = z(z−α) · · · (z−(n−1)α) for each integer n > 0. We write (z) ↓n for (z|α)n when α = 1
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and (z)n for (z|α)n when α = −1. Then Hsu and Shiue defined S
1
n,k(α, β, r) and S

2
n,k(α, β, r)

for 0 ≤ k ≤ n via the following equations:

(x|α)n =
n∑

k=0

S
1
n,k(α, β, r)(x − r|β)k and (1)

(x|β)n =
n∑

k=0

S
2
n,k(α, β, r)(x + r|α)k. (2)

It is easy to see that when α = 1, β = 0 and r = 0, equations (1) and (2) become

(x) ↓n =
n∑

k=0

S
1
n,k(1, 0, 0)x

k and (3)

xn =
n∑

k=0

S
2
n,k(1, 0, 0)(x) ↓k (4)

which are the usual defining equations for the Stirling numbers of the first and second kind.
Thus S

1
n,k(1, 0, 0) is the usual Stirling number of the first kind sn,k and S

2
n,k(1, 0, 0) is the usual

Stirling number of the second kind Sn,k. In addition, it is easy to see from equations (1) and
(2) that for all 0 ≤ k ≤ n,

S
1
n,k(α, β, r) = S

2
n,k(β, α,−r). (5)

q-Analogues of the Stirling numbers of the first and second kind were first considered by
Gould [14] and further studied by Milne [21][20], Garsia and Remmel [11], and others, who gave
interpretations in terms of rook placements and restricted growth functions. A more general
two parameter, (p, q)-analogue of the Stirling number of the second kind was introduced and
studied by Wachs and White [26], who also gave interpretations in terms of rook placements
and restricted growth functions.

We shall define two natural (p, q)-analogues of the S
i
n,k(α, β, r)’s, one of which reduces to

the (p, q)-analogue of Wachs and White when i = 2 and (α, β, r) = (1, 0, 0). To do this we shall
find it more convenient to modify equations (1) and (2) slightly. That is, we let

S1
n,k(α, β, r) = S

1
n,k(α, β,−r) and (6)

S2
n,k(α, β, r) = S

2
n,k(α, β,−r) (7)

Then if we replace x by t− r in equation (1) and x by t in equation (2), we obtain the following
pair of equations.

(t − r|α)n =
n∑

k=0

S1
n,k(α, β, r)(t|β)k (8)

and

(t|β)n =
n∑

k=0

S2
n,k(α, β, r)(t − r|α)k. (9)

It is easy to see from equations (8) and (9) that for all 0 ≤ m ≤ n,

n∑
k=m

S2
n,k(α, β, r)S1

k,m(α, β, r) = χ(m = n) (10)
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where we use that convention that for any statement A, χ(A) = 1 if A is true and χ(A) = 0 if
A is false.

Hsu and Shiue [17] proved a number of fundamental formulas for the Si
n,k(α, β, r)’s. We shall

state just a few examples of these formulas. First they showed that the Si
n,k(α, β, r)’s satisfy

the following recursions. Let S1
0,0(α, β, r) = 1 and S1

n,k(α, β, r) = 0 if k < 0 or k > n. Then for
all 0 ≤ k ≤ n + 1,

S1
n+1,k(α, β, r) = S1

n,k−1(α, β, r) + (kβ − nα − r)S1
n,k(α, β, r). (11)

Similarly if we let S2
0,0(α, β, r) = 1 and S2

n,,k(α, β, r) = 0 if k < 0 or k > n, then for all
0 ≤ k ≤ n + 1,

S2
n+1,k(α, β, r) = S2

n,k−1(α, β, r) + (kα − nβ + r)S2
n,k(α, β, r). (12)

Next they proved the following generating functions.

k!
∑
n≥1

S1
n,k(α, β, r)

tn

n!
= (1 + αt)−r/α

((1 + αt)β/α − 1
β

)k if αβ 6= 0, (13)

and ∑
n≥0

S1
n(x) =

(
1
e

)x/β∑
k≥0

(x/β)k

k!
(kβ − r|α)n (14)

where

S1
n(x) =

n∑
k=0

S1
n,k(α, β, r)xk . (15)

We now present two natural ways to give (p, q)-analogues of (8) and (9) which we shall call
type I and type II (p, q)-analogues. We shall see that both of the (p, q)-analogues arise naturally
in our rook theory interpretations for certain values of α, β and r.

First for any γ, let

[γ]p,q =
pγ − qγ

p − q
. (16)

Thus in the case where γ = n is a non-negative integer,

[n]p,q = qn−1 + pqn−2 + · · · + pn−2q + pn−1

is the usual (p, q)-analogue of n. We also let

[n]p,q! = [n]p,q[n − 1]p,q · · · [1]p,q

and [
n
k

]
p,q

=
[n]p,q!

[k]p,q![n − k]p,q!
.

We shall write [n]q, [n]q! and
[

n
k

]
q

for [n]1,q, [n]1,q! and
[

n
k

]
1,q

respectively.

For the type I (p, q)-analogues of (8) and (9), we replace (t − r|γ)n by 〈t − r|γ〉n where

〈t − r|γ〉0 = 1 (17)
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and for n > 0,

〈t − r|γ〉n = ([t]p,q − [r]p,q)([t]p,q − [r + γ]p,q) · · · ([t]p,q − [r + (n − 1)γ]p,q). (18)

That is, we define S1,p,q
n,k (α, β, r) and S2,p,q

n,k (α, β, r) for 0 ≤ k ≤ n via the following equations:

〈t − r|α〉n =
n∑

k=0

S1,p,q
n,k (α, β, r)〈t|β〉k (19)

and

〈t|β〉n =
n∑

k=0

S2,p,q
n,k (α, β, r)〈t − r|α〉k. (20)

We then have the following basic recursions for the Si,p,q
n,k (α, β, r)’s.

Theorem 1. If S1,p,q
n,k (α, β, r) and S2,p,q

n,k (α, β, r) are defined according to equations (19) and (20)
respectively for 0 ≤ k ≤ n, then S1,p,q

n,k (α, β, r) and S2,p,q
n,k (α, β, r) satisfy the following recursions.

S1,p,q
0,0 (α, β, r) = 1 and S1,p,q

n,k (α, β, r) = 0 if k < 0 or k > n (21)

and
S1,p,q

n+1,k(α, β, r) = S1,p,q
n,k−1(α, β, r) + ([kβ]p,q − [nα + r]p,q)S

1,p,q
n,k (α, β, r). (22)

S2,p,q
0,0 (α, β, r) = 1 and S2,p,q

n,k (α, β, r) = 0 if k < 0 or k > n (23)

and
S2,p,q

n+1,k(α, β, r) = S2,p,q
n,k−1(α, β, r) + ([kα + r]p,q − [nβ]p,q)S

2,p,q
n,k (α, β, r). (24)

Proof. To prove (22), we start with (19). That is,

n+1∑
k=0

S1,p,q
n+1,k(α, β, r)〈t|β〉k = 〈t − r|α〉n+1 (25)

= ([t]p,q − [r + nα]p,q)〈t − r|α〉n

= ([t]p,q − [r + nα]p,q)(
n∑

k=0

S1,p,q
n,k (α, β, r)〈t|β〉k)

=
n∑

k=0

S1,p,q
n,k (α, β, r)〈t|β〉k([t]p,q − [kβ]p,q + [kβ]p,q − [r + nα]p,q)

=
n∑

k=0

S1,p,q
n,k (α, β, r)〈t|β〉k+1

+
n∑

k=0

S1,p,q
n,k (α, β, r)([kβ]p,q − [r + nα]p,q)〈t|β〉k.

Taking the coefficient of 〈t|β〉k on both sides of (25) yields (22).
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Similarly to prove (24), we start with (20). That is,

n+1∑
k=0

S2,p,q
n+1,k(α, β, r)〈t − r|α〉k = 〈t|β〉n+1 (26)

= ([t]p,q − [nβ]p,q)〈t|β〉n

= ([t]p,q − [nβ]p,q)(
n∑

k=0

S2,p,q
n,k (α, β, r)〈t − r|α〉k)

=
n∑

k=0

S2,p,q
n,k (α, β, r)〈t − r|α〉k([t]p,q − [r + kα]p,q + [r + kα]p,q − [nβ]p,q)

=
n∑

k=0

S2,p,q
n,k (α, β, r)〈t − r|β〉k+1

+
n∑

k=0

S2,p,q
n,k (α, β, r)([r + kα]p,q − [nβ]p,q)〈t − r|α〉k

Taking the coefficient of 〈t − r|α〉k on both sides of (26) yields (24). �

We shall then show that when β = 0 and α = j and r = i are non-negative integers such
that i ≥ 0 and j > 0, the polynomials

ci,j
n,k(p, q) = (−1)n−kS1,p,q

n,k (j, 0, i) (27)

and
Si,j

n,k(p, q) = S2,p,q
n−k (j, 0, i) (28)

have natural interpretations in terms of p, q-counting rooks placements on certain boards. It
follows from (21), (22), (23) (24) that these polynomials satisfy the following recursions.

ci,j
0,0(p, q) = 1 and ci,j

n,k(p, q) = 0 if k < 0 or k > n (29)

and
ci,j
n+1,k(p, q) = ci,j

n,k−1(p, q) + [i + nj]p,qc
i,j
n,k(p, q). (30)

Si,j
0,0(p, q) = 1 and Si,j

n,k(p, q) = 0 if k < 0 or k > n (31)

and
Si,j

n+1,k(p, q) = Si,j
n,k−1(p, q) + [i + jk]p,qS

i,j
n,k(p, q). (32)

Moreover, it easily follows from (19) and (20) that

([t]p,q + [i]p,q)([t]p,q + [i + j]p,q) · · · ([t]p,q + [i + (n − 1)j]p,q) =
n∑

k=0

ci,j
n,k(p, q)[t]kp,q (33)

and

[t]np,q =
n∑

k=0

Si,j
n,k(p, q)([t]p,q − [i]p,q)([t]p,q − [i + j]p,q) · · · ([t]p,q − [i + (k − 1)j]p,q). (34)
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Thus if we let si,j
n,k(p, q) = (−1)n−kci,j

n,k(p, q) = S1,p,q
n,k (j, 0, i), it follows from (19) that

([t]p,q − [i]p,q)([t]p,q − [i + j]p,q) · · · ([t]p,q − [i + (n − 1)j]p,q) =
n∑

k=0

si,j
n,k(p, q)[t]kp,q (35)

from which it easily follows that the matrices ||si,j
n,k(p, q)||n,k≥0 and ||Si,j

n,k(p, q)||n,k≥0 are inverses
of each other.

For the type II (p, q)-analogues of (8) and (9), we replace (t − r|γ)n by [t − r|γ]n where

[t − r|γ]0 = 1 (36)

and for n > 0,

[t − r|γ]n = ([t − r]p,q)([t − r − γ]p,q) · · · ([t − r − (n − 1)γ]p,q). (37)

By analogy with our type I (p, q)-analogues of the generalized Stirling numbers, the type II
(p, q)-analogues of the generalized Stirling numbers, S̃1,p,q

n,k (α, β, r) and S̃2,p,q
n,k (α, β, r), should be

solutions to the following equations:

[t − r|α]n =
n∑

k=0

S̃1,p,q
n,k (α, β, r)[t|β]k (38)

and

[t|β]n =
n∑

k=0

S̃2,p,q
n,k (α, β, r)[t − r|α]k. (39)

However, as we shall see shortly, (38) and (39) do not completely determine S̃1,p,q
n,k (α, β, r) and

S̃2,p,q
n,k (α, β, r). Instead we will define the type II (p, q)-analogues of the generalized Stirling

numbers, S̃1,p,q
n,k (α, β, r) and S̃2,p,q

n,k (α, β, r), by the following recursions:

S̃1,p,q
0,0 (α, β, r) = 1 and S̃1,p,q

n,k (α, β, r) = 0 if k < 0 or k > n (40)

and

S̃1,p,q
n+1,k(α, β, r) = q(k−1)β−nα−r S̃1,p,q

n,k−1(α, β, r) + pt−kβ[kβ − nα − r]p,qS̃
1,p,q
n,k (α, β, r). (41)

S̃2,p,q
0,0 (α, β, r) = 1 and S̃2,p,q

n,k (α, β, r) = 0 if k < 0 or k > n (42)

and

S̃2,p,q
n+1,k(α, β, r) = qr+(k−1)α−nβ S̃2,p,q

n,k−1(α, β, r) + pt−r−kα[kα + r − nβ]p,qS̃
2,p,q
n,k (α, β, r). (43)

Here t is an extra parameter and technically we should use the notation S̃1,p,q
n,k (α, β, r, t) and

S̃2,p,q
n,k (α, β, r, t) to specify the dependence on the paramater t. However since we will not vary the

parameter t, we will instead use the less cumbersome notation S̃1,p,q
n,k (α, β, r) and S̃2,p,q

n,k (α, β, r).
Our next result will show that S̃1,p,q

n,k (α, β, r) and S̃2,p,q
n,k (α, β, r) do satisfy (38) and (39).
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Theorem 2. If we define S̃1,p,q
n,k (α, β, r) and S̃2,p,q

n,k (α, β, r) for 0 ≤ k ≤ n by (40), (41), (42),
and (43), then (38) and (39) hold.

Proof. To prove (41), we first observe the following identity:

[t − r − nα]p,q =
pt−rnα − qt−r−nα

p − q

=
qkβ−nα−r(pt−kβ − qt−kβ) + pt−kβ(pkβ−nα−r − qkβ−nα−r)

p − q

= qkβ−nα−r[t − kβ]p,q + pt−kβ[kβ − nα − r]p,q. (44)

We then prove (38) by induction. Clearly (38) holds for n = 0. Next assume that (38) holds for
n. Then

[t − r|α]n+1 = ([t − r − nα]p,q)[t − r|α]n

= ([t − r − nα]p,q)(
n∑

k=0

S̃1,p,q
n,k (α, β, r)[t|β]k)

=
n∑

k=0

S̃1,p,q
n,k (α, β, r)[t|β]k(qkβ−nα−r[t − kβ]p,q + pt−kβ[kβ − nα − r]p,q)

=
n∑

k=0

qkβ−nα−rS̃1,p,q
n,k (α, β, r)[t|β]k+1

+
n∑

k=0

pt−kβ[kβ − nα − r]p,qS̃
1,p,q
n,k (α, β, r)[t|β]k

=
n+1∑
k=0

(
q(k−1)β−nα−r S̃1,p,q

n,k−1(α, β, r) + pt−kβ[kβ − nα − r]p,qS̃
1,p,q
n,k (α, β, r)

)
[t|β]k

=
n+1∑
k=0

S̃1,p,q
n+1,k(α, β, r)[t|β]k .

Similarly to prove (39), we observe the following identity:

[t − nβ]p,q =
pt−nβ − qt−nβ

p − q

=
qr+kα−nβ(pt−r−kα − qt−r−kα) + pt−r−kα(pr+kα−nβ − qr+kα−nβ)

p − q

= qr+kα−nβ[t − r − kα]p,q + pt−r−kα[r + kα − nβ]p,q. (45)

We then prove (39) by induction. Clearly (39) holds for n = 0. Next assume that (39) holds for

the electronic journal of combinatorics 11 (2004), #R84 7



n. Then

[t|β]n+1 = ([t − nβ]p,q)[t|β]n

= ([t − nβ]p,q)(
n∑

k=0

S̃2,p,q
n,k (α, β, r)[t − r|α]k)

=
n∑

k=0

S̃2,p,q
n,k (α, β, r)[t − r|α]k(qr+kα−nβ[t − r − kα]p,q + pt−r−kα[r + kα − nβ]p,q)

=
n∑

k=0

qr+kα−nβS̃2,p,q
n,k (α, β, r)[t − r|α]k+1

+
n∑

k=0

pt−r−kα[r + kα − nβ]p,q)S̃
2,p,q
n,k (α, β, r)[t − r|α]k

=
n+1∑
k=0

(
qr+(k−1)α−nβ S̃2,p,q

n,k−1(α, β, r) + pt−r−kα[kα + r − nβ]p,qS̃
2,p,q
n,k (α, β, r)

)
[t − r|α]k

=
n+1∑
k=0

S̃2,p,q
n+1,k(α, β, r)[t − r|α]k.

�

We can now see why there there are multiple solutions to (38) and (39). That is, by symmetry,
it must be the case that S̃1,q,p

n,k (α, β, r) and S̃2,q,p
n,k (α, β, r) are also solutions to (38) and (39).

However it is not the case that S̃1,p,q
n,k (α, β, r) = S̃1,q,p

n,k (α, β, r) and S̃2,p,q
n,k (α, β, r) = S̃2,q,p

n,k (α, β, r)
due to the extra parameter t.

Again we shall be able to give a rook theory interpretation to S̃1,p,q(α, β, r) and S̃2,p,q(α, β, r)
in the special case when β = 0 and r = i and α = j are integers such that i ≥ 0 and j > 0. For
later developments, it will be convenient to replace t by x + i so that the basic recursions (41)
and (43) become the following:

S̃1,p,q
0,0 (j, 0, i) = 1 and S̃1,p,q

n,k (j, 0, i) = 0 if k < 0 or k > n (46)

and
S̃1,p,q

n+1,k(j, 0, i) = q−nj−iS̃1,p,q
n,k−1(j, 0, i) − px+i(pq)−nj−i([nj + i]p,q)S̃

1,p,q
n,k (j, 0, i). (47)

(Here we have used the fact that
[−nj − i]p,q = p−nj−i−q−nj−i

p−q = (pq)−nj−i qnj+i−pnj+i

p−q = −(pq)−nj−i[nj + i]p,q.)

S̃2,p,q
0,0 (j, 0, i) = 1 and S̃2,p,q

n,k (j, 0, i) = 0 if k < 0 or k > n (48)

and
S̃2,p,q

n+1,k(j, 0, i) = qi+(k−1)j S̃2,p,q
n,k−1(j, 0, i) + px−kj([kj + i]p,q)S̃

2,p,q
n,k (j, 0, i). (49)

Moreover, it follows from (38) and (39) that

[x]p,q ↓n,j=
n∑

k=0

S̃1,p,q
n,k (j, 0, i)[x + i]kp,q (50)
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and

[x + i]np,q =
n∑

k=0

S̃2,p,q
n,k (j, 0, i)[x]p,q ↓k,j (51)

where [x]p,q ↓k,j= 1 if k = 0 and [x]p,q ↓k,j= [x]p,q[x − j]p,q · · · [x − (k − 1)j]p,q if k is a positive
integer.

As we shall see later, the most natural thing to do in terms of rook theory is to define

s̃i,j
n,k(p, q) = p−(x+i)(n−k)(qp)(

n
2)j+ni S̃1,p,q

n,k (j, 0, i) (52)

and
S̃i,j

n,k(p, q) = p−x(n−k)−(n−k+1
2 )j S̃2,p,q

n,k (j, 0, i). (53)

It then follows that

s̃i,j
0,0(p, q) = 1 and s̃i,j

n,k(p, q) = 0 if k < 0 or k > n (54)

and
s̃i,j
n+1,k(p, q) = pnj+i s̃i,j

n,k−1(p, q) − [nj + i]p,q s̃
i,j
n,k(p, q). (55)

Similarly
S̃i,j

0,0(p, q) = 1 and S̃i,j
n,k(p, q) = 0 if k < 0 or k > n (56)

and
S̃ij

n+1,k(p, q) = qi+(k−1)j S̃i,j
n,k−1(p, q) + p−(n+1)j [kj + i]p,qS̃

i,j
n,k(p, q). (57)

Moreover, it follows from (50) and (51) that

[x]p,q ↓n,j=
n∑

k=0

p(x+i)(n−k)(pq)−(n
2)j−nis̃i,j

n,k(p, q)[x + i]kp,q (58)

and

[x + i]np,q =
n∑

k=0

S̃i,j
n,k(p, q)px(n−k)+(n−k+1

2 )j [x]p,q ↓k,j . (59)

It happens that the type II generalized (p,q)-Stirling numbers s̃i,j
n,k(p, q) and S̃i,j

n,k(p, q) can be
expressed in terms of the type I generalized q-Stirling numbers. The relationship is as follows:

s̃i,j
n,k(p, q) = pn(i−1)+(n

2)j+ksi,j
n,k(1, q/p) (60)

S̃i,j
n,k(p, q) = p−(n−k+1

2 )j+(n−k)(i−1)qki+(k
2)jSi,j

n,k(1, q/p). (61)

This can be proved by using the recurrences (30) and (32) to show that the expressions on the
right side of the equations satisfy the recurrences (55) and (57), respectively.

In this case, the orthogonality relations between the s̃i,j
n,k(p, q)’s and S̃i,j

n,k(p, q)’s are more

complicated than the orthogonality relations between the si,j
n,k(p, q)’s and Si,j

n,k(p, q)’s. Thus we
will state them explicitly.

Theorem 3. The matrices ||(pq)−(n
2)jp−ikq−nis̃i,j

n,k(p, q)||n,k≥0 and ||p(n−k+1
2 )j S̃i,j

n,k(p, q)||n,k≥0 are
inverses of each other.
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Proof. Since the matrices ||Si,j
n,k(1, q/p)|| and ||si,j

n,k(1, q/p)|| are inverses of each other, we have
for any 0 ≤ k ≤ n,

χ(n = k) =
n∑

l=k

Si,j
n,l(1, q/p)si,j

l,k(1, q/p)

=
n∑

l=k

p(n−l+1
2 )j−(n−l)(i−1)q−li−(l

2)jS̃i,j
n,l(p, q)p−l(i−1)−(l

2)j−ks̃i,j
l,k(p, q)

= p−n(i−1)−k
n∑

l=k

p(n−l+1
2 )j−(l

2)jq−li−(l
2)j S̃i,j

n,l(p, q)s̃i,j
l,k(p, q).

Multiplying both sides of the equation by p(n−k)(i−1) we get,

χ(n = k) = p(n−k)(i−1))χ(n = k)

= p−ki
n∑

l=k

p(n−l+1
2 )j−(l

2)jq−li−(l
2)jS̃i,j

n,l(p, q)s̃i,j
l,k(p, q)

=
n∑

l=k

(
p(n−l+1

2 )j S̃i,j
n,l(p, q)

) (
p−ki−(l

2)jq−li−(l
2)j s̃i,j

l,k(p, q)
)

,

which proves the result. �

Having defined our two families of (p, q)-analogues of generalized Stirling numbers of the
first and second kind, (si,j

n,k(p, q), Si,j
n,k(p, q)) and (s̃i,j

n,k(p, q), S̃i,j
n,k(p, q)), the main result of this

paper is to define a rook theory interpretation of these two families by modifying the set up of
Garsia and Remmel [11]. That is, in section 2 we shall develop a rook theory interpretation of
the families (si,j

n,k(p, q), Si,j
n,k(p, q)) and give a combinatorial proof that the matrices ||si,j

n,k(p, q)||
and ||Si,j

n,k(p, q))|| are inverses of each other. Then in section 3, we shall develop a rook theory

interpretation of the families (s̃i,j
n,k(p, q), S̃i,j

n,k(p, q)). In section 4, we shall prove a number of
generating function results for our two families. In section 5, we shall develop other combinatorial
interpretations of our two families in terms of permutations statistics, colored partitions and
restricted growth functions.

The (p, q)-Stirling numbers of the second kind, introduced by Wachs and White [26], are
defined by the recursion

S0,0(p, q) = 1 and Sn,k(p, q) = 0 if k < 0 or k > n (62)

and
Sn+1,k(p, q) = pk−1Sn,k−1(p, q) + [k]p,qSn,k(p, q). (63)

In the special case when i = 0 and j = 1, the recursion given in (31) and (32) for the type I
(p, q)-Stirling number of the second kind S0,1

n,k(p, q) becomes

S0,1
0,0(p, q) = 1 and S0,1

n,k(p, q) = 0 if k < 0 or k > n (64)

and
S0,1

n+1,k(p, q) = S0,1
n,k−1(p, q) + [k]p,qS

0,1
n,k(p, q). (65)
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It is easy to see that the polynomials p(k
2)S0,1

n,k(p, q) also satisfy (62) and (63) so that Sn,k(p, q) =

p(k
2)S0,1

n,k(p, q).
We should also note that in the case when i = 0 and j = 1, our type I (p, q)-Stirling numbers

of the first and second kind, s0,1
n,k(p, q) and S0,1

n,k(p, q), have been studied by a number of other
authors, see [18], [19], [27], [28] and [23]. The case i = p = q = 1 has also appeared in the
literature as Whitney numbers for Dowling lattices, see [2], [3], [13]. Moreover an alternative
approach to combinatorially interpreting a different family of generalized (p, q)-Stirling numbers
which includes our (p, q)-Stirling numbers si,j

n,k(p, q) and Si,j
n,k(p, q) can be found in [19] where

the authors interpret generalized (p, q)-Stirling numbers via 0-1 tableaux. However, our (p, q)-
Stirling numbers of type II, s̃i,j

n,k(p, q) and S̃i,j
n,k(p, q), appear to be new.

2 Rook theory interpretation of si,j
n,k(p, q) and Si,j

n,k(p, q)

In this section, we shall give a rook theory interpretation of si,j
n,k(p, q) and Si,j

n,k(p, q) and use our

interpretation to give a combinatorial proof that the matrices ||si,j
n,k(p, q)|| and ||Si,j

n,k(p, q))|| are
inverses of each other.

Given a sequence (a1, . . . , an) of non-negative integers, let B(a1, . . . , an) denote a board with
n columns whose column heights from left to right are a1, . . . , an respectively. If a1 ≤ . . . ≤ an,
then we say that B(a1, . . . , an) is a Ferrers board. For example, B(0, 1, 1, 3) is pictured in Figure
1.

Figure 1: The board B(0, 1, 1, 3).

We say that B(a1, . . . , an) is a j-attacking board if for all 1 ≤ i < n, ai 6= 0 implies
ai+1 ≥ ai + j − 1. Suppose that B(a1, . . . , an) is a j-attacking board and P is a placement of
rooks in B(a1, . . . , an) which has at most one rook in each column of B(a1, . . . , an). Then for
any individual rook r ∈ P, we say that r j-attacks cell c ∈ B(a1, . . . , an) if c lies in a column
which is strictly to the right of the column of r and c lies in the first j rows which are weakly
above the row of r and which are not j-attacked by any rook which lies in a column that is
strictly to the left of r.

For example, suppose j = 2 and P is the placement in B(1, 2, 3, 5, 7, 8, 10) pictured in Figure
2. Here the rooks are indicated by placing an x in each cell that contains a rook. We place a 2
in each cell attacked by the rook r2 in column 2. In this case, since there are no rooks to the
left of r2, the cells c which are 2-attacked by r2 lie in the first two rows which are weakly above
the row of r2, i.e., all the cells in rows 2 and 3 that are in columns 3,4,5,6 and 7. Next consider
the rook r4 which lies in column 4. Again we place a 4 in each of the cells that are 2-attacked
by r4. In this case, the first two rows which lie weakly above r4 that are not 2-attacked by any
rook to the left of r4 are rows 1 and 4. Thus r4 2-attacks all the cells in rows 1 and 4 that lie
in columns 5, 6 and 7. Finally the rook r6, which lies in column 6, 2-attacks the cells (6,7) and
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(7,7) and we place a 6 in these cells. We say that a placement P is j-non-attacking if no rook
in P is j-attacked by a rook to its left and there is at most one rook in each row and column.

X

X

X

X 2 2 2 2 2

22222

444

4 4 4

6

6

Figure 2: Cells that are 2 attacked

Note that the condition that B(a1, . . . , an) is j-attacking ensures that for any placement P of
j-non-attacking rooks in B(a1, . . . , an), with at most one rook in each column, has the property
that, for any rook r ∈ P which lies in a column k < n, there are j rows which lie weakly above
r and which have no cells which are j-attacked by a rook to the left of r, namely, the row of r
plus the top j − 1 rows in column k + 1 since ak+1 ≥ ak + j − 1.

Given a j-attacking board B = B(a1, . . . , an), we let N j
k (B) be the set of all placements P

of k j-nonattacking rooks in B. For example, if j = 2 and B = B(0, 2, 3, 4), then |N 2
1 (B)| = 9

since there are 9 cells in B, |N 2
2 (B)| = 6 and these 12 placements are pictured in Figure 3, and

|N 2
3 (B)| = 0 since any placement P which has one rook in each nonempty column of B and at

most one rook in each row has the property that the rooks in columns 2 and 3 would 2-attack
4 cells in column 4 and hence there would be no place to put a rook in column 4 that is not
2-attacked by a rook to its left. We then define the k-th j-rook number of B, rj

k(B), by setting
rj
k(B) = |N j

k (B)|.
For any board B(a1, . . . , an), we let Fk(B) denote the set of all placements of k rooks in B

such that there is at most one rook in each column. We then define the k-th file number of B,
fk(B), to be fk(B) = |Fk(B)|.

Next we define what we call the type I (p, q)-analogues of rj
k(B) and fk(B) when B =

B(a1, . . . , an) is a j-attacking board. First suppose that we are given a placement P in Fk(B).
Then let

(a) aB(P) = the number of cells in B that lie directly above some rook r in P,

(b) bB(P) = the number of cells in B that lie directly below some rook r in P, and

(c) wp,q,B(P) = qaB(P)pbB(P).
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Figure 3: The placements in N 2
2 (B(0, 2, 3, 4)

Then we define fk(B, p, q) by

fk(B, p, q) =
∑

P∈Fk(B)

wp,q,B(P). (66)

Next suppose that we are given a placement P in N j
k (B). Then let

(A) αB(P) = the number of cells in B that lie directly above some rook r in P which are not
j attacked by any rook in P to the left of r,

(B) βB(P) = the number of cells in B that lie directly below some rook r in P which are not
j attacked by any rook in P to the left of r, and

(C) Wp,q,B(P) = qαB(P)pβB(P).

Then we define rj
k(B, p, q) by

rj
k(B, p, q) =

∑
P∈N j

k (B)

Wp,q,B(P). (67)
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For example, in Figure 4, we have pictured an element P ∈ F3(B) where B = B(1, 2, 3, 5, 7, 8, 10)
such that wp,q,B(P) = q5p7. Here we have placed a q in each cell that contributes to aB(P) and
a p in each cell that contributes to bB(P). In Figure 5, we have pictured an element Q ∈ N 2

3 (B)
where B = B(1, 2, 3, 5, 7, 8, 10) such that Wp,q,B(Q) = q4p2. Again we have placed a q in each
cell that contributes to αB(P), a p in each cell that contributes to βB(P), and a · in each cell
that is 2-attacked by some rook in Q.

X

X X

p p

p

p

p

p

p

q

q

q

q

q

Figure 4: wp,q,B(P) for a placement in F3(B(1, 2, 3, 5, 7, 8, 10))

X

X

X

p

p

q

q

q

q

Figure 5: Wp,q,B(Q) for a placement in N 2
3 (B(1, 2, 3, 5, 7, 8, 10))

Given any board B = B(a1, . . . , an), we let Bx denote the board that results by placing x
rows of size n below B. Here we call the line that separates B from the extra x rows, the bar;
see Figure 6. This given, we have the following.
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B  = xB  = 

bar
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.
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x−2
x−1
x

3
4

2
1

Figure 6: The board Bx

Theorem 4. Let B = B(a1, . . . , an). Then

(x + [a1]p,q) · · · (x + [an]p,q) =
n∑

k=0

fk(p, q,B)xn−k. (68)

Proof. We claim that for each positive integer x, the identity (68) arises from two ways of
counting

S =
∑

P∈Fn(Bx)

wp,q,B(P ∩ B). (69)

That is, each P ∈ Fn(Bx) has exactly one rook in each column of Bx. If we consider the
placement of rook rk in the k-th column, then the possible contribution of rk to (69) is pak−1

if we place it at the top of the column, qpak−2 if we place it in second row from the top, . . .,
qak−1 if we place it in the ak-th row from the top since all these cells are in B. We also have
a contribution of x to (69) which corresponds to placing rk in rows 1, . . .x below the bar in
column k. It then easily follows that

S = (x + [a1]p,q) · · · (x + [an]p,q).

We can calculate S in second way by classifying P according to the number of rooks that fall in
B. For any Q ∈ Fk(B), we can complete Q to a placement P ∈ Fn(Bx) such that P ∩ B = Q
in exactly xn−k ways corresponding to the ways of placing the n − k rooks below the bar in
columns which contain no rook in Q. Thus∑

P∈Fn(Bx):P∩B=Q
wp,q,B(P ∩ B) = wp,q,B(Q)xn−k.
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Then

S =
n∑

k=0

∑
Q∈Fk(B)

∑
P∈Fn(Bx):P∩B=Q

wp,q,B(P ∩ B)

=
n∑

k=0

∑
Q∈Fk(B)

wp,q,B(Q)xn−k

=
n∑

k=0

xn−k
∑

Q∈Fk(B)

wp,q,B(Q)

=
n∑

k=0

fk(p, q,B)xn−k.

Hence (68) holds for all positive integers x and since it is a polynomial identity, it must hold for
all x. �

If we replace x by [t]p,q in (68), we get the following.

Corollary 5.

([t]p,q + [a1]p,q) · · · ([t]p,q + [an]p,q) =
n∑

k=0

fk(p, q,B)[t]n−k
p,q . (70)

Proof. We note that we can have direct combinatorial proof (70) by using the same type of
reasoning as in the proof of Theorem 4 and computing the sum

S =
∑

P∈Fn(Bx)

wp,q,Bx(P). (71)

where
wp,q,Bx(P) =

∏
r∈P

wp,q,Bx(r)

where for any rook r,

wp,q,Bx(r) =

{
qa(r,B)pb(r,B) if r ∈ B

qk−1px−k if r is in row k below the bar

and a(r,B) is the number of cells directly above r in B and b(r,B) is the number of cells directly
below r in B. �

We are now in a position to give our combinatorial interpretations of ci,j
n,k(p, q) and Si,j

n,k(p, q)
defined in the introduction. Let i ≥ 0 and j > 0 be integers and let Bi,j,n be the board
B(i, i + j, i + 2j, . . . , i + (n − 1)j). Then we have the following.

Theorem 6. If n is a positive integer and k is an integer such that 0 ≤ k ≤ n, then

ci,j
n,k(p, q) = fn−k(p, q,Bi,j,n) (72)

and
Si,j

n,k(p, q) = rj
n−k(p, q,Bi,j,n). (73)
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Proof. It is easy to check that fn−k(p, q,Bi,j,n) and rn−k(p, q,Bi,j,n) satisfy the appropriate
recursions. That is, Bi,j,1 = B((i)) so that it immediately follows form our definitions that for
all i ≥ 0 and j > 0,

f1(p, q,Bi,j,1) = rj
1(p, q,Bi,j,1) = [i]p,q and

f0(p, q,Bi,j,1) = rj
0(p, q,Bi,j,1) = 1.

It follows from (30) and (32) that

ci,j
1,0(p, q) = Si,j

1,0(p, q) = [i]p,q and

ci,j
1,1(p, q) = Si,j

1,1(p, q) = 1.

Thus for k ∈ {0, 1},

ci,j
1,k(p, q) = f1−k(p, q,Bi,j,1) and

Si,j
1,k(p, q) = rj

1−k(p, q,Bi,j,1).

Clearly fk(p, q,Bi,j,n) = 0 and rj
k(p, q,Bi,j,n) = 0 if k > n or k < 0 since there are no placements

in Fk(Bi,j,n) or N j
k (Bi,j,n) if k > n or k < 0. Thus to verify that (72) and (73) hold we need

only verify that for all n ≥ 1 and 0 ≤ k ≤ n,

fn+1−k(p, q,Bi,j,n+1) = fn−(k−1)(p, q,Bi,j,n) + [i + nj]p,qfn−k(p, q,Bi,j,n) (74)

and
rj
n+1−k(p, q,Bi,j,n+1) = rj

n−(k−1)(p, q,Bi,j,n) + [i + kj]p,qr
j
n−k(p, q,Bi,j,n). (75)

Both recursions can be proved in the same way. That is, to prove (74), we simply partition the
elements of Fn+1−k(Bi,j,n+1) into two sets No and Last where No consists of the placements of
Fn+1−k(Bi,j,n+1) which have no rook in the last column and Last consists of the placements of
Fn+1−k(Bi,j,n+1) which have a rook in the last column. It is easy to see that a placement in No
has n − (k − 1) rooks to the left of the last column and the weight of any placement P ∈ No
is the same as the placement Q in Fn−(k−1)(Bi,j,n) that results by eliminating the last column.
Thus ∑

P∈No

wp,q,Bi,j,n+1(P) =
∑

Q∈Fn−(k−1)(Bi,j,n)

wp,q,Bi,j,n(Q) = fn−(k−1)(p, q,Bi,j,n).

To compute
∑

P∈Last wp,q,Bi,j,n+1(P), observe that if we fix a placement Q ∈ Fn−k(Bi,j,n), then
we can extend Q to a placement P ∈ Last by placing an additional rook in the last column.
Since the height of the last column of Bi,j,n+1 is i + nj, there will be i + nj such placements.
Moreover, it is easy to see that if we place the rook in the s-th row of the last column, where we
label the row with 1, . . . , i+nj reading from bottom to top, then the weight of the corresponding
placement Ps is qi+nj−sps−1wp,q,Bi,j,n(Q). It follows that∑

P∈Last

wp,q,Bi,j,n+1(P)

=
∑

Q∈Fn−k(Bi,j,n)

(qi+nj−1 + qi+nj−2p + · · · + qpi+nj−2 + pi+nj−1)wp,q,Bi,j,n(Q)

= [i + nj]p,qfn−k(p, q,Bi,j,n).
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The argument to prove (75) is essentially the same. That is, again partition the ele-
ments of N j

n+1−k(Bi,j,n+1) into two sets No and Last where No consists of the placements
of N j

n+1−k(Bi,j,n+1) which have no rook in the last column and Last consists of the placements
of N j

n+1−k(Bi,j,n+1) which have a rook in the last column. Again it is easy to see that∑
P∈No

Wp,q,Bi,j,n+1(P) =
∑

Q∈N j
n−(k−1)

(Bi,j,n)

Wp,q,Bi,j,n+1(Q) = rj
n−(k−1)(p, q,Bi,j,n).

To compute
∑

P∈Last Wp,q,Bi,j,n+1(P) observe that if we fix a placement Q ∈ N j
n−k(Bi,j,n), then

we can extend Q to a placement P ∈ Last by placing an additional rook in the last column. In
this case, the n− k rooks in Q will j-attack exactly (n − k)j cells in the last column. Since the
height of the last column of Bi,j,n+1 is i+ nj, there will be i+ nj − (n− k)j = i+ kj cells in the
last column of Bi,j,n+1 which are not j-attacked and hence there will be i + kj such placements.
Moreover, it is easy to see that if we place the rook in the s-th row of the non-j-attacked cells of
the last column, where we label such rows with 1, . . . , i + kj reading from bottom to top, then
the weight of the corresponding placement Ps is qi+kj−sps−1Wp,q,Bi,j,n(Q). It follows that∑

P∈Last

Wp,q,Bi,j,n+1(P)

=
∑

Q∈N j
n−k(Bi,j,n)

(qi+kj−1 + qi+kj−2p + · · · + qpi+kj−2 + pi+kj−1)Wp,q,Bi,j,n(Q)

= [i + kj]p,qr
j
n−k(p, q,Bi,j,n).

�

We point out here that if we modify our combinatorial interpretation of S0,1
n,k(p, q) to include

a factor of p for each uncancelled cell in an empty column, we will get one of the rook theoretic
combinatorial interpretations of Sn,k(p, q) given by Wachs and White [26].

We note that when B = Bi,j,n, then Corollary 5 becomes

([t]p,q + [i]p,q) · · · ([t]p,q + [i + (n − 1)j]p,q) =
n∑

k+0

ci,j
n,k[t]

k
p,q

which is just (33). Thus (33) has a combinatorial proof. Then replacing [t]p,q by −[t]p,q, multi-
plying by (−1)n and using the fact that si,j

n,k(p, q) = (−1)n−kci,j
n,k(p, q) clearly yields (35). Then

we can derive (34) from (35) by using the fact that the the matrices ||si,j
n,k(p, q)|| and ||Si,j

n,k(p, q)||
are inverses of each other. A direct combinatorial proof of (34) was found by Briggs and Rem-
mel in [8]. We give a direct combinatorial proof the matrices ||si,j

n,k(p, q)|| and ||Si,j
n,k(p, q)|| are

inverses of each other. That is, if we start with our combinatorial interpretations of ci,j
n,k(p, q)

and Si,j
n,k(p, q), then we can give a combinatorial proof of the following for all 0 ≤ r ≤ n.

n∑
k=r

Si,j
n,k(p, q)si,j

k,r(p, q) = χ(r = n). (76)

Note that if r = n, then (76) reduces down to

1 = Si,j
n,n(p, q)si,j

n,n(p, q). (77)
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But (77) holds since both N j
n−n(Bi,j,n) and Fn−n(Bi,j,n) consist solely of the empty placement

E . Since Wp,q,Bi,j,n(E) = wp,q,Bi,j,n(E) = 1, it follows that Si,j
n,n(p, q) = si,j

n,n(p, q) = 1 and hence
(77) holds.

Now suppose that n > r. Then

n∑
k=r

Si,j
n,k(p, q)si,j

k,r(p, q)

=
n∑

k=r

(−1)k−r
∑

(P,Q)∈N j
n−k(Bi,j,n)×Fk−r(Bi,j,k)

Wp,q,Bi,j,n(P)wp,q,Bi,j,k
(Q)

=
n∑

k=r

∑
(P,Q)∈N j

n−k(Bi,j,n)×Fk−r(Bi,j,k)

Wp,q,Bi,j,n(P)sgn(Q)wp,q,Bi,j,k
(Q)

where sgn(Q) = (−1)no. of rooks in Q. Then consider the elements

(P,Q) ∈
n⋃

k=r

N j
n−k(Bi,j,n) ×Fk−r(Bi,j,k).

We can partition these elements into three classes.

Class I. There is a rook of P in the last column of Bi,j,n.

Class II. There is no rook of P in the last column of Bi,j,n, but there is a rook of Q in the
last column of Bi,j,k.

Class III. There is no rook of P in the last column of Bi,j,n and there is no rook of Q in
the last column of Bi,j,k.

Next we define a weight preserving sign-reversing bijection f from Class I to Class II. Given
an element (P,Q) ∈ N j

n−k(Bi,j,n)×Fk−r(Bi,j,k) in Class I, note that there are a total of n−k−1
rooks in P to the left of the last column of Bi,j,n and these rooks j-attack a total of (n−k−1)j cells
in the last column. Thus in the last column of Bi,j,n, there are a total of i+(n−1)j−(n−k−1)j =
i + kj cells in the last column of Bi,j,n which are not j-attacked by a rook in P. Then define
f((P,Q)) = (P ′,Q′) where

(i) P ′ is the result of taking the placement P and removing the rook in the last column of Bi,j,n

and

(ii) Q′ is the result of adding an extra column of height i + kj to the right of the placement
Q and placing a rook fk in that column which is in row t if the rook rn in P in the last
column of Bi,j,n was in the t-th cell, reading from bottom to top, which was not j-attacked
by a rook in P to the left of rn.

See Figure 7 for an example of this map when n = 6, k = 3 and r = 1. Our definitions ensure
that rn contributes a factor of qi+jk−tpt−1 to Wp,q,Bi,j,n(P) and that fk contributes a factor of
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qi+jk−tpt−1 to wp,q,Bi,j,k+1
(Q′). Thus

Wp,q,Bi,j,n(P)wp,q,Bi,j,k
(Q) = Wp,q,Bi,j,n(P ′)qi+jk−tpt−1Wp,q,Bi,j,n(Q)

= Wp,q,Bi,j,n(P ′)wp,q,Bi,j,k+1
(Q′).

Clearly sgn(Q) = (−i)k−r = −sgn(Q′) = (−1)k−r+1 so that f is a sign reversing weight preserv-
ing function which for each r ≤ k ≤ n maps the elements of N j

n−k(Bi,j,n)×Fk−r(Bi,j,k) in Class
I to the elements N j

n−k−1(Bi,j,n) ×Fk+1−r(Bi,j,k+1) in Class II. Moreover f−1 is easily defined.
That is, if (P ′,Q′) ∈ N j

n−k−1(Bi,j,n) × Fk+1−r(Bi,j,k+1) is in Class II and the rook in the last
column of Q′ is in row t, then f−1(P ′,Q′)) = (P,Q) where Q is results from Q′ by removing
the last column of Bi,j,k+1 and P results from P ′ by adding a rook in the last column of Bi,j,n

in the t-th cell from the bottom which is not j-attacked by any rook in P ′. Thus f is a bijection
which shows that

n∑
k=r

∑
(P,Q)∈N j

n−k(Bi,j,n)×Fk−r(Bi,j,k)

Wp,q,Bi,j,n(P)sgn(Q)wp,q,Bi,j,k
(Q) =

n∑
k=r

∑
(P,Q)∈Class III

Wp,q,Bi,j,n(P)sgn(Q)wp,q,Bi,j,k
(Q)

P = = Q

= Q’P’ = 

f

X

X

X

X

q
q
q

p
p

p
X X

X X

X

q
q
q

p
p
p

X

Figure 7: An example of the map f from Class I to Class II

Note if r = 0, then there are no elements in Class III since every element of (P,Q) ∈
N j

n−k(Bi,j,n) × Fk−0(Bi,j,k) has a rook of Q in the last column of Bi,j,k. Thus if r = 0, then
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f shows that
∑n

k=0 Si,j
n,k(p, q)si,j

k,0(p, q) = 0. Finally if r ≥ 1, then there is a weight preserving

bijection g which maps Class III onto
⋃n−1

k=r−1 N
j
n−1−k(Bi,j,n−1) × Fk−(r−1)(Bi,j,k). That is, if

(P,Q) is in Class III, then g((P,Q)) = (P ′′,Q′′) where P ′′ is obtained from P by removing
its last column and Q′′ is obtained from Q by removing its last column. See Figure 8 for an
example.

X

X

X X

XX

g

P = = Q

P’’ = = Q’’

Figure 8: An example of the map g

Thus if r ≥ 1, then our bijections f and g show that

n∑
k=r

Si,j
n,k(p, q)si,j

k,r(p, q) =
n−1∑

k=r−1

Si,j
n−1,k(p, q)si,j

k,r−1(p, q) = χ(r − 1 = n − 1) (78)

where the last equality follows by induction. Thus we have proved that
n∑

k=r

Si,j
n,k(p, q)si,j

k,r(p, q) = χ(r = n)

as desired.

3 A combinatorial interpretation of s̃i,j
n,k(p, q) and S̃i,j

n,k(p, q)

The main purpose of this section is to develop alternative versions of (p, q)-rook numbers and
(p, q)-file numbers which are suitable to be specialized to give combinatorial interpretations of
s̃i,j
n,k(p, q) and S̃i,j

n,k(p, q).
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Let B = B(a1, . . . , an) be a j-attacking board. Then for any placement P ∈ N j
k (B), we

define
W̃ j

p,q,B(P) = qaB(P)pbB(P)qeB(P)p−(c1+···+cn)j (79)

where

1. aB(P) equals the number of cells of B which lie above a rook in P and which are not
j-attacked by any rook in P,

2. bB(P) equals the number of cells of B which lie below a rook in P and which are not
j-attacked by any rook in P,

3. eB(P) equals the number of cells of B which lie in a column with no rook in P and which
are not j-attacked by any rook in P, and

4. c1 < · · · < ck are the columns which contain rooks in P where we label the columns of B
with 1, . . . , n reading from left to right.

For example, in Figure 9, we have pictured a placement P ∈ N 3
3 (B) where B is the 3-attacking

board B(2, 5, 8, 10, 12) such that P has rooks in columns 1, 3 and 4 and aB(P) = 3, bB(P) = 5,
eB(P) = 5. Thus W̃ 3

p,q,B(P) = q3p5q5p−(1+3+4)3 = q8p−19. Moreover, we have placed a p in each
cell of B which contributes to the bB(P), a q in each cell that contributes to either aB(P) or
eB(P), and a dot in each cell that is j-attacked by some rook in P.

x

x

xp p

p
p
p

q

q q
q
q q

q
q

Figure 9: An example of W̃p,q,B(P)

We then define the (p, q)-rook number of B (of type II) by

r̃j
k,B(p, q) =

∑
P∈N j

k (B)

W̃ j
p,q,B(P). (80)

This given, we then have the following result.

Theorem 7. Let B = B(a1, . . . , an) be a j-attacking board. Then

[x + a1]p,q[x + a2 − j]p,q · · · [x + an − (n − 1)j]p,q =
n∑

k=0

r̃j
k,B(p, q)pkx+(k+1

2 )j[x]p,q ↓n−k,j (81)

where [x]p,q ↓0,j= 1 and for k > 0, [x]p,q ↓k,j= [x]p,q[x − j]p,q · · · [x − (k − 1)j]p,q.
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Proof. We note that when j = 1 and p = 1, (81) becomes

[x + a1]q[x + a2 − 1]q · · · [x + an − (n − 1)]q =
n∑

k=0

r̃1
n−k,B(1, q)[x]q ↓k

which was first proved by Garsia and Remmel [11]. Our proof is a generalization of their proof.
It is enough to prove (81) for all positive integers x ≥ jn. So fix a positive integer x ≥ jn

and let Bx be the board which results by adding x rows of length n below B as described in
section 1. We shall consider placements of n rooks in Bx where there is at most one rook in each
row and column. A rook r which lies above the bar will j-attack cells as described in section
1. Thus a rook r which lies above the bar will only j-attack cells which are above the bar.
Similarly, we shall define the cells which a rook r′ below the bar j-attacks so that each rook r′

will only j-attack cells below the bar in Bx. We say that a rook r′ which lies in column k and
row l, where here we label the rows below the bar with 1, . . . , x reading from top to bottom,
j-attacks a cell c ∈ Bx which is below the bar only if c lies in a column that is strictly to the
right of column k and either

(i) c lies in the first j rows of Bx below the bar which are weakly above row l and which contain
no cell that is j-attacked by some rook r′′ to the left of r′ or

(ii) there are t < j rows below the bar which are weakly above row l and which contain no cell
that is j-attacked by some rook r′′ which is strictly to the left of column k and c is in the
largest j − t rows which are not j-attacked by any rook r′′ which is strictly to the left of
r′.

In other words, a rook in column k and row l below the bar j-attacks all cells below the bar
which are not j-attacked by any rook r′′ to the left of r′, which are in a column strictly to
the right of k and which lie in the first j such rows where we order the rows in the order
l, l− 1, . . . , 1, x, x− 1, . . . , l + 1. Thus when we look for rows for r′ to j-attack, we only consider
rows below the bar which are not j-attacked by any rook r′′ to the left of r′. Then we first look
at such rows which are weakly above l, but if there are not j such rows weakly above row l, then
we cycle around starting at the bottom row until we find a total of j rows to attack. We then
let N j

k (Bx) denote the set of all placements P of n rooks in Bx such that there is at most one
rook in each row and column and such that no rook j-attacks another rook. This given, we can
then define Wp,q,Bx(P) just as we did in section 1, namely,

W j
p,q,Bx

(P) = qaB(P)pbB(P) (82)

where

aB(P) equals the number of cells of B which lie above a rook in P and which are not j-attacked
by any rook in P and

bB(P) equals the number of cells of B which lie below a rook in P and which are not j-attacked
by any rook in P.

For example, consider the placement P ∈ N 3
4 (B(1, 3, 5, 7)10) pictured in Figure 10. We shall

denote the positions of the four rooks, reading from left to right, by placing circled elements
containing the numbers 1, 2, 3 and 4. We shall then indicate the cells which are 3-attacked by
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Figure 10: An example of W̃p,q,B(P)

the circled rook with label i by placing i’s in such cells. We shall place a q or a p in those cells
which are not 3-attacked by any rook in P depending on whether the cell contributes a factor
of q or p to Wp,q,Bx(P) from which it will be clear that Wp,q,Bx(P) = q8p25.

This given, we shall show that (81) results from two different ways of computing the sum

S =
∑

P∈N j
n(Bx)

Wp,q,Bx(P). (83)

That is, first consider the contribution to S of the possible placements of rooks in each column
proceeding from left to right. For the first column, it is easy to see that the contribution to S
by placing rooks in the cells starting at the top and going down to the bottom are, respectively,
pa1+x−1, qpa1+x−2, q2pa1+x−3, . . . , qa1+x−2p, qa1+x−1. Thus the contribution to S from the first
column is [a1 +x]p,q. We can apply the same argument to the second column except that j-cells
in that column will be j-attacked by the rook in column 1 so the the contribution to S from
the second column is [a2 + x − j]p,q. Similarly, the contribution to S from the third column is
[a3 + x− 2j]p,q since a total of 2j cells in column 3 will be j-attacked by the rooks in columns 1
and 2. Continuing on in this way, we see that

S =
n∏

r=1

[ar + x − (r − 1)j]p,q. (84)

Next fix a placement Q of k rooks in B. We want to compute

S(Q) =
∑

P∈N j
n(Bx),P∩B=Q

Wp,q,Bx(P). (85)

It is easy to see that qaB(Q)bbB(Q)qeB(Q) is the contribution Wp,q,Bx(P) of the cells above the bar.
Now if P has rooks in columns c1, . . . , ck where 1 ≤ c1 < . . . < ck ≤ n, then the cells in those
columns, which lie below the bar and which are not j-attacked by a rook in P, each contribute
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a factor of p to Wp,q,Bx(P). Note that there are ct − t rooks of P below the bar which lie to the
left of column ct, and each such rook will j-attack exactly j cells in column ct. Thus the total
number of cells below the bar in columns c1, . . . , ck which are not j-attacked by any rook in P
is

(x − (c1 − 1)j) + (x − (c2 − 2)j) + · · · + (x − (ck − k)j) = kx +
(

k + 1
2

)
j − (c1 + · · · + ck)j.

Thus such cells below the bar contribute a factor of pkx+(k+1
2 )j−(c1+···+ck)j to Wp,q,Bx(P). Fi-

nally consider the contribution to Wp,q,Bx(P) of the cells below the bar in the remaining n − k
columns. For the leftmost such column, it is easy to see that the contribution to S by plac-
ing rooks in the cells starting at the top and going down to the bottom are, respectively,
px−1, qpx−2, q2px−3, . . . , qx−2p, qx−1. Thus the contribution to S(Q) from the leftmost column
which contains a rook below the bar is is [x]p,q. We can apply the same argument to the second
leftmost column that contains a rook below the bar except that j-cells in that column will be
j-attacked by the rook in the leftmost column which contains a rook below the bar. Thus the
the contribution to S(Q) from the second such column is [x − j]p,q. Similarly, the contribution
to S from the third such column is [x − 2j]p,q since at total of 2j cells in that column will be
j-attacked by the rooks in below the bar to its left. Continuing on in this way, we see that
contribution to S(Q) from the cells in the remains n − k columns is

n−k∏
r=1

[x − (r − 1)j]p,q = [x]p,q ↓n−k,j .

It follows that

S(Q) = qaB(Q)bbB(Q)qeB(Q)p−(c1+...+ck)jpkx+(k+1
2 )[x]p,q ↓n−k,j

= W̃p,q,B(Q)pkx+(k+1
2 )j[x]p,q ↓n−k,j . (86)

Thus

S =
n∑

k=0

pkx+(k+1
2 )j [x]p,q ↓n−k,j

∑
Q∈N j

k (B)

W̃p,q,B(Q)

=
n∑

k=0

r̃j
k,B(p, q)pkx+(k+1

2 )j[x]p,q ↓n−k,j . (87)

Combining (84) and (87) yields (81) as desired. �

Next we define the (p, q)-file number (of type II) for a j-attacking board B = B(a1, . . . , an)
by

f̃k,B(p, q) =
∑

P∈Fk(B)

w̃j
p,q,B(P) (88)

where for any P ∈ Fk(B), we define

w̃j
p,q,B(P) = qαB(P)pβB(P)pεB(P) (89)

where
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1. αB(P) equals the number of cells of B which lie above a rook in P,

2. βB(P) equals the number of cells of B which lie below a rook in P,

3. εB(P) equals the number of cells of B which lie in a column with no rook in P.

We are now in a position to give our combinatorial interpretations of s̃i,j
n,k(p, q) and S̃i,j

n,k(p, q)

defined in the introduction. Set c̃i,j
n,k(p, q) = (−1)n−ks̃i,j

n,k(p, q). Let i ≥ 0 and j > 0 be integers
and let Bi,j,n be the board B(i, i + j, i + 2j, . . . , i + (n − 1)j). Then we have the following.

Theorem 8. If n is a positive integer and k is an integer such that 0 ≤ k ≤ n, then

c̃i,j
n,k(p, q) = f̃n−k(p, q,Bi,j,n) (90)

and
S̃i,j

n,k(p, q) = r̃j
n−k(p, q,Bi,j,n). (91)

Proof. It is easy to check that f̃n−k(p, q,Bi,j,n) and r̃j
n−k(p, q,Bi,j,n) satisfy the appropriate

recursions. That is, Bi,j,1 = B((i)) so that it immediately follows from our definitions that for
all i and j,

f̃1(p, q,Bi,j,1) = r̃j
1(p, q,Bi,j,1) = [i]p,q,

f̃0(p, q,Bi,j,1) = pi and

r̃j
0(p, q,Bi,j,1) = qi.

It follows from (30) and (32) that

c̃i,j
1,0(p, q) = S̃i,j

1,0(p, q) = [i]p,q,

c̃i,j
1,1(p, q) = pi and

S̃i,j
1,1(p, q) = qi.

Thus for k ∈ {0, 1},

c̃i,j
1,k(p, q) = f̃1−k(p, q,Bi,j,1) and

S̃i,j
1,k(p, q) = r̃j

1−k(p, q,Bi,j,1).

Clearly f̃k(p, q,Bi,j,n) = 0 and r̃j
k(p, q,Bi,j,n) = 0 if k > n or k < 0 since there are no placements

in Fk(Bi,j,n) or N j
k (Bi,j,n) if k > n or k < 0. Thus to verify that (90) and (91) hold we need

only verify that for all n ≥ 1 and 0 ≤ k ≤ n,

f̃n+1−k(p, q,Bi,j,n+1) = pnj+if̃n−k−1(p, q,Bi,j,n) + [i + nj]p,qf̃n−k(p, q,Bi,j,n) (92)

and

r̃j
n+1−k(p, q,Bi,j,n+1) = qi+kj r̃j

n−k−1(p, q,Bi,j,n) + p−(n+1)j [i + kj]p,q r̃
j
n−k(p, q,Bi,j,n). (93)

Both recursions can be proved in the same way. That is, to prove (92), we simply partition the
elements of Fn+1−k(Bi,j,n+1) into two sets No and Last where No consists of the placements of
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Fn+1−k(Bi,j,n+1) which have no rook in the last column and Last consists of the placements of
Fn+1−k(Bi,j,n+1) which have a rook in the last column. It is easy to see that a placement in No
has n − k − 1 rooks to the left of the last column and the weight of any placement P ∈ No is
pnj+iw̃p,q,Bi,j,n(P ′) where P ′ is the placement in Fn−(k−1)(Bi,j,n) that results by eliminating the
last column of P. Thus∑

P∈No

w̃p,q,Bi,j,n+1(P) =
∑

P ′∈Fn−(k−1)(Bi,j,n)

pnj+iw̃p,q,Bi,j,n(P ′) = pnj+if̃n−(k−1)(p, q,Bi,j,n).

To compute
∑

P∈Last w̃p,q,Bi,j,n+1(P) observe that if we fix a placement Q ∈ Fn−k(Bi,j,n), then
we can extend Q to a placement P ∈ Last by placing an additional rook in the last column.
Since the height of the last column of Bi,j,n+1 is i + nj, there will be i + nj such placements.
Moreover, it is easy to see that if we place the rook in the s-th row of the last column, where we
label the row with 1, . . . , i+nj reading from bottom to top, then the weight of the corresponding
placement Ps is qi+nj−sps−1wp,q,Bi,j,n(Q). It follows that

∑
P∈Last

w̃p,q,Bi,j,n+1(P)

=
∑

Q∈Fn−k(Bi,j,n)

(qi+nj−1 + qi+nj−2p + · · · + qpi+nj−2 + pi+nj−1)w̃p,q,Bi,j,n(Q)

= [i + nj]p,qf̃n−k(p, q,Bi,j,n).

The argument to prove (93) is essentially the same. That is, again partition the ele-
ments of N j

n+1−k(Bi,j,n+1) into two sets No and Last where No consists of the placements
of N j

n+1−k(Bi,j,n+1) which have no rook in the last column and Last consists of the placements
of N j

n+1−k(Bi,j,n+1) which have a rook in the last column. If P ∈ No, then there are n + 1 − k
rooks to the left of the last column in P . These rook j-attack a total of (n + 1− k)j cells in the
last column. Thus there are a total of nj + i − (n + 1 − k)j = (k − 1)j + i cells in last column
of Bi,j,n+1 which are not j-attacked by any rook in P. Each such cell is counted in εBi,j,n+1(P)
so that these cells contribute a factor of q(k−1)j+i to W̃p,q,Bi,j,n+1(P). Thus

∑
P∈No

W̃p,q,Bi,j,n+1(P) = q(k−1)j+i
∑

Q∈N j
n−(k−1)

(Bi,j,n)

W̃p,q,Bi,j,n(Q)

= q(k−1)j+ir̃j
n−(k−1)(p, q,Bi,j,n).

To compute
∑

P∈Last W̃p,q,Bi,j,n+1(P) observe that if we fix a placement Q ∈ N j
n−k(Bi,j,n), then

we can extend Q to a placement P ∈ N by placing an additional rook in the last column. In
this case, the n− k rooks in Q will j-attack exactly (n − k)j cells in the last column. Since the
height of the last column of Bi,j,n+1 is i+ nj, there will be i+ nj − (n− k)j = i+ kj cells in the
last column of Bi,j,n+1 which are not j-attacked and hence there will be i + kj such placements.
Moreover, it is easy to see that if we place the rook in the s-th row of the non-j-attacked cells of
the last column, where we label such rows with 1, . . . , i + kj reading from bottom to top, then
the weight of the corresponding placement Ps is qi+kj−sps−1W̃p,q,Bi,j,n(Q). Finally there is an
extra factor of p−(n+1) in W̃p,q,Bi,j,n+1(P) that does not occur in W̃p,q,Bi,j,n(Q) due to the rook
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in column n + 1 in P. It follows that∑
P∈Last

W̃p,q,Bi,j,n+1(P)

= p−(n+1)
∑

Q∈N j
n−k(Bi,j,n)

(qi+kj−1 + qi+kj−2p + · · · + qpi+kj−2 + pi+kj−1)W̃p,q,Bi,j,n(Q)

= p−(n+1)[i + kj]p,q r̃
j
n−k(p, q,Bi,j,n).

�

We note that when B = Bi,j,n, then Theorem 7 becomes

[x + i]np,q =
n∑

k=0

S̃i,j
n,kp

(n−k)x+(n−k+1
2 )j [x]p,q ↓k

which is just (59). Thus (59) has a combinatorial proof.
We can also give a combinatorial proof that the matrices ||p(n−k+1

2 )jS̃i,j
n,k(p, q)|| and

||(pq)−(n
2)jp−ikq−ins̃i,j

n,k(p, q)|| are inverses of each other. In fact, we can use the same proof that
we used to give a combinatorial proof that the matrices ||Si,j

n,k(p, q)|| and

||si,j
n,k(p, q)|| are inverses of each other. That is, we must show that for all n and 0 ≤ r ≤ n,

n∑
k=r

p(n−k+1
2 )jS̃i,j

n,k(p, q)(pq)−(k
2)jp−irq−iks̃i,j

k,r(p, q) = χ(n = r). (94)

Note that if r = n, then (94) reduces down to

1 = S̃i,j
n,n(p, q)(pq)−(n

2)jp−inq−ins̃i,j
n,n(p, q). (95)

Now both N j
n−n(Bi,j,n) and Fn−n(Bi,j,n) consist solely of the empty placement E . Then it is

easy to see that our definitions ensure that

W̃p,q,Bi,j,n(E) = q
Pn

s=1 i+(s−1)j = q(
n
2)j+in

w̃p,q,Bi,j,n(E) = p
Pn

s=1 i+(s−1)j = p(n
2)j+in.

It thus follows that S̃i,j
n,n(p, q) = q(

n
2)j+in and s̃i,j

n,n(p, q) = p(n
2)j+in and hence (95) holds.

Now suppose that n > r. Then
n∑

k=r

p(n−k+1
2 )j S̃i,j

n,k(p, q)(pq)−(k
2)jp−irq−iks̃i,j

k,r(p, q) = (96)

n∑
k=r

∑
(P,Q)∈N j

n−k(Bi,j,n)×Fk−r(Bi,j,k)

p(n−k+1
2 )jW̃p,q,Bi,j,n(P)(pq)−(k

2)jp−irq−ikw̃p,q,Bi,j,k
(Q)sgn(Q)

where sgn(Q) = (−1)k−r = (−1)no. of rooks in Q. We partition the elements

(P,Q) ∈
n⋃

k=r

N j
n−k(Bi,j,n) ×Fk−r(Bi,j,k)
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into three classes just as we did in section 2.

Class I. There is a rook of P in the last column of Bi,j,n.

Class II. There is no rook of P in the last column of Bi,j,n, but there is a rook of Q in the
last column of Bi,j,k.

Class III. There is no rook of P in the last column of Bi,j,n and there is no rook of Q in
the last column of Bi,j,k.

Let f be the bijection from Class I to Class II defined at the end of section 1. Thus f is a sign
reversing bijection which for each r ≤ k ≤ n maps the elements of N j

n−k(Bi,j,n) × Fk−r(Bi,j,k)
in Class I to the elements N j

n−k−1(Bi,j,n) × Fk+1−r(Bi,j,k+1) in Class II. Now suppose that
(P,Q) ∈ N j

n−k(Bi,j,n) × Fk−r(Bi,j,k) and f((P,Q)) = (P ′,Q′). Thus there i + kj cells of P in
the last column which are not j-attacked by any rook to the right of the last column. Thus the
effect of removing the last rook rn in P and placing it in the corresponding position in a new
column of height i+ kj to the left of Q means that we lose a factor of p−nj and we gain a factor
of qi+kj since the last column of P ′ is now empty. Thus

qi+kjpnjW̃p,q,Bi,j,n(P)w̃p,q,Bi,j,k
(Q) = W̃p,q,Bi,j,n(P ′)w̃p,q,Bi,j,k+11

(Q′). (97)

But then

p(n−k+1
2 )jW̃p,q,Bi,j,n(P)(pq)−(k

2)jp−irq−ikw̃p,q,Bi,j,k
(Q)sgn(Q)

= p(n−k
2 )jp(n−k)jW̃p,q,Bi,j,n(P)(pq)−(k+1

2 )j(pq)kjp−irq−i(k+1)qiw̃p,q,Bi,j,k
(Q)sgn(Q)

= pnjqi+kj(p(n−k
2 )jW̃p,q,Bi,j,n(P)(pq)−(k+1

2 )jp−irq−i(k+1)w̃p,q,Bi,j,k
(Q)sgn(Q))

= −(p(n−k
2 )jW̃p,q,Bi,j,n(P ′)(pq)−(k+1

2 )jp−irq−i(k+1)w̃p,q,Bi,j,k+1
(Q′)sgn(Q′))

which is precisely the sign-reversing weight preserving property required to show that f can-
cels all the elements in Classes I and II in the sum (96). If we let Tn,k,r,i,j = N j

n−k(Bi,j,n) ×
Fk−r(Bi,j,n), then f shows that

n∑
k=r

∑
(P,Q)∈Tn,k,r,i,j

p(n−k+1
2 )jW̃p,q,Bi,j,n(P)(pq)−(k

2)jp−irq−ikw̃p,q,Bi,j,n(Q)sgn(Q)

=
n∑

k=r

∑
(P,Q)∈Tn,k,r,i,j

(P ,Q)∈Class III

p(n−k+1
2 )jW̃p,q,Bi,j,n(P)(pq)−(k

2)jp−irq−ikw̃p,q,Bi,j,n(Q)sgn(Q).

Again if r = 0, then there are no elements in Class III. Thus if r = 0, then f shows that∑n
k=0 p(n−k+1

2 )jS̃i,j
n,k(p, q)(pq)−(k

2)jq−iksi,j
k,0(p, q) = 0. Finally if r ≥ 1, we again use the bijection g

defined in section 1 which maps Class III onto
⋃n−1

k=r−1 N
j
n−1−k(Bi,j,n−1)×Fk−(r−1)(Bi,j,k). That

is, if (P,Q) is in Class III, then g((P,Q)) = (P ′′,Q′′) where P ′′ is obtained from P by removing
its last column and Q′′ is obtained from Q by removing its last column. In this case, it is easy
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to see that since there i + (k− 1)j cells in the last column of P which are not j-attacked by any
rook to the left of last column we lose a factor of qi+(k−1)j from the W̃p,q,Bi,j,n(P) by removing
the last column. Similarly we lose a factor of pi+(k−1)j from the W̃p,q,Bi,j,n(Q) by removing the
last column. Thus if g((P,Q)) = (P ′,Q′), then

(pq)−i−(k−1)jW̃p,q,Bi,j,n(P)w̃p,q,Bi,j,k
(Q) = W̃p,q,Bi,j,n−1(P ′)w̃p,q,Bi,j,k−1

(Q′). (98)

But then

p(n−k+1
2 )jW̃p,q,Bi,j,n(P)(pq)−(k

2)jp−irq−ikw̃p,q,Bi,j,k
(Q)sgn(Q)

= p((n−k+1
2 )jW̃p,q,Bi,j,n(P)(pq)−(k−1

2 )j(pq)−(k−1)jp−i(r−1)p−iq−i(k−1)q−iw̃p,q,Bi,j,k
(Q)sgn(Q)

= (pq)−i−(k−1)j(p((n−k+1
2 )jW̃p,q,Bi,j,n(P)(pq)−(k−1

2 )jp−i(r−1)q−i(k−1)w̃p,q,Bi,j,k
(Q)sgn(Q))

= (p((n−1)−(k−1)+1
2 )jW̃p,q,Bi,j,n−1(P ′)(pq)−(k−1

2 )jp−i(r−1)q−i(k−1)w̃p,q,Bi,j,k−1
(Q′)sgn(Q′)

Thus g shows that
Pn

k=r

P
(P,Q)∈Tn,k,r,i,j
(P,Q)∈Class III

p

�
n−k+1

2

�
j
W̃p,q,Bi,j,n

(P)(pq)
−
�

k
2

�
j
p−irq−ikw̃p,q,Bi,j,k

(Q)sgn(Q)

=
Pn−1

k=(r−1)
P

(P′,Q′)∈Tn−1,k,r−1,i,j
p

�(n−1)−k+1
2

�
j
W̃p,q,Bi,j,n−1 (P′)(pq)

−
�

k
2

�
j
p−i(r−1)q−i(k−1)w̃p,q,Bi,j,k−1

(Q′)sgn(Q′)

= χ(n − 1 = r − 1)

where the last equality follows from our induction hypothesis. Thus (94) holds as claimed.

4 Generating Functions

In this section, we shall present some basic generating functions for sequences involving ci,j
n,k(p, q),

Si,j
n,k(p, q), c̃i,j

n,k(p, q) and S̃i,j
n,k(p, q). In the case that (p, q, i) = (1, 1, 1), our results reduce to

results on Whitney numbers of Dowling lattices appearing in work of Benoumhani [2], [3]. The
connection with Dowling lattices is discussed in Section 5.

First we consider exponential generating functions when p = q = 1.

Theorem 9. Let F i,j
k (x) =

∑
n≥k ci,j

n,k(1, 1)
xn

n! and Ri,j
k (x) =

∑
n≥k Si,j

n,k(1, 1)
xn

n! . Then for all
j > 0,

F 0,j
k (x) =

1
k!

(ln((1 − jx)−1/j))k (99)

F i,j
k (x) =

1
ikk!

(1 − jx)−i/j(ln((1 − jx)−i/j))k if i > 0 and k ≥ 0, (100)

and
Ri,j

k (x) =
1

jkk!
eix(ejx − 1)k if i ≥ 0 and k ≥ 0, (101)

Proof. All of these results can be obtained by taking appropriate limits in (13) which is Hsu and
Shiue’s exponential generating function for the sequence {S1

n,k(α, β, r)}n≥k when αβ 6= 0. It is
also easy to give more direct proofs.

For example, if k = 0 and i > 0, then it is easy to see that

ci,j
n,0(1, 1) = i(i + j) · · · (i + (n − 1)j) and

Si,j
n,0(1, 1) = in.
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Thus in that case,

F i,j
0 (x) =

∑
n≥0

i(i + j) · · · (i + (n − 1)j)
xn

n!
(102)

=
∑
n≥0

−i

j
(
−i

j
− 1) · · · (−i

j
− (n − 1))

(−jx)n

n!

= (1 − jx)−i/j

by Newton’s binomial theorem. Similarly

Ri,j
0 (x) =

∑
n≥0

in
xn

n!
= eix. (103)

When k = i = 0, c0,j
n,0(1, 1) = S0,j

n,0(1, 1) = 0 when n > 0 since one cannot place n rooks on
B0,j,n = B(0, j, 2j, . . . , (n − 1)j) with out placing at least two rooks in the same column. Since
ci,j
0,0 = Si,j

0,0 = 1, it follows that
F 0,j

0 (x) = R0,j
0 (x) = 1. (104)

Now if k > 0 and i ≥ 0, then

d

dx
F i,j

k (x) =
∑
n≥k

ci,j
n,k

xn−1

(n − 1)!

=
∑
n≥k

(ci,j
n−1,k−1 + (i + (n − 1)j)ci,j

n−1,k)
xn−1

(n − 1)!

=
∑
n≥k

ci,j
n−1,k−1

xn−1

(n − 1)!
+ i
∑
n≥k

ci,j
n−1,k

xn−1

(n − 1)!
+ j

∑
n≥k

ci,j
n−1,k

xn−1

(n − 2)!

= F i,j
k−1(x) + iF i,j

k (x) + jx
d

dx
(F i,j

k (x))

so that
d

dx
(F i,j

k (x)) =
1

1 − jx
F i,j

k−1(x) +
i

1 − jx
F i,j

k (x) (105)

Similarly if k > 0 and i ≥ 0, then

d

dx
Ri,j

k (x) =
∑
n≥k

Si,j
n,k

xn−1

(n − 1)!

=
∑
n≥k

(Si,j
n−1,k−1 + (i + kj)Si,j

n−1,k)
xn−1

(n − 1)!

=
∑
n≥k

Si,j
n−1,k−1

xn−1

(n − 1)!
+ (i + kj)

∑
n≥k

Si,j
n−1,k

xn−1

(n − 1)!

= Ri,j
k−1(x) + (i + kj)Ri,j

k (x). (106)

If k > 0, then for all i ≥ 0 and j > 0,

F i,j
k (x)|xk = Ri,j

k (x)|xk =
1
k!

. (107)
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Now it is easy to see that when i > 0, (105), (107) and (102) completely determine the family
{F i,j

k (x)}k≥0. Since the family { 1
ikk!

(1− jx)−i/j(ln((1− jx)−i/j))k}k≥0 satisfies (105), (107) and
(102), it follows that for all k ≥ 0,

F i,j
k (x) =

1
ikk!

(1 − jx)−i/j(ln((1 − jx)−i/j))k if i > 0.

If i = 0, then (105), (107) and (104) completely determine the family {F 0,j
k (x)}k≥0. Since the

family { 1
k!(ln((1 − jx)−1/j))k}k≥0 satisfies (105), (107) and (104), it follows that for all k ≥ 0,

F 0,j
k (x) =

1
k!

(ln((1 − jx)−1/j))k.

Similarly, it is easy to check that when i > 0, then (106), (107) and (103) completely
determine the family {Ri,j

k (x)}k>0. Since the { 1
jkk!

eix(ejx − 1)k}k>0 satisfies (106), (107) and
(103), it immediately follows that for all k ≥ 0

Ri,j
k (x) =

1
jkk!

eix(ejx − 1)k if i > 0.

If i = 0, then (106), (107) and (104) completely determine the family {F 0,j
k (x)}k≥0. Since the

family { 1
jkk!

(ejx − 1)k}k≥0 satisfies (106), (107) and (104), it follows that for all k ≥ 0,

R0,j
k (x) =

1
jkk!

(ejx − 1)k.

�

Note that it follows from Theorem 9 that for i > 0,
∑
n≥0

xn

n!

n∑
k=0

ci,j
n,k(1, 1)u

k =
∑
k≥0

uk
∑
n≥k

ci,j
n,k(1, 1)

xn

n!
(108)

= (1 − jx)−i/j
∑
k≥0

(u/i)k

k!
(ln((1 − jx)−i/j)k

= (1 − jx)−i/je
u
i

ln((1−jx)−i/j)

= (1 − jx)−i/j(1 − jx)−u/j = (1 − jx)−(i+u)/j .

Thus replacing x by x/j in (108), we get

∑
n≥0

xn

jnn!

(
n∑

k=0

ci,j
n,k(1, 1)u

k

)
= (1 − x)−(i+u)/j . (109)

There is a natural q-analogue of (109). That is, it follows from Theorem 4 that
n∑

k=0

ci,j
n,k(1, q)x

k = (x + [i]q)(x + [i + j]q) · · · (x + [i + (n − 1)j]q)

= (x +
1 − qi

1 − q
)(x +

1 − qi+j

1 − q
) · · · (x +

1 − qi+(n−1)j

1 − q
)

=
1

(1 − q)n
(x(1 − q) + 1 − qi)(x(1 − q) + 1 − qi+j) · · · (x(1 − q) + 1 − qi+(n−1)j)

=
(x(1 − q) + 1)n

(1 − q)n
(1 − qi

x(1 − q) + 1
)(1 − qi

x(1 − q) + 1
qj) · · · (1 − qi

x(1 − q) + 1
q(n−1)j).
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Thus

1 +
∑
n≥1

un

(1 − qj) · · · (1 − qnj)

(
n∑

k=0

ci,j
n,k(1, q)x

k

)
(110)

= 1 +
∑
n≥1

(
u(x(1 − q) + 1)

1 − q

)n (1 − qi

x(1−q)+1 )(1 − qi

x(1−q)+1qj) · · · (1 − qi

x(1−q)+1q(n−1)j)

(1 − qj) · · · (1 − qnj)
.

We can now apply Cauchy’s formula, see [1],

1 +
∑
n≥1

(1 − a)(1 − aq) · · · (1 − aqn−1)
(1 − q)(1 − q2) · · · (1 − qn)

tn =
∞∏

n=0

(1 − atqn)
(1 − tqn)

. (111)

Thus

1 +
∑
n≥1

un

(1 − qj) · · · (1 − qnj)

(
n∑

k=0

ci,j
n,k(1, q)x

k

)
=

∞∏
n=0

(1 − uqi

1−q qnj)

(1 − u(x((1−q)+1)
1−q qnj)

. (112)

Hence if we replace u by u(1 − q) in (112), we obtain the following theorem.

Theorem 10. For i > 0 and k ≥ 0,

1 +
∑
n≥1

un

[j]q[2j]q · · · [nj]q

(
n∑

k=0

ci,j
n,k(1, q)x

k

)
=

∞∏
n=0

(1 − uqiqnj)
(1 − u(x((1 − q) + 1)qnj)

. (113)

Next we consider an ordinary generating function for the Si,j
n,k(p, q)’s.

Theorem 11. For all k ≥ 0 and i ≥ 0,

H i,j
k (x) =

∑
n≥k

Si,j
n,k(p, q)xn =

xk

(1 − [i]p,qx)(1 − [i + j]p,qx) · · · (1 − [i + kj]p,qx)
. (114)

Proof. We proceed by induction on k. For k = 0, we have observed that Si,j
n,0(p, q) = [i]np,q for

all n ≥ 0. Thus

H i,j
0 (x) =

∑
n≥0

[i]np,qx
n =

1
(1 − [i]p,qx)

. (115)

For k > 0,

H i,j
k (x) =

∑
n≥k

Si,j
n,k(p, q)xn

=
∑
n≥k

(Si,j
n−1,k−1(p, q) + [i + kj]p,qS

i,j
n−1,k(p, q))xn

= x
∑
n≥k

(Si,j
n−1,k−1(p, q)xn−1 + [i + kj]p,qx

∑
n≥k

Si,j
n−1,k(p, q))xn−1

= xH i,j
k−1(x) + [i + kj]p,qxH i,j

k (x).

Thus
H i,k

k (x) =
x

(1 − [i + kj]p,qx)
H i,j

k−1(x). (116)

Thus (114) easily follows by induction. �
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We also obtain the following expression for Si,j
n,k(p, q) as a corollary of Theorem 11.

Corollary 12. For all 0 ≤ k ≤ n,

Si,j
n,k(p, q) =

∑
a0+a1+...ak=n

a0≥0,ai≥1 if i>0

[i]a0
p,q[i + j]a1−1

p,q · · · [i + kj]ak−1
p,q . (117)

Note that from (61) and (117), one can also get a closed expression for S̃i,j
n,k(p, q).

We can get another closed expression for S̃i,j
n,k(p, q) (and Si,j

n,k(1, q)). To motivate our result,

observe that Si,j
n,k(1, 1) = S̃i,j

n,k(1, 1) so that it follows from (101) that

S̃i,j
n,k(1, 1) =

1
jkk!

eix(ejx − 1)k|xn

n!
(118)

=
1

jkk!
eix

k∑
s=0

(
k

s

)
(−1)k−sejsx

∣∣∣∣∣
xn

n!

=
1

jkk!

k∑
s=0

(
k

s

)
(−1)k−se(i+js)x

∣∣∣∣∣
xn

n!

=
1

jkk!

k∑
s=0

(
k

s

)
(−1)k−s(i + js)n.

We then have the following (p, q)-analogue of (118).

Theorem 13.

S̃i,j
n,k(p, q) =

p(2k−n)(n+1)j/2

[j]kp,q[k]pj ,qj !

k∑
s=0

[
k
s

]
pj ,qj

(−1)k−spj((s
2)−sn)q(

k−s
2 )j [i + sj]np,q (119)

Proof. We first prove the p = 1 case,

S̃i,j
n,k(1, q) =

1
[j]kq [k]qj !

k∑
s=0

[
k
s

]
qj

(−1)k−sq(
k−s
2 )j [i + sj]nq . (120)

We proceed by induction on n. Clearly the formula holds for n = 0 since S̃i,j
0,0(1, q) = 1. Next

assume that formula holds for n. Then

S̃i,j
n+1,k(1, q) = qi+(k−1)j S̃i,j

n,k−1(1, q) + [i + kj]qS̃
i,j
n,k(1, q)

=
qi+(k−1)j

[j]k−1
q [k − 1]qj !

k−1∑
s=0

[
k − 1

s

]
qj

(−1)k−1−sq(
k−1−s

2 )j [i + sj]nq

+ [i + kj]q
1

[j]kq [k]qj !

k∑
s=0

[
k
s

]
qj

(−1)k−sq(
k−s
2 )j [i + sj]nq

=
1

[j]kq [k]qj !

(
[i + kj]n+1

q +
k−1∑
s=0

[
k
s

]
qj

(−1)k−sq(
k−s
2 )j[i + sj]nq Zs

)
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where

Zs = [i + kj]q − qi+(k−1)j [k]qj [j]qq−j(k−1−s) [k − s]qj

[k]qj

= [i + kj]q − qi+sj[j]q[k − s]qj

= [i + kj]q − qi+sj[(k − s)j]q = [i + sj]q.

It thus follows that

S̃i,j
n+1,k(1, q) =

1
[j]kq [k]qj !

k∑
s=0

[
k
s

]
qj

(−1)k−sq(
k−s
2 )j [i + sj]n+1

q

as desired.
To prove the general result (119), we use (61) to express S̃i,j

n,k(p, q) as a power of p times

S̃i,j
n,k(1, q/p). Then we apply (120) to S̃i,j

n,k(1, q/p). �

Next we introduce a (p, q)-analogue of the Bell numbers in our setting by defining

B̃i,j
n (p, q) =

n∑
k=0

S̃i,j
n,k(p, q). (121)

Since Si,j
n,k(1, 1) = S̃i,j

n,k(1, 1), our next result immediately follows from (101).

Theorem 14. For all i, j ≥ 0,

∑
n≥0

B̃i,j
n (1, 1)

xn

n!
= eixe

ejx−1
j . (122)

Next let
εj,q(x) =

∑
s≥0

xs

[s]qj ![j]sq
. (123)

Then we have the following q-analogue of the Dobinski’s equality for our generalized Bell numbers
B̃i,j

n (1, q), which reduces to Milne’s q-analogue [20] of Dobinski’s equality when (i, j) = (0, 1).

Theorem 15. For all i ≥ 0, and j ≥ 1,

B̃i,j
n (1, q) =

1
εj,q(1)

∑
s≥0

[i + sj]nq
[s]qj ![j]sq

. (124)

Proof. Let
Aj,k(x) = [jx]q[j(x − 1)]q · · · [j(x − k + 1)]q (125)

and Vj be the vector space generated by the set of all Aj,k(x) with k ≥ 0 with coefficients in
R(q), the set of rational functions in q with real coefficients. We claim that the set {Aj,k(x)}k≥0

is a basis for Vj . Clearly {Aj,k(x)}k≥0 span Vj by our definition of Vj. If {Aj,k(x)}k≥0 is not a
linearly independent set, then we can find a linear combination∑

k∈T

ck(q)Aj,k(x) = 0 (126)
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where T is some finite set and ck(q) are non-zero polynomials in q for all k ∈ T and q − 1 does
not divide cl(q) for some l ∈ T . But then when we set q = 1 in (126), we get∑

k∈T

ck(1)jk(x) ↓k= 0

which would violate the linear independence of {(x) ↓k} since cl(1) 6= 0. Thus {Aj,k(x)}k≥0 are
linearly independent and hence they form a basis for Vj .

Next it follows from Theorem 7 with B = Bi,j,n and x replaced by jx that
n∑

k=0

S̃i,j
n,k(1, q)[jx]q [j(x − 1)]q · · · [(j(x − k + 1)]q = [i + jx]nq . (127)

We then define a linear functional Lj : Vj → R(q) by setting Lj(Aj,k(x)) = 1 for all k. Note
that

εj,q(1) =
∑
s≥0

1
[s]qj ![j]sq

(128)

=
∑
s≥n

1
[s − n]qj ![j]s−n

q

=
∑
s≥n

[sj]q[(s − 1)j]q · · · [[(s − n + 1)j]q
[s]qj [j]q[s − 1]qj [j]q · · · [s − n + 1]qj [j]q([s − n]qj ![j]s−n

q )

=
∑
s≥n

Aj,n(s)
[s]qj ![j]sq

=
∑
s≥0

Aj,n(s)
[s]qj ![j]sq

.

(129)

Thus
Lj(Aj,n(x)) = 1 =

1
εj,q(1)

∑
s≥0

Aj,n(s)
[s]qj ![j]sq

(130)

for all n. Since Lj is linear and {Aj,n(x)}m≥0 is a basis for Vj, it follows that for any p(x) ∈ Vj ,

Lj(p(x)) =
1

εj,q(1)

∑
s≥0

p(s)
[s]qj ![j]sq

. (131)

Thus if we apply Lj to both sides of (127), we get

1
εj,q(1)

∑
s≥0

[i + sj]nq
[s]qj ![j]sq

= Lj([i + jx]nq )

= Lj

(
n∑

k=0

S̃i,j
n,k(1, q)Aj,k(x)

)

=
n∑

k=0

S̃i,j
n,k(1, q) = B̃i,j

n (1, q).

�
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Next we derive a formula for s̃i,j
n,k(p, q).

Theorem 16.

s̃i,j
n,k(p, q) =

1
(q − p)n−k

n∑
s=k

(−1)n−s

(
s

k

)
q(

n−s
2 )j+(n−s)ip(s

2)j+is

[
n
s

]
qj ,pj

. (132)

Proof. We can rewrite (58) as

n−1∏
s=0

(qx−sj − px−sj)
(q − p)

=
n∑

k=0

p(x+i)(n−k)(pq)−(n
2)j−ni s̃i,j

n,k(p, q)
(qx+i − px+i)k

(q − p)k
(133)

Multiplying both sides of (133) by (q − p)n, we get

pnx−(n
2)j

n−1∏
s=0

((
q

p
)x−sj − 1) (134)

=
n∑

k=0

p(x+i)(n−k)(pq)−(n
2)j−ni s̃i,j

n,k(p, q)(q − p)n−kpkx+ki((
q

p
)x+i − 1)k.

Thus
n−1∏
s=0

((
q

p
)(x−(n−1)j+sj) − 1) =

n∑
k=0

s̃i,j
n,k(p, q)q−(n

2)j−ni(q − p)n−k((
q

p
)x+i − 1)k. (135)

By the q-binomial Theorem,

n−1∏
s=0

(
q

p
)(x−(n−1)j+sj) − 1) (136)

=
n∑

s=0

(−1)n−s

[
n
s

]
( q

p
)j

(
q

p
)(

s
2)j(

q

p
)(x−(n−1)j)s

=
n∑

s=0

(−1)n−s

[
n
s

]
( q

p
)j

(
q

p
)(

s
2)j(

q

p
)−(n−1)js−is(

q

p
)(x+i)s

=
n∑

s=0

(−1)n−s

[
n
s

]
( q

p
)j

(
q

p
)(

s
2)j−(n−1)js−is((

q

p
)(x+i) − 1) + 1)s

=
n∑

s=0

(−1)n−s

[
n
s

]
( q

p
)j

(
q

p
)(

s
2)j−(n−1)js−is

s∑
t=0

(
s

t

)
((

q

p
)(x+i) − 1)t.

Using (136), we can see that taking the coefficient of (( q
p)(x+i) − 1)k on both sides of (135), we

get that

s̃i,j
n,k(p, q)q−(n

2)j−ni(q − p)n−k =
n∑

s=k

(−1)n−s

[
n
s

]
( q

p
)j

(
q

p
)(

s
2)j−(n−1)js−is

(
s

k

)
. (137)
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Using the fact that (n − 1)s −
(s
2

)
=
(n
2

)
−
(n−s

2

)
and that

[
n
s

]
q
p

= p(s
2)+(n−s

2 )−(n
2)
[

n
k

]
q,p

, we

can see that if we multiply the right hand side of (137) by q(
n
2)+ni, then the power of q in the

k-th term in the sum is(
n

2

)
j + ni −

((
n

2

)
j −

(
n − s

2

)
j

)
− is =

(
n − s

2

)
j + (n − s)i

and the power of p in the k-th term in the sum is(
s

2

)
j +

(
n − s

2

)
j −

(
n

2

)
j + (

(
n

2

)
j −

(
n − s

2

)
j) + si =

(
s

2

)
j + si.

Thus

s̃i,j
n,k(p, q) =

1
(q − p)n−k

n∑
s=k

(−1)n−s

(
s

k

)
q(

n−s
2 )j+(n−s)ip(s

2)j+is

[
n
s

]
qj ,pj

.

which is what we wanted to prove. �

5 Permutation Statistics, Colored Partitions, and Restricted

Growth Functions

In this section we shall give alternative interpretations of our generalized (p, q)-Stirling numbers
which are connected to a well-known generalization of the partition lattice called the Dowling
lattice. We start by giving two closely related interpretations of Si,j

n,k(1, 1). Through out this
section, we shall assume that 0 ≤ i ≤ j. Let CP be the collection of all set partitions of
{0, 1, . . . , n} whose nonzero elements are colored with colors from the set {0, . . . , j − 1}. We
refer to the block of a colored partition that contains 0 as the zero-block. Define CP i,j

n,k to be the
subset of CP consisting of partitions with k + 1 blocks where the elements are colored so that

(a) the nonzero elements of the zero-block have colors in {0, . . . , i − 1}

(b) the smallest element of each block other than the zero-block has color 0.

Remark 17. When i = 1, the set CP i,j
n,k consists of the elements of rank n−k+1 in the Dowling

lattice Qn(Zj) (see, eg., [13] for the definition of a Dowling lattice). Hence the |CP1,j
n,k| are the

Whitney numbers of the second kind for the Dowling lattice Qn(Zj). When j = 1, Qn(Zj) is
the partition lattice Πn+1. So in this case, the Whitney numbers of the second kind become
the Stirling numbers of the second kind. Note that when (i, j) = (0, 1), the elements of CP i,j

n,k

correspond to the elements of rank n − k + 1 in the partition lattice Πn. So again we get the
Stirling numbers of the second kind.

There is a natural way to encode the partitions of [n] as restricted growth functions. A
restricted growth function is a word w1 · · ·wn over alphabet [n] such that w1 = 1 and for
s = 2, . . . , n, we have ws ≤ 1 + max{w1, . . . , ws−1}. To a partition π = 〈π1, . . . , πk〉, where
min(π1) < · · · < min(πk), we associate the restricted growth function w1w2 . . . wn, where ws = t
if t ∈ πs. It is easy to generalize this encoding to colored partitions.

Let π = 〈π0, . . . , πk〉 ∈ CPi,j
n,k where min(π0) < · · · < min(πk) and let w(π) = w0w1 · · ·wn

where for all 0 ≤ s ≤ n, ws = t if s ∈ πt. We then color ws with same color that s was colored with
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in π. For example, if π = 〈{0, 11, 40}, {20, 51}, {30, 62}}〉 ∈ CP2,3
6,2, then w(π) = 0011020001122.

We let RGi,j
n,k = {w(π) : π ∈ CP i,j

n,k}. Then it is easy to see that RGi,j
n,k is the set of all colored

words w = w0 · · ·wn such that

(a) w0 = 0 and w0 is uncolored,

(b) for all 1 ≤ s ≤ n, ws ≤ 1 + max{w0, . . . , ws−1},

(c) for all 1 ≤ s ≤ n, if ws > max{w0, . . . , ws−1}, then ws is colored with 0,

(d) for all 1 ≤ s ≤ n, if ws ≤ max{w0, . . . , ws−1}, then ws is colored with a color from
{0, . . . , j − 1},

(e) for all 1 ≤ s ≤ n, if ws = 0 then ws is colored with a color from {0, . . . , i − 1},

(f) max{w0, . . . , wn} = k.

We can express the colored word w0w
e1
1 we2

2 · · ·wen
n as a pair of words (w0w1 · · ·wn;

e1 · · · en). The elements of RGi,j
n,k will be referred to as colored restricted growth functions.

We have the following.

Theorem 18. For all 0 ≤ i ≤ j, Si,j
n,k(1, 1) = |RGi,j

n,k| = |CP i,j
n,k|.

Proof. The second equation follows from the bijection w : CP i,j
n,k → RGi,j

n,k described above. To

prove the first equation we shall construct a simple bijection φ : RGi,j
n,k → N j

n−k(Bi,j,n). Let

(w, e) ∈ RGi,j
n,k. Starting from column 1 of Bi,j,n we place rooks from left to right; so that in

column s, we place a rook in the i+wsj−es available (i.e., not j-attacked) cell from the bottom.
If no such cell is available then we leave column s empty. It is easy to see that this will happen
if and only if ws > max{w0, . . . , ws−1}. Hence φ is well-defined. It is also straight forward to
check that φ is bijective. �

We can use the correspondence φ to define a weight function U i,j
p,q such that for each γ ∈

RGi,j
n,k, we have

U i,j
p,q(γ) = W i,j

p,q,Bi,j,n
(φ(γ)).

This weight function turns out to have a nice description in terms of natural statistics on colored
restricted growth functions. For each (w, e) ∈ RGi,j

n,k define

MAX (w, e) = {s ∈ [n] : ws > max{w0, . . . , ws−1}}
max(w, e) = |MAX (w, e)|

Σmax(w, e) =
n∑

s=1

sχ(s ∈ MAX (w, e))

inv(w, e) = j
∑

1≤s<t≤n

χ(ws > wt & s ∈ MAX (w, e)) +
n∑

s=1

es

We remark that if we set (i, j) = (0, 1), then inv becomes one of the statistics on restricted
growth functions introduced by Milne [21].
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Define
Di,j

n,k(p, q) =
∑

γ∈RGi,j
n,k

pΣmax(γ)qinv(γ).

Theorem 19. For each γ ∈ RGi,j
n,k, we have

W i,j
p,q,Bi,j,n

(φ(γ)) = p(n−k)(i−1)+j(nk−(k
2)) p−jΣmax(γ) (

q

p
)inv(γ).

Consequently,

Si,j
n,k(p, q) = p(n−k)(i−1)+j(nk−(k

2)) Di,j
n,k

(
1
pj

,
q

p

)
. (138)

and

Di,j
n,k(p, q) = p

(n−k)(i−1)
j

+nk−(k
2) Si,j

n,k

(
1

p
1
j

,
q

p
1
j

)
. (139)

Proof. For a rook placement P , recall that α(P ) is defined to be the number of cells that lie
directly above some rook and are not j attacked by any rook on the left and β(P ) is defined to
be the number of cells that lie directly below some rook and are not j attacked by any rook on
the left.

Let γ = (w, e). First we compute α(φ(γ)). We observe that for each s = 1, . . . , n, column
s of φ(γ) has i + jms(γ) cells that are not j-attacked by any rooks on the left, where ms(γ) =
max{w1, . . . , ws−1}. This implies that the number of cells αs above a rook in column s that are
not j-attacked by a rook to the left is

i + jms(γ) − (i + jws − es) = j(ms(γ) − ws) + es

= j|{t < s : wt > ws & t ∈ MAX (γ)}| + es.

By summing over all s for which column s has a rook, we get

α(φ(γ)) = inv(γ).

Next we compute β(φ(γ)). The number of non-j-attacked cells below a rook in column s is
i + jms(γ) − αs − 1. By summing over all s for which column s has a rook, we get

β(φ(γ)) = (n − k)(i − 1) − inv(γ) + j

k∑
r=1

(tr+1 − tr − 1)r, (140)

where {t1 < t2 < · · · < tk} = MAX (γ) and tk+1 = n + 1. We have

k∑
r=1

(tr+1 − tr − 1)r =
k+1∑
r=2

tr(r − 1) −
k∑

r=1

trr −
(

k + 1
2

)

= (n + 1)k −
k∑

r=1

tr −
(

k + 1
2

)

= nk −
(

k

2

)
− Σmax(γ).

the electronic journal of combinatorics 11 (2004), #R84 40



By substituting this into (140), we get

β(φ(γ)) = (n − k)(i − 1) − inv(γ) + j(nk −
(

k

2

)
− Σmax(γ)).

It follows that
pβ(φ(γ))qα(φ(γ)) = p(n−k)(i−1)+j(nk−(k

2)−Σmax(γ))(
q

p
)inv(γ),

from which the result follows. �

The following consequence of (139) and (32) also follows directly from the combinatorial
definiton of Di,j

n,k(p, q).

Theorem 20. For 0 ≤ k ≤ n,

Di,j
n,k(p, q) = pnDi,j

n−1,k−1(p, q) + [i + jk]qD
i,j
n−1,k(p, q). (141)

Next we consider two closely related combinatorial interpretations for ci,j
n,k(1, 1). Recall that

the wreath product of the cyclic group Zj and the symmetric group Sn, Zj§Sn, consists of colored
permutations (σ, e) where σ ∈ Sn and e is an n-tuple of elements from Zj. If e = e1e2 · · · en,
then we say letter s in σ is colored with es for all s.

Let CYCi,j
n,k denote the set of colored permutations (σ, e) ∈ Zj§Sn such that

(I) the largest element in any cycle of σ is colored with a color from {0, . . . , i},

(II) there are exactly k-cycles of σ whose largest element is colored with 0.

There is a classical bijection on permutations called Foata’s first fundamental transformation
which takes permutations with k cycles to permutations with k left-to-right maxima, where σ(t)
is called a left-to-right maxima of σ ∈ Sn if σ(t) > σ(1), . . . , σ(t − 1). The permutation σ maps
to the permutation f(σ) obtained by first listing the cycles of σ in increasing order of largest
element, then writing each cycle with largest element first, and then dropping the parenthesis.
Foata’s first fundamental transformation generalizes to Zj§Sn in the obvious way by coloring
each letter of f(σ) with the same color that was used in σ, that is, (σ, e) maps to (f(σ), e).
Clearly, the image of CYCi,j

n,k under this bijection is the set LRMi,j
n,k of all colored permutations

(σ, e) ∈ Zj§Sn such that

(i) if σ(t) > σ(1), . . . , σ(t − 1), then σ(t) is colored with a color from {0, . . . , i},

(ii) k = |{t ∈ [n] : σ(t) > σ(1), . . . , σ(t − 1) & σ(t) has color 0}|.

Recall from Remark 17, that the Whitney numbers of the second kind for the Dowling lattice
count colored restricted growth funtions. Colored permutations are also related to Dowling
lattices. The signless Whitney numbers of the first kind for geometric lattices (or more generally
Cohen-Macaulay posets) are the dimensions of Whitney homology of the poset. A basis for the
Whitney homology of the Dowling lattice Qn(Zj) consisting of cycles that are naturally indexed
by elements of LRM1,j

n,k was constructed by Gottlieb and Wachs [13]. Hence, they gave a
combinatorial interpretation of the signless Whitney numbers of the first kind for Qn(Zj) as
|LRM1,j

n,k|. Below we give a p, q-analogue of this interpretation.
We start with the following.
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Theorem 21. For all 0 ≤ i ≤ j, ci,j
n,k(1, 1) = |LRMi,j

n,k| = |CYCi,j
n,k|.

Proof. The second equation follows from the bijection described above. To prove the first equa-
tion we shall construct a bijection θ : LRMi,j

n−k → Fn−k(Bi,j,n). Let (σ, e) ∈ LRMi,j
n−k. Define

lbt(σ) := |{s < t : σ(s) > σ(t)}|.

We construct θ(σ, e) as follows. For each t = 1, . . . , n, place a rook in the rtth cell of column t
reading from top to bottom, where

rt = lbt(σ) + ett − (et − i)χ(et > i).

It is easy to check that θ is a well-defined bijection by listing the values of rt. First note that
lbt takes on each value between 0 and t − 1 exactly once for each et ≤ i and lbt takes on each
value between 1 and t − 1 exactly once for each et > i. We list the values of rt in increasing
order first for et = 0, next for et = 1, and so on, ending with et = j − 1. This produces the list
0, 1, . . . , j(t− 1)+ i. Note that column t is empty (i.e. rt = 0) if and only if t ∈ MAX (σ, e) and
et = 0. Hence θ is a well-defined bijection. �

Once again we can use the correspondence to define a weight function ui,j
p,q such that for each

(σ, e) ∈ LRMi,j
n,k, we have

ui,j
p,q(π) = wi,j

p,q,Bi,j,n
(θi,j

n,k(π)).

As before the weight function has a nice description in terms of natural statistics on elements
of the wreath product Zj§Sn.

For (σ, e) ∈ Zj§Sn and i ≤ j, define

MAX (σ, e) = {t ∈ [n] : σ(t) > σ(1), . . . , σ(t − 1) & et = 0}
max(σ, e) = |MAX (σ, e)|

Σmax(σ, e) =
n∑

t=1

t χ(t ∈ MAX (σ, e))

inv(σ, e) =
∑

1≤s<t≤n

χ(σ(s) > σ(t)) +
n∑

t=1

ett − (et − i)χ(et > i).

Define
di,j

n,k(p, q) =
∑

γ∈LRMi,j
n,k

pΣmax(γ)qinv(γ).

Theorem 22. For each γ ∈ LRMi,j
n,k, we have

wi,j
p,q,Bi,j,n

(θ(γ)) = pi(n−k)+j((n
2)+k)qk−np−jΣmax(γ)(

q

p
)inv(γ).

Consequently,

ci,j
n,k(p, q) = pi(n−k)+j((n

2)+k) qk−n dn,k

(
1
pj

,
q

p

)
. (142)

and

di,j
n,k(p, q) = p(i−1)(n−k)/j+(n

2)+k qn−k cn,k

(
1

p
1
j

,
q

p
1
j

)
. (143)
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Proof. For a rook placement P , recall that a(P ) is defined to be the number of cells that lie
directly above some rook and b(P ) is defined to be the number of cells that lie directly below
some rook.

First we compute a(θ(γ)). Let γ = (σ, e). First note that in the rook placement θ(γ), the
number of cells above a rook in column t is rt − 1. Note also that

n∑
t=1

rt = inv(γ).

Hence by summing over all columns that contain a rook, we get

a(θ(γ)) = inv(γ) − (n − k).

Next we compute b(θ(γ)). The number of cells below a rook in column t is j(t − 1) + i− rt.
Summing over all columns that contain a rook, we get

b(θ(γ)) =
∑

t/∈MAX (γ)

j(t − 1) + i − inv(γ)

= i(n − k) +
n∑

t=1

j(t − 1) −
∑

t∈MAX (γ)

j(t − 1) − inv(γ)

= i(n − k) + j

(
n

2

)
+ jk − jΣmax(γ) − inv(γ).

It follows that

pb(θ(γ))qa(θ(γ)) = pi(n−k)+j(n
2)+jk−jΣmax(γ)qk−n(

q

p
)inv(γ),

from which the result follows. �

When j = 1, 2, the wreath product groups Zj§Sn are the symmetric group and the hype-
roctahedral group, respectively. These groups when viewed as Coxeter groups have a natural
length function. For the symmetric group, the Coxeter length is just the usual inversion statistic∑

1≤s<t≤n χ(σ(s) > σ(t)). This is precisely what inv reduces to when (i, j) = (0, 1). For the
hyperoctahedral group the Coxeter length is described as follows (cf. [24]):

l(σ, e) =
∑

1≤s<t≤n

χ(σ(s) > σ(t) & et = 0)

+
∑

1≤s<t≤n

χ(σ(s) < σ(t) & et = 1)

+
n∑

t=1

ett

Clearly, our inv statistic does not reduce to length when (i, j) = (1, 2). However, we can modify
our definition of inv to obtain a statistic on Zj§Sn which does generalize the length function of
both the hyperoctahedral group and the symmetric group. The important thing is that all the
results (and proofs) of this paper pertaining to inv hold for the modified inv.
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First define,

r′t =




lbt(σ) if et = 0
(t − 1) − lbt(σ) + ett if et = 1, 2, . . . , i
(t − 1) − lbt(σ) + ett − et + i + 1 if et = i + 1, i + 2, . . . , j − 1

.

Next define the bijection θ′ : LRMi,j
n−k → Fn−k(Bi,j,n) exactly as θ, but with r′ instead of r.

Now define

inv′(σ, e) =
∑

1≤s<t≤n

χ(σ(s) > σ(t) & et = 0)

+
∑

1≤s<t≤n

χ(σ(s) < σ(t) & et 6= 0)

+
n∑

t=1

ett − (et − i − 1)χ(et > i)

Clearly when (i, j) = (0, 1) and (1, 2), inv′ reduces to the Coxeter length function for the
symmetric group and the hyperoctahedral group. If we replace r, θ and inv with r′, θ′ and
inv′, respectively, all results and proofs pertaining to these notions go through unchanged.
Consequently,

di,j
n,k(p, q) =

∑
γ∈LRMi,j

n,k

pΣmax(γ)qinv′(γ).

We chose our original definitions for the sake of simplicity.
The following consequence of (143) and (30) can also be proved directly from the combina-

torial definition of di,j
n,k(p, q).

Theorem 23. For 0 ≤ k ≤ n,

di,j
n,k(p, q) = pndi,j

n−1,k−1(p, q) + q[i + j(n − 1)]qd
i,j
n−1,k(p, q). (144)

Theorem 24. For fixed i ≤ j, the matrices ||(−1)n−kdi,j
n,k(p, q)|| and ||qn−kp−n(k+1)Di,j

n,k(p, q)||
are inverses of each other.

Proof. Note that since the matrices ||(−1)n−kci,j
n,k(p, q)|| and ||Si,j

n,k(p, q)|| are inverses of each
other, we have for any 0 ≤ k ≤ n,

n∑
l=k

p−n(l+1)qn−lDi,j
n,l(p, q)(−1)l−kdi,j

l,k(p, q)

=
n∑

l=k

p−n(l+1)qn−lp(n−l)(i−1)/j+nl−(l
2) Si,j

n,l

(
1

p
1
j

,
q

p
1
j

)
×

(−1)l−kp(i−1)(l−k)/j+(l
2)+k ql−k ci,j

l,k

(
1

p
1
j

,
q

p
1
j

)

= (
q

p
)n−kp(n−k)(i−1)/j

n∑
l=k

Si,j
n,l

(
1

p
1
j

,
q

p
1
j

)
(−1)l−kci,j

l,k

(
1

p
1
j

,
q

p
1
j

)

= (
q

p2
)n−kp(n−k)(i−1)/jχ(n = k)
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which verifies that the matrices ||p−n(k+1)qn−kDi,j
n,k(p, q)|| and ||(−1)n−kdi,j

n,k(p, q)|| are inverses
of each other. �

Remark 25. It is known that the matrix formed by the Whitney numbers of the first kind of
the Dowling lattice is the inverse of the matrix formed by Whitney numbers of the second kind
(see [25, Exercises 3.50 and 3.51]). Hence Theorem 24 provides a p, q-analogue of this result.

Define Si,j
n to be the set of all colored permutations (σ, e) ∈ Zj§Sn such that if σ(t) >

σ(1), . . . , σ(t − 1), then σ(t) is colored with a color from {0, . . . , i}. In other words Si,j
n is the

union of the LRMi,j
n,k over all k.

Theorem 26. For i ≤ j∑
γ∈Si,j

n

qinv(γ)
∏

t∈MAX (σ)

xt = (x1+q[i]q)(x2+q[i+j]q)(x3+q[i+2j]q) · · · (xn+q[i+(n−1)j]q). (145)

Proof. To prove (145), let Rn = {0, . . . , i}×{0, . . . , i+ j}× · · · × {0, . . . , i+ j(n− 1)} and define
a bijection r : Si,j

n → Rn by
r(γ) = (r1, . . . , rn)

where rt is as in the proof of Theorem 21 . Recall that

inv(γ) =
n∑

t=1

rt

MAX (γ) = {t : rt = 0}.

Thus ∑
σ∈Si,j

n

qinv(γ)
∏

t∈MAX (γ)

xt =
∑

(r1,...,rn)∈Rn

qr1+...+rn
∏

t: rt=0

xt

=
n∏

t=1

(xt +
i+j(t−1)∑

rt=1

qrt)

=
n∏

t=1

(xt + q[i + j(t − 1)]q).

�

Setting xt = xpt in (145), we obtain the following.

Corollary 27.
n∑

k=0

di,j
n,k(p, q)xk = (px + q[i]q)(p2x + q[i + j]q)(p3x + q[i + 2j]q) · · · (pnx + q[i + (n − 1)j]q).

By inverting we obtain,

Corollary 28.

n∑
k=0

qn−kp−n(k+1)Di,j
n,k(p, q)

k∏
t=1

(ptx − q[i + (t − 1)j]q) = xn.
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6 Final Remarks

We note that it is a natural question to ask whether there are combinatorial interpretations of
our (p, q)-analogues of the generalized Stirling numbers si,p,q

n,k (α, β, r), Si,p,q
n,k (α, β, r), s̃i,p,q

n,k (α, β, r),

and S̃i,p,q
n,k (α, β, r) for other vaules of α, β and r. In a forthcoming paper with K. Briggs [8], we

show that when α, β and r are non-negative integers, then we can give such combinatorial
interpretations in terms of pairs of rook placements on two boards B and B′. Our model allows
rooks in a given board to cancel cells not only on its own board but also on its companion board.

We should also note that in the special case when i = 0 and j = 1, Briggs and Remmel [6]
showed that there is a (p, q)-analogue of the hit polynomial corresponding to the rook number
r̃1
n−k,B(p, q). That is, given a board B contained in the n × n board Bn, we define the p, q-hit

polynomial of B, denoted HB(x, p, q), as follows:

HB(x, p, q) =
n∑

k=0

hk,n(B, p, q)xk

=
n∑

k=0

r̃1
k,B(P, q)[n − k]p,q!p(k+1

2 )+k(n−k)
n∏

l=n−k+1

(x − qlpn−l).

Briggs and Remmel [6] showed that when B = B(a1, . . . , an) is a Ferrers board, i.e. 0 ≤ a1 ≤
. . . ≤ an ≤ n, then hk,n(B, p, q) is polynomial in p and q with non-negative integer coefficients.
Moreover, Briggs [4, 5] has shown that if Hk,n(B) is the set of all placements P in N 1

N(Bn) such
that P has exactly k rooks in B, then there are statistics αB(P) and βB(P) such that

hk,n(B, p, q) =
∑

P∈Hk,n(B)

pαB(P)qβB(P).

We should also note that Briggs and Remmel [6] showed that there is another connection be-
tween permutation statistics and our (p, q)-rook placements of type II. That is, they proved the
following (p, q)-analogue of a formula of Frobenius:

n∑
k=0

S̃0,1
n,k(p, q)[k]p,q!p(n−k+1

2 )+k(n−k)xk∏k
i=0(1 − xqipn−i)

=

∑
σ∈Sn

qmaj(σ)pcomaj(σ)xdes(σ)+1∏n
i=0(1 − xqipn−i)

(146)

where for any permutation σ = σ1 . . . σn ∈ Sn,

Des(σ) = {i : σi > σi+1},
Rise(σ) = {i : σi < σi+1},
des(σ) = |Des(σ)|,

maj(σ) =
∑

i∈Des(σ)

i, and

comaj(σ) =
∑

i∈Rise(σ)

i.

Certain special cases of the rook numbers r̃2
k,B(1, q) also have shown up in another rook

theory model due to Haglund and Remmel [16] where the rook placements naturally correspond
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to partial perfect matchings in the complete graph K2n. Haglund and Remmel also develop
a combinatorial theory of hit polynomials in that model. Finally, certain special cases of the
more general (p, q) rook numbers r̃j

k,B(1, q) show up in yet another rook theory model due to
Briggs and Remmel [4, 7] where the rook placements naturally correspond to elements of the
wreath product of the cyclic group Zk and the symmetric group Sn, Zk§Sn. Again there is a
natural combinatorial theory of hit polynomials in their model. We do not know, however, how
to develop a natural theory of hit polynomials for either the type I or the type II (p, q)-rook
numbers in the rook theory model presented in this paper.
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