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Abstract

In this paper, we define two natural (p, ¢)-analogues of the generalized Stirling numbers
of the first and second kind S*(«, 8,7) and S%(a, 3,7) as introduced by Hsu and Shiue [17].
We show that in the case where 8 = 0 and « and r are nonnegative integers both of our
(p, g)-analogues have natural interpretations in terms of rook theory and derive a number of
generating functions for them.

We also show how our (p, ¢)-analogues of the generalized Stirling numbers of the second
kind can be interpreted in terms of colored set partitions and colored restricted growth
functions. Finally we show that our (p,q)-analogues of the generalized Stirling numbers
of the first kind can be interpreted in terms of colored permutations and how they can be
related to generating functions of permutations and signed permutations according to certain
natural statistics.

1 Introduction

In this paper we present a new rook theory interpretation of a certain class of generalized
Stirling numbers and their (p, ¢)-analogues. Our starting point is to develop two natural (p, ¢)-
analogues of the generalized Stirling numbers as defined by Hsu and Shiue in [17]. That is,
Hsu and Shiue gave a unified approach to many extensions of the Stirling numbers that had
appeared in the literature by defining analogues of the Stirling numbers of the first and second
kind which depend on three parameters «,  and r as follows. First define (z|a)g = 1 and
(zla)y, = z(z—a) -+ (z— (n—1)a) for each integer n > 0. We write (z) |, for (z|a), when a =1
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and (2), for (z|a), when = —1. Then Hsu and Shiue defined gi,k(a,ﬂ,r) and gik(a,ﬂ,r)
for 0 < k < n via the following equations:

(x|a)p, Z Sn xla (x —r|B)k and (1)

(@|B)n = ZSnk )@ + 7). (2)

It is easy to see that when o =1, =0 and r = 0, equations (1) and (2) become

(@) ln = Y 5x(1,0,0)a* and 3)
k=0
z" ankloo z) Lk (4)

which are the usual defining equations for the Stirling numbers of the first and second kind.
Thus gihk(l, 0,0) is the usual Stirling number of the first kind s,, , and gik(l, 0,0) is the usual
Stirling number of the second kind S, ;. In addition, it is easy to see from equations (1) and
(2) that for all 0 < k < mn,
=1 =2
Sn,k(avﬁvr) = Sn,k(ﬂvav _T)' (5)
g-Analogues of the Stirling numbers of the first and second kind were first considered by
Gould [14] and further studied by Milne [21][20], Garsia and Remmel [11], and others, who gave
interpretations in terms of rook placements and restricted growth functions. A more general
two parameter, (p,q)-analogue of the Stirling number of the second kind was introduced and

studied by Wachs and White [26], who also gave interpretations in terms of rook placements
and restricted growth functions.

We shall define two natural (p, g)-analogues of the gihk(a, B,7)’s, one of which reduces to
the (p, ¢)-analogue of Wachs and White when ¢ = 2 and («, 3,7) = (1,0,0). To do this we shall
find it more convenient to modify equations (1) and (2) slightly. That is, we let

S <a B.r) =5, < 28, =r) and (6)
( B3, ) = ( B, _T) (7)

Then if we replace z by ¢t — r in equation (1) and x by t in equation (2), we obtain the following
pair of equations.

t—’l”‘Oé ank t‘ﬁ) (8)

and

(t18)n = D Sh (e, B,r)(t = rla)s. (9)

k=0

It is easy to see from equations (8) and (9) that for all 0 < m < n,

Z S (a, B,7) Skym(oz,ﬁ,r) = x(m =mn) (10)
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where we use that convention that for any statement A, x(A) =1 if A is true and x(A) = 0 if
A is false.
Hsu and Shiue [17] proved a number of fundamental formulas for the th p(a, B,7)’s. We shall

state just a few examples of these formulas. First they showed that the sz p(a, B,1)’s satisfy
the following recursions. Let Séyo(a,ﬁ,r) =1 and S}m(a,ﬁ,r) =0if £k <0 or k > n. Then for
al0<k<n+1,

Srlz+1,k(a7 B, T) = Srlz,k—l(a7 B, T) + (kﬂ —no— T)Srlz,k(a7 B, T)' (11)

Similarly if we let S&O(a,ﬁ,r) = 1 and Szﬂk(a,ﬁ,r) =0if ¥k < 0or k > n, then for all
0<k<n+1,

ST2L+1,k(a7 ﬁa T) = S?L,kfl(aa ﬁa T) + (k‘Oé - nﬁ + T)Sg,k(aa ﬁa T)' (12)

Next they proved the following generating functions.

t" 1 )8/ 1
k!;‘g}z,k(a7ﬂ7r)a = (1+at)7r/a(( ra ) )k if Oéﬂ?éo, (13)
and P .
1 X
St = (3) X 08 rla), (14)
n>0 k>0 ’
where

Sh(x) =S} (o, B, r)ak. (15)
k=0

We now present two natural ways to give (p, ¢)-analogues of (8) and (9) which we shall call
type I and type II (p, ¢)-analogues. We shall see that both of the (p, ¢)-analogues arise naturally
in our rook theory interpretations for certain values of o, # and r.

First for any -, let

Y g7
L -q (16)
pP—q
Thus in the case where v = n is a non-negative integer,

['Y]p,q

[n]p’q — ,n—1 _'_pqnf2 4. +pn72q _'_pnfl
is the usual (p, ¢)-analogue of n. We also let

[n]p.g! = [Nlpgln — Upg - [Upyg

and

K } - T

We shall write [n],, [n],! and [ Z } for [n]1,4, [n]1,4! and [ Z ] respectively.
q 1
For the type I (p, ¢)-analogues of (8) and (9), we replace (t — r|v), by (t — r|v), where

(t o =1 (17)

q
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and for n > 0,

(t=rvn = ([thpg — ["lp.d) ([tlpg — [r +Vpa) - (tlp,g — [+ (n = Dvlpg)- (18)
That is, we define Si’i’q(a, B3,r) and Si’i’q(a, B,r) for 0 < k < n via the following equations:

n

(t—rla)n = S (e, B,7)(t Bk (19)
k=0
and .
(B =Y SubU o, B,7)(t — |a). (20)

k=0

We then have the following basic recursions for the S,/ e q( ,B,1)’s.

Theorem 1. If Slpq( ,B8,7) and Si’%q(a,ﬁ,r) are defined according to equations (19) and (20)
respectively for 0 < k <mn, then S}l’%q(a, B,r) and Si’%q(a, B,1) satisfy the following recursions.

’pq( ,B8,7) =1 and Si’i’q(a,ﬁ,r) =0ifk<0ork>n (21)

and
nflqk(o‘ B,r) = n’jlqu(a B,r) + ([kBlp,g — [na+1lp,g)S 7pq(04 B,r). (22)
Sg:g’q(oz,ﬂ,r) =1 and Si:%q(a,ﬂ,r) =0ifk<0Qork>n (23)

and
SoPl (o, B,r) = SaB4 (o, B,7) + (ke + 1]pg — [nBlp.g) Sa 2 (e, B, 7). (24)

Proof. To prove (22), we start with (19). That is,

n+1

anffk (0, B,7) (180 = (t = Planis (25)
= ([t]pvq = [r +nalpg)(t —rla),

= ([tlp.q — [r +nalp,) Zsm B,r)(t|6)%)
k=0

- Z Srlz:ll?q(aa 57 T)<t‘5>k([t]p,q - [kﬁ]p,q + [kﬁ]p#} — [’r + na]pyq)
Sy, B,7)(t3) k1

,M( ,Byr)([kBp.g — [+ nalpq) Bk

Taking the coefficient of (¢|3); on both sides of (25) yields (22).
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Similarly to prove (24), we start with (20). That is,

n+1
Z Snflqk: r){t = rla)y = (EB)n+1 (26)
= ([ Ip.q = [nBlp, q)<t|5>
= ({tlp.g = ["lp.g) an’” r){t = rla)
= Z S0 Bt = rla)i (g — [+ kalpg + [+ kalng — 6)5g)
= an’pq )t = 7Bkt
+Zs2pq ) ([r + kadp.g — [nBlpg) (t — Tla)s
Taking the coefficient of (¢t — r|a) on both sides of (26) yields (24). |

We shall then show that when § = 0 and o = j and r = ¢ are non-negative integers such
that ¢ > 0 and 5 > 0, the polynomials

A (p,q) = (=1)" RS, 09(4,0,4) (27)

and N
S (p.q) = S2P(4,0,1) (28)

have natural interpretations in terms of p, g-counting rooks placements on certain boards. It
follows from (21), (22), (23) (24) that these polynomials satisfy the following recursions.

cih(p,q) =1 and Cf{{k(p, q)=0ifk<Oork>n (29)

and N N N
Crp1k (P @) = €1 (@) + [i+ 0 lp g€y (P, 4)- (30)
Seh(p.q) = Land S, (p,q) =0if k <Oork>n (31)

and N N N
S:ﬁl—l,k(l% Q) = S:z’fk_l(pa Q) + [Z + jk]p7qS;’7Jk(p, q), (32)

Moreover, it easily follows from (19) and (20) that

([t + lilpa) ([tlpg + [i +lpg) - ([tlpg H i+ (n—1)j Z Cn k(P q q (33)
and
= Z SZ,]}C(@ ) ([tlp,q = ltlp,g) (Elp,g — [i + dlpg) - ([tlp.g — [ + (B = 1)jlp,q)- (34)
k=0
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Thus if we let 527, (p,q) = (—1)"Fc? () =8 ’pq(j,O i), it follows from (19) that

n

([tlpig — lilpa) [Elpg — i + Glpg) - (Hlpg — i+ (0 = Dilpg) = > s (p, )tk (35)

k=0

from which it easily follows that the matrices ||s,%, (P, @)ln k>0 and [|S% (P, @)||nk>0 are inverses
of each other.
For the type II (p, ¢)-analogues of (8) and (9), we replace (¢t — r|y), by [t — r|y], where

t—rlylo=1 (36)
and for n > 0,
t—rlvln =t =)t =7 = Vpg) - ([t =7 — (n = Dlpg)- (37)

By analogy with our type I (p,q)-analogues of the generalized Stirling numbers, the type II
(p, q)-analogues of the generalized Stirling numbers, S Lp, v (e, B,7) and Si:%q(a, B3,r), should be
solutions to the following equations:

[t —rlafn = > S0 a, B, 7)[tB)k (38)
k=0
and .
[t18]n = S2h(a, B,7)[t — 7ol (39)
k=0

However, as we shall see shortly, (38) and (39) do not completely determine S, GLp, Ve, B,7) and
2p V(o B,1). Instead we will define the type II (p,¢)-analogues of the generahzed Stirling
numbers S LD, q( a, 3,7) and Si’%q(a, B3,7), by the following recursions:

’pq( ,B8,7) =1 and Silﬁ’q(a,ﬁ,r) =0ifk<0Oork>n (40)

and
nflqk;( 57 ) q(kil)ﬁinaiT S':Ll%gl(aaﬂar) = kl@[kﬂ —na — T]pq vaI(a ﬂ7 ) (41)
’pq( ,8,7) =1 and Siiﬁ’q(a,ﬁ,r) =0ifk<Oork>n (42)

and
Sapd (o, Br) = ¢ Tl GA0A (o, B, 1) + p' R ka7 — 0Bl g Sa R (e, B,7). (43)

Here t is an extra parameter and technically we should use the notation S, lp q( a, B,r,t) and

SZ:]Z %(a, 8,7,t) to specify the dependence on the paramater t. However since we Wlll not vary the

parameter ¢, we will instead use the less cumbersome notation S LD, v (a, B,7) and Si’],';’q(a, B,7).
Our next result will show that S ’pq( ,3,r) and Sn’],';q( , 3, ) do satisfy (38) and (39).
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Theorem 2. If we define S ’pq(a B,r) and gi:i’q(a,ﬂ,r) for 0 <k <mn by (40), (41), (42),
and (43), then (38) and (39) hold.

Proof. To prove (41), we first observe the following identity:

o rmal, — pi=rme _ gt—r—na
pP—q
B qkﬂfnafr(ptfkﬂ _ qtfkﬁ) _|_ptfkﬂ(pkﬁfnafr o qkﬁfnafr)
a p—q
= gFBmarp — EBlp.q + PRS- o — Tlp.q- (44)

We then prove (38) by induction. Clearly (38) holds for n = 0. Next assume that (38) holds for
n. Then

[t = rlafnir = ([t =7 = nalpg)lt —rlaln

:([t—r—napq ZS’pqaﬂ7 [t|ﬂ]k)
- Z S 7p “( ) [t18]k (g kﬂ_na_r[t — kBlpg + pt_kﬁ[kﬁ —na —rlpg)

IR

k=0

+ Zpt—k,@[k-ﬂ —no — r]p,qgi”%q(a, B, T)[ﬂﬂ]k
k=0
n+1

=> (g““*”ﬁ*"aﬂ“ G2t (o, B,7) + P kB — na— 1] oS0 (0, B, )) [t]65]k
k=0
n+1

= ZSnffk B, r)[E k-

Similarly to prove (39), we observe the following identity:

t—npB _ t—nG
p q
t—nflpy = ————
p,q p—q
qr—f—ka—n,@(pt—r—ka o qt—r—ka) + pt—r—ka(pr—i—k:a—n,@ - qr—l—ka—n,@)
a p—q
i kalp g + PR ko — nGp.q- (45)

We then prove (39) by induction. Clearly (39) holds for n = 0. Next assume that (39) holds for
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n. Then
[t = ([t — nﬁ]p ) [t18]n
= ([t — nBlpq)( ZSQW [t — rlalk)

_ Z Sab (e, B,m) [t — rlade(@ TP — v — kaly g + T + ke — nBlyq)

- Z qurkafnﬁgZ:ZZ,q(a’ B, T)[t - T’a]kJrl
k=0

+Zpt "R 4 ke — nflp.0) ok (o, B,7) [t — rlak
k=0
n+1

- Z ( Hk=1a-ns S2pq (avﬁvr) +pt77«7ka[k‘a +r— nﬁ]pngiﬁ’q(a,ﬁjr)) [t - T’a]k

n+1

—anflqk B,7r)[t —rlalk.

We can now see why there there are multiple solutions to (38) and (39). That is, by symmetry,
it must be the case that Sl’q’p(a B,r) and SQ’q’p( ,3,7) are also solutions to (38) and (39).

However it is not the case that S ’pq( ,B,r) = ’q’p( ,B,r) and S ’pq(a B,r) = 2’Z’p(a B,r)
due to the extra parameter ¢.

Again we shall be able to give a rook theory interpretation to S’vaq(a, B,r) and SQvP’q(a, B,r)
in the special case when § =0 and r =i and o = j are integers such that ¢ > 0 and j > 0. For
later developments, it will be convenient to replace t by x + ¢ so that the basic recursions (41)
and (43) become the following:

S’pq(j,Oz)—land S’pq(j,Oz)—Olfk:<00rk:>n (46)
and A ,
Syl (5,0,1) = g TSR (5,0,4) — p" T (pg) T T ([ng + ilpg) Sy (5, 0,4). (47)
(Here we have used the fact that
. . —nj—t__ ,—nj—1 —ni—i nj+i_,nj+i —ni—i . .
[~ — ilpg = e = (pq) " = = —(pg) T [0 + )
Sar(5,0,1) = Land S209(j,0,i) =0if k <O or k >n (48)
and
S (3,0,4) = g T ETDISERA, (5,0, 0) + p" I ([kj + ilp.g) Sa (3, 0,4). (49)

Moreover, it follows from (38) and (39) that

[-’E]p,q ln,j: Z 51711:2,(1(]’ 0, Z) [:C + i]];,q (50)
k=0
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and
n

ity = S 820G, 0,0) ] Ly (51)
k=0
where [x], [kj=1if k =0 and [z]y,4 k= [Z]pglx — dlpq- - [r — (k= 1)j]pq if k is a positive
integer.
As we shall see later, the most natural thing to do in terms of rook theory is to define

and n— k+1
Si3(p,q) = p~mP=UTRT §20(j 0,4). (53)
It then follows that
581)(% q) =1 and 52{k(p, q)=0ifk<Oork>n (54)
and N o .
S w(pa) = &0 (p,q) — [0+ ilpe (0, 0). (55)
Similarly , iy
§h(p,q) =1and S2(p.q)=0ifk<0ork>n (56)
and , o . ~ii
S k(pq) = g TS (p,q) + 07TV [k 4 115,45, (P q)- (57)

Moreover, it follows from (50) and (51) that

[@lpg lng= > pEOR) (pg) = (G)i=nighs (p gy + 4k, (58)
k=0
and
i xn n—k+1Y\ .
[ + Z% P @)™, (59)

It happens that the type II generalized (p,q)-Stirling numbers § sn k(p, q) and Szjk (p,q) can be
expressed in terms of the type I generalized ¢-Stirling numbers. The relationship is as follows:

0 (pq) = pOTEITRS (1 /p) (60)

g — ("D (n—k) (i— i ;
S0 (pyq) = p (2 )IHOREDEHG)ISH (1, g/p), (61)

This can be proved by using the recurrences (30) and (32) to show that the expressions on the
right side of the equations satisfy the recurrences (55) and (57), respectively.

In this case, the orthogonality relations between the §;;’Jk(p, q)’s and S%7 (p,q)’s are more
complicated than the orthogonality relations between the s, (p,¢)’s and S J (P, q)'s. Thus we
will state them explicitly.

Theorem 3. The matrices ||(pg)~3)7p~g =57, (p, )l xz0 and |Ip" 2" V783, (p, ) p20 are
inverses of each other.
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Proof. Since the matrices ||S;Jk(1,q/p)|| and ||slnjk(1,q/p)|| are inverses of each other, we have
for any 0 < k < n,

x(n=k) = ZS (1,4/p)s;3(1,q/p)

_ Zp(n72l+1)j—(n—l)(i71)qflif(é)jg;,’]é(p’q)pfl(ifl) (L)i— ksg’i(pa q)

—n(i—1)— n=l4+1\ (1\;: _q: (1\: ~; 5 oy
= p n(i—1) kzp( 2 )J (Q)Jq li (2)38:;’]1(]?, q)s;’i(p’ q)-
1=k

Multiplying both sides of the equation by p(™® %=1 we get,

K=K = Py (= p
—ki n l+1 l _li— S i
= p M Zp 2 Jig =I5 (p, )31 (p. q)
n nelHl); i (VY5 —lie (P i
= (p( V1559 (p, )) (p kim(2)igt (Q)JSZji(p,q)),

1=k
which proves the result. |

Having defined our two families of (p,g)-analogues of generalized Stirling numbers of the
first and second kind, (s:;fk(p, q),S;’fk(p, q)) and (§ nk(p, q),Sfl’fk(p, q)), the main result of this
paper is to define a rook theory interpretation of these two families by modifying the set up of
Garsia and Remmel [11]. That is, in section 2 we shall develop a rook theory interpretation of

i

the families (sn’jk (p,q), S;’Jé (p,q)) and give a combinatorial proof that the matrices ||s;’ k(p, q)l|
and || S} k(p, q))|| are inverses of each other. Then in section 3, we shall develop a rook theory

interpretation of the families (§:L]k(p, q),ngk(p, q)). In section 4, we shall prove a number of
generating function results for our two families. In section 5, we shall develop other combinatorial
interpretations of our two families in terms of permutations statistics, colored partitions and
restricted growth functions.

The (p, q)-Stirling numbers of the second kind, introduced by Wachs and White [26], are
defined by the recursion

So0(p,q) =1and S, k(p,q) =0ifk<O0ork>n (62)

and
Sni1x(P @) = D" S k10, @) + [Klp.gSnk(p: @) (63)

In the special case when @ = 0 and j = 1, the recursion given in (31) and (32) for the type I
(p, @)-Stirling number of the second kind Sg’i(p, q) becomes

Soo(p, q) =1 and Sg:,lﬁ(p,q):()ifk<00rk>n (64)

and
SO w(0.a) = S0y (0,0) + [K]pg S (0, @)- (65)
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It is easy to see that the polynomials p(g) Sg’i(p, q) also satisfy (62) and (63) so that S, x(p,q) =
k
p2) 8% (p. q).

We should also note that in the case when ¢ = 0 and j = 1, our type I (p, ¢)-Stirling numbers
of the first and second kind, sg’i(p, q) and Sg:i(p, q), have been studied by a number of other
authors, see [18], [19], [27], [28] and [23]. The case i = p = ¢ = 1 has also appeared in the
literature as Whitney numbers for Dowling lattices, see [2], [3], [13]. Moreover an alternative
approach to combinatorially interpreting a different family of generalized (p, ¢)-Stirling numbers
which includes our (p, ¢)-Stirling numbers s’ k(p, q) and S, (p,q) can be found in [19] where
the authors interpret generahzed (p,q)- Stlrhng numbers via 0-1 tableaux. However, our (p, q)-
Stirling numbers of type II, sn 7. (p, q) and Sn k(p, q), appear to be new.

2 Rook theory interpretation of s’ k;(pv q) and Sn k(p, q)

In this section, we shall give a rook theory interpretation of si’jk (p,q) and Sn k(p, q) and use our

interpretation to give a combinatorial proof that the matrices Hsn k(p, q)|| and HSn k(p, q))|| are
inverses of each other.

Given a sequence (aq, ..., a,) of non-negative integers, let B(aq,...,a,) denote a board with
n columns whose column heights from left to right are aq,...,a, respectively. If a; < ... < a,,
then we say that B(aq,...,a,) is a Ferrers board. For example, B(0,1, 1, 3) is pictured in Figure
1.

Figure 1: The board B(0,1,1,3).

We say that B(ai,...,a,) is a j-attacking board if for all 1 < i < n, a; # 0 implies
ai+1 > a; + j — 1. Suppose that B(ay,...,ay) is a j-attacking board and P is a placement of
rooks in B(ay,...,a,) which has at most one rook in each column of B(ay,...,a,). Then for
any individual rook r € P, we say that r j-attacks cell ¢ € B(aq,...,ay) if ¢ lies in a column
which is strictly to the right of the column of r and c lies in the first j rows which are weakly
above the row of r and which are not j-attacked by any rook which lies in a column that is
strictly to the left of r.

For example, suppose j = 2 and P is the placement in B(1,2,3,5,7,8,10) pictured in Figure
2. Here the rooks are indicated by placing an x in each cell that contains a rook. We place a 2
in each cell attacked by the rook 75 in column 2. In this case, since there are no rooks to the
left of ro, the cells ¢ which are 2-attacked by 75 lie in the first two rows which are weakly above
the row of ro, i.e., all the cells in rows 2 and 3 that are in columns 3,4,5,6 and 7. Next consider
the rook r4 which lies in column 4. Again we place a 4 in each of the cells that are 2-attacked
by r4. In this case, the first two rows which lie weakly above r,4 that are not 2-attacked by any
rook to the left of r4 are rows 1 and 4. Thus r4 2-attacks all the cells in rows 1 and 4 that lie
in columns 5, 6 and 7. Finally the rook rg, which lies in column 6, 2-attacks the cells (6,7) and
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(7,7) and we place a 6 in these cells. We say that a placement P is j-non-attacking if no rook
in P is j-attacked by a rook to its left and there is at most one rook in each row and column.

X
X
41 41| 4
2122
X 2122
X|4|4)|4

Figure 2: Cells that are 2 attacked

Note that the condition that B(ai,...,a,) is j-attacking ensures that for any placement P of
j-non-attacking rooks in B(ay,...,a,), with at most one rook in each column, has the property
that, for any rook r € P which lies in a column k < n, there are j rows which lie weakly above
r and which have no cells which are j-attacked by a rook to the left of r, namely, the row of r
plus the top j — 1 rows in column k + 1 since a1 > ax + 5 — 1.

Given a j-attacking board B = B(ay,...,ay), we let N,‘g(B) be the set of all placements P
of k j-nonattacking rooks in B. For example, if j = 2 and B = B(0,2,3,4), then [NZ(B)| =9
since there are 9 cells in B, |[NZ(B)| = 6 and these 12 placements are pictured in Figure 3, and
INZ(B)| = 0 since any placement P which has one rook in each nonempty column of B and at
most one rook in each row has the property that the rooks in columns 2 and 3 would 2-attack
4 cells in column 4 and hence there would be no place to put a rook in column 4 that is not
2-attacked by a rook to its left. We then define the k-th j-rook number of B, r(B), by setting
me(B) = INZ(B)].

For any board B(a,...,a,), we let Fi(B) denote the set of all placements of k rooks in B
such that there is at most one rook in each column. We then define the k-th file number of B,
fi(B), to be fi(B) = |Fi(B)|. ,

Next we define what we call the type I (p,¢)-analogues of r,(B) and f,(B) when B =
B(ay,...,ay) is a j-attacking board. First suppose that we are given a placement P in Fy(B).
Then let

(a) ap(P) = the number of cells in B that lie directly above some rook r in P,
(b) bp(P) = the number of cells in B that lie directly below some rook = in P, and

(c) wp,q,B(P) _ an(P)pbB(P).
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X
X X
X X X
X
X X X
X X
X
X
X
X X X
X
X X
X X
X
Figure 3: The placements in N3 (B(0,2,3,4)
Then we define fi(B,p,q) by
feB.pa) = ) wpgn (66)

PeFr( )

Next suppose that we are given a placement P in N, ,‘g (B). Then let

(A) ap(P) = the number of cells in B that lie directly above some rook r in P which are not
j attacked by any rook in P to the left of r,

(B) Bp(P) = the number of cells in B that lie directly below some rook r in P which are not
j attacked by any rook in P to the left of r, and

(C) W, 05(P) = q@BP)pPs(P),

Then we define 'ri(B,p, q) by

B D> 4 Z Wh.a.8(P (67)
Pe/\/’J (B)
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For example, in Figure 4, we have pictured an element P € F3(B) where B = B(1,2,3,5,7,8,10)
such that wy 4 B(P) = ¢°p”. Here we have placed a ¢ in each cell that contributes to ap(P) and
a p in each cell that contributes to bg(P). In Figure 5, we have pictured an element Q € N (B)
where B = B(1,2,3,5,7,8,10) such that W), , 5(Q) = ¢*p?. Again we have placed a ¢ in each
cell that contributes to ap(P), a p in each cell that contributes to Sp(P), and a - in each cell
that is 2-attacked by some rook in Q.

o|loc|lo|lo|o|X|al|lo

o|X|alalo

Figure 4: wy 4 g(P) for a placement in F3(B(1,2,3,5,7,8,10))

e  -o|X|a|lo
°

Figure 5: W, 4 5(Q) for a placement in N3 (B(1,2,3,5,7,8,10))

Given any board B = B(ay,...,a,), we let B, denote the board that results by placing x
rows of size n below B. Here we call the line that separates B from the extra x rows, the bar;
see Figure 6. This given, we have the following.
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1 <— bar
2

3

4

X—2

x-1

X

Figure 6: The board B,
Theorem 4. Let B = B(ay,...,ay,). Then
n
(@ + [arlp,g) -+ (@ + [anlp,q) = Z fr(p, g, B)xn_k- (68)

k=0

Proof. We claim that for each positive integer z, the identity (68) arises from two ways of
counting

S= > wpes(PNB). (69)
PeFn(Bz)

That is, each P € F,(B,) has exactly one rook in each column of B,. If we consider the
placement of rook rj in the k-th column, then the possible contribution of 74 to (69) is p® !
if we place it at the top of the column, gp® 2 if we place it in second row from the top, ...,
q®~1 if we place it in the aj-th row from the top since all these cells are in B. We also have
a contribution of x to (69) which corresponds to placing ry in rows 1, ...z below the bar in
column k. It then easily follows that

S = (z+alpg) - (@ + [an]p,q)-

We can calculate S in second way by classifying P according to the number of rooks that fall in
B. For any Q € Fi(B), we can complete Q to a placement P € F,,(B,) such that PN B = Q
in exactly "% ways corresponding to the ways of placing the n — k rooks below the bar in
columns which contain no rook in Q. Thus

Z wy,q,8(PNB) = wp,q,B(Q)xn_k-
PEFn(Bs)PNB=Q
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Then

S => > > Wy q.5(P N B)
k=0 Q€ F},(B) PEF,(By):PNB=9Q
e Z Z wp7q’B(Q)xnik
k=0 QeFi(B)

= an_k Z Wp,q,B(<Q)

k=0 QeFi(B)

n

= fu(p.q, B)a" .
k=0

Hence (68) holds for all positive integers = and since it is a polynomial identity, it must hold for
all z. [

If we replace x by [t], 4 in (68), we get the following.

Corollary 5.

n

([t]p,q + [al]p,q) T ([t]p,q + [an]p,q) = Z fe(ps g, B)[t]Z,Zk- (70)
k=0

Proof. We note that we can have direct combinatorial proof (70) by using the same type of
reasoning as in the proof of Theorem 4 and computing the sum

S= Y Wpen(P) (71)

PeFn(Be)

where

Wp,q,8,(P) = H Wp,q,B, (1)
repP

where for any rook 7,

qa(r,B)pb(r,B) ifreB

EI%Q:B%(T) = { k—1 o—k

q"'p if r is in row k below the bar

and a(r, B) is the number of cells directly above r in B and b(r, B) is the number of cells directly
below r in B. |

We are now in a position to give our combinatorial interpretations of cjl’jk(p, q) and sz’]/‘,c (p,q)
defined in the introduction. Let 7 > 0 and j > 0 be integers and let B;;, be the board
B(iyi+j,i4+2j,...,i+ (n—1)j). Then we have the following.

Theorem 6. If n is a positive integer and k is an integer such that 0 < k < n, then
e ®:a) = faok(P, 4, Bijn) (72)
and

S0 q) =1 _ (0.0, Bijn). (73)
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Proof. 1t is easy to check that f,_x(p,q, Bijn) and rn_i(p, q, B;jn) satisfy the appropriate
recursions. That is, B; j1 = B((i)) so that it immediately follows form our definitions that for
all >0 and j > 0,

filp,q, Bij1) = r{(paquJy ) = li]p,q and
fop,@; Bijn) = r(p,q,Bija) = 1.
It follows from (30) and (32) that
ro.a) = Srp(p.a) = lilpg and
e = S =1
Thus for k € {0,1},
Ci’,];;(P,Q) = fi—k(p,q,B; 1) and
Sihpa) = (0,4, Bija)-

Clearly fx(p,q, B, n) = 0 and ri(p, ¢, Bijn) =01if kK > n or k < 0 since there are no placements
in Fi(Bijn) or N{(Bijn) if k> n or k < 0. Thus to verify that (72) and (73) hold we need
only verify that for allm>1and 0 <k <n,

fnr1-k(0, @, Bijins1) = fa—e—1)(0, @, Bijjn) + [i + 1lp.g fa—i (D, ¢, Bijin) (74)

and
Tiﬂrlfk(p’ ¢, Bijn+1) = TiL*(k*l)(p’ ¢, Bijn) + [i + kjlp.gry_1(0, @, Bijn)- (75)

Both recursions can be proved in the same way. That is, to prove (74), we simply partition the
elements of F,11_(B; jn+1) into two sets No and Last where No consists of the placements of
Frt1-k(Bi jn+1) which have no rook in the last column and Last consists of the placements of
Frt1—k(Bi jn+1) which have a rook in the last column. It is easy to see that a placement in No
has n — (k — 1) rooks to the left of the last column and the weight of any placement P € No
is the same as the placement Q in F,,_,_1)(B; ;) that results by eliminating the last column.
Thus
Z Wp,q,B;,jn+1 (P) = Z wpv%Bi,j,n(Q) = fnf(kfl)(pv q, Bi,jm)'

PeNo Q€Fn_(k—1)(Bi,jn)

To compute Y pesas Wpa,Bijnii(P), observe that if we fix a placement Q € F,,_r(B; ), then
we can extend Q to a placement P € Last by placing an additional rook in the last column.
Since the height of the last column of B; ;1 is 7 + nj, there will be 7 4+ nj such placements.
Moreover, it is easy to see that if we place the rook in the s-th row of the last column, where we
label the row with 1,...,i+nj reading from bottom to top, then the weight of the corresponding
placement P* is ¢t 5 p*~lw, o g, (Q). It follows that

Z Wp,q,Bi,jn+1 (P)

Pe Last

= Y (@ T P T P Yy g, (Q)
Q€Fn_k(Bijn)

= i +nJlp.qfa—r(D: @ Bijn)-
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The argument to prove (75) is essentially the same. That is, again partition the ele-
ments of Nj+1_k(Bi7j’n+1) into two sets No and Last where No consists of the placements

of NV 1o k( i,jn+1) Which have no rook in the last column and Last consists of the placements

of /\/]Jrl (Bijn+1) which have a rook in the last column. Again it is easy to see that

Z vaani,j,n-‘rl(p) = Z Wp,q,Bi,j,nﬂ(Q) = Ti*(kfl)(p’q’Bi’j’n).
PeNo QE/\/’ji(kil)(Bi,j,n)

n

To compute Y perast Wpa,B: i1 (P) observe that if we fix a placement Q € N,{,k(Bi,j,n), then
we can extend Q to a placement P € Last by placing an additional rook in the last column. In
this case, the n — k rooks in Q will j-attack exactly (n — k)j cells in the last column. Since the
height of the last column of B; j 41 is i +nj, there will be i +nj — (n —k)j = i+ kj cells in the
last column of B; j 41 which are not j-attacked and hence there will be i + kj such placements.
Moreover, it is easy to see that if we place the rook in the s-th row of the non-j-attacked cells of
the last column, where we label such rows with 1,...,7 4+ kj reading from bottom to top, then
the weight of the corresponding placement P* is q”kﬂ o W0 . in(Q). Tt follows that

Z Wp7Q7Bi,j,n+1 (P)

PeLast
_ Z (q’i+k]'*1 + qurkijp I qpiJrkij _’_p’i+k]’71)qu B . (Q)
4, Di,5,n
QeN?_,(Bijn)
= [i + kj]p,qrqu—k(pv q, Bijn)-
|
We point out here that if we modify our combinatorial interpretation of Sg’}c(p, q) to include
a factor of p for each uncancelled cell in an empty column, we will get one of the rook theoretic

combinatorial interpretations of Sy, x(p, ¢) given by Wachs and White [26].
We note that when B = B ;,, then Corollary 5 becomes

([t + ilpa) -+ (g + i + (0 — 1) Zc

k+0

which is just (33). Thus (33) has a combinatorial proof. Then replacing [t], 4 by —[t]p,q, multi-
plying by (—1)" and using the fact that snk(p, q) = (—1)n*F ;’Jk(p, q) clearly yields (35). Then

we can derive (34) from (35) by using the fact that the the matrices Hsn k(p, q)|| and HS:LJk (p,q)l|
are inverses of each other. A direct combinatorial proof of (34) was found by Briggs and Rem-
mel in [8]. We give a direct combinatorial proof the matrices Hsn k(p, )|l and [|S}7 (p, q)|| are

inverses of each other. That is, if we start with our combinatorial interpretations of cfz’jk(p, q)

and Sfl’i(p, q), then we can give a combinatorial proof of the following for all 0 < r < n.

> S p.0)si (p, @) = x(r = n). (76)

Note that if » = n, then (76) reduces down to
1= Sz’] ( ) rzjn(pv q) (77)
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But (77) holds since both Nfl;n(Bi,j n) and Fy,_p(B; jn) consist solely of the empty placement

E. Since Wy 4 B, ;. (€) = wp g5, ,,(E) = 1, it follows that Si3.(p,q) = silu(p,q) = 1 and hence
(77) holds.

Now suppose that n > r. Then

ZSM p.q)sy (b, )

k_
= (_1) " E : Wp7q7Bi,j,n (P)wp7Q1Bi,j,k(Q)
ke=r (P,Q)EN? _, (Bi jn)xFr—r(Bij k)

3

Z va%Bi,j,n (P)Sgn(g)wp7Q7Bi,j,k(Q)

k=r(P,Q)eN? , (Bijn)xFi—r(Bijk)

where sgn(Q) = (—1)no- of rooks in @ "Tpen consider the elements

UN] z]n ka r( ,],k)-

We can partition these elements into three classes.
Class I. There is a rook of P in the last column of B; ;.

Class II. There is no rook of P in the last column of B;;,, but there is a rook of Q in the
last column of B; j .

Class III. There is no rook of P in the last column of B;;, and there is no rook of Q in
the last column of B ;.

Next we define a weight preserving sign-reversing bijection f from Class I to Class II. Given
an element (P, Q) € N , (B jn) X Fr—r(Bi k) in Class I, note that there are a total of n—k—1
rooks in P to the left of the last column of B; ; , and these rooks j-attack a total of (n—k—1);j cells
in the last column. Thus in the last column of B; j ,, there are a total of i+(n—1)j—(n—k—1)j =
t + kj cells in the last column of B; ;, which are not j-attacked by a rook in P. Then define
f(P,Q)) = (P', Q) where

(i) P’ is the result of taking the placement P and removing the rook in the last column of B; ;
and

(ii) Q' is the result of adding an extra column of height i + kj to the right of the placement
Q and placing a rook f; in that column which is in row ¢ if the rook r, in P in the last
column of B; ;,, was in the t-th cell, reading from bottom to top, which was not j-attacked
by a rook in P to the left of 7.

See Figure 7 for an example of this map when n = 6, £k = 3 and » = 1. Our definitions ensure
that r,, contributes a factor of ¢"™/*~tp!=1 to W, , p, . (P) and that fj contributes a factor of

0,J,m
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i+jk—t, t—1 /
qz+] p to wp7q7Bi,j,k+l(Q )' Thus

va%Bi,j,n (P)wp7Q7Bi,j,k (Q) = Wp#lsz',j,n (Pl)qi+jk_tpt_IWp7q7Bz’,j,n ( Q)
= va‘LBi,j,n (Pl)wpy%Bi,j,kJrl (Q,)

Clearly sgn(Q) = (—i)* " = —sgn(Q’) = (—1)¥="*! so that f is a sign reversing weight preserv-
ing function which for each » < k < n maps the elements of N,{,k(Bi,j,n) X Fi—r(Bi ) in Class
I to the elements Nrj;fk—l(Bi,j,n) X Fit1—r(Bijk+1) in Class II. Moreover f~1is easily defined.
That is, if (P, Q') € er—k—1(Bi,j,n) X Frt1-r(Bijk+1) is in Class II and the rook in the last
column of Q' is in row ¢, then f~1(P’, Q")) = (P, Q) where Q is results from Q' by removing
the last column of B; ;41 and P results from P’ by adding a rook in the last column of B jn

in the t-th cell from the bottom which is not j-attacked by any rook in P’. Thus f is a bijection
which shows that

n

Z Z va%Bi,j,n (P)Sgn(g)wp7Q7Bi,j,k(Q) =

k=r(P,Q)eN? , (Bijn)xFr—r(Bijk)

Z Z Wp7Q7Bi,j,n (P)Sgn(g)wpv%Bi,j,k(Q)

k=r (P,Q)eClass III

[q]
Ex
q
X
p
p
ofe ]
o lefofe ]
P: X|o|o|o|e =
X|o|e® XX Q
p
f
[a]
El
ole q
P’: o|leo|o]|e X =0
X|o|o|o]|e p Q
X|e|e XX [P
| R

Figure 7: An example of the map f from Class I to Class 11

Note if » = 0, then there are no elements in Class III since every element of (P, Q) €
N (Bijn) X Fr—o(Bi k) has a rook of Q in the last column of B; ;. Thus if » = 0, then
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f shows that >, S;”J}g(p, q)s%(p, q) = 0. Finally if » > 1, then there is a weight preserving
bijection g which maps Class III onto | J;_, 1./\f] 1-k(Bijn—1) X Fr—(r—1)(Bijr). That is, if
(P, Q) is in Class III, then g((P,Q)) = (P”, Q") where P” is obtained from P by removing
its last column and Q" is obtained from Q by removing its last column. See Figure 8 for an
example.

SLeTele ]
P: X|o|e X :Q
g
el u
Pr= T =

Figure 8: An example of the map g

Thus if > 1, then our bijections f and g show that

n—1

DS s e = Y ST p st pa) =xr—1=n=1) (79
k=r k=r—1

where the last equality follows by induction. Thus we have proved that

ZS& P, q Skr p,q) = x(r=n)

as desired.

3 A combinatorial interpretation of s k(p, q) and ngé(p, q)

The main purpose of this section is to develop alternative versions of (p,q)-rook numbers and
(p, g)-file numbers which are suitable to be specialized to give combinatorial interpretations of

§.7:(p,q) and S} (p, q).
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Let B = B(ay,...,a,) be a j-attacking board. Then for any placement P € J\/’,g(B), we
define

. g,q7B(P) = an (P)pbB(P)qu(p)p_(cl‘f'"'-i-cn)j (79)

where

1. ap(P) equals the number of cells of B which lie above a rook in P and which are not
j-attacked by any rook in P,

2. bp(P) equals the number of cells of B which lie below a rook in P and which are not
j-attacked by any rook in P,

3. ep(P) equals the number of cells of B which lie in a column with no rook in P and which
are not j-attacked by any rook in P, and

4. ¢; < -+ < ¢ are the columns which contain rooks in P where we label the columns of B
with 1,...,n reading from left to right.

For example, in Figure 9, we have pictured a placement P € ./\/?? (B) where B is the 3-attacking
board B(2,5,8,10,12) such that P has rooks in columns 1, 3 and 4 and ap(P) = 3, bp(P) =5,
eg(P) =5. Thus qu 5(P) = @p°®p~ (1H3+D3 = ¢8p~19. Moreover, we have placed a p in each
cell of B which contributes to the bg(P), a ¢ in each cell that contributes to either ag(P) or

ep(P), and a dot in each cell that is j-attacked by some rook in P.

x
......_Q..._Q‘_O‘

X|o|o|o|ololofe|e|e

Tle|eo|e| T T T|X

Ole|o|e|

Figure 9: An example of W, , 5(P)

We then define the (p, ¢)-rook number of B (of type II) by

A= > Wl g (80)

Pe/\ﬂ (B)
This given, we then have the following result.

Theorem 7. Let B = B(ay,...,ay,) be a j-attacking board. Then
. - k41 -
@+ alpglz + a2 = flpg - [w 4 an — (0= 1); er P g Lk (81)
where [x]p 4 loj=1 and for k >0, [x]pq Lkj= [@]pql® = dlpg- - [® = (= 1)j]pq-
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Proof. We note that when j =1 and p = 1, (81) becomes

n

@+ aigle +az =g o+ an — (0= D]g = > g (L d)lalg Lk

k=0

which was first proved by Garsia and Remmel [11]. Our proof is a generalization of their proof.

It is enough to prove (81) for all positive integers = > jn. So fix a positive integer x > jn
and let B, be the board which results by adding = rows of length n below B as described in
section 1. We shall consider placements of n rooks in B, where there is at most one rook in each
row and column. A rook r which lies above the bar will j-attack cells as described in section
1. Thus a rook r which lies above the bar will only j-attack cells which are above the bar.
Similarly, we shall define the cells which a rook r’ below the bar j-attacks so that each rook r’
will only j-attack cells below the bar in B,. We say that a rook ' which lies in column k and
row [, where here we label the rows below the bar with 1,...,z reading from top to bottom,
j-attacks a cell ¢ € B, which is below the bar only if ¢ lies in a column that is strictly to the
right of column k and either

(i) c lies in the first j rows of B, below the bar which are weakly above row | and which contain
no cell that is j-attacked by some rook r” to the left of 7’ or

(ii) there are t < j rows below the bar which are weakly above row [ and which contain no cell
that is j-attacked by some rook r” which is strictly to the left of column k and c is in the
largest j — t rows which are not j-attacked by any rook r” which is strictly to the left of
r'.

In other words, a rook in column k and row ! below the bar j-attacks all cells below the bar
which are not j-attacked by any rook r” to the left of 7/, which are in a column strictly to
the right of k£ and which lie in the first j such rows where we order the rows in the order
I,i—1,...,1,z,z —1,...,1+ 1. Thus when we look for rows for r’ to j-attack, we only consider
rows below the bar which are not j-attacked by any rook r” to the left of v’. Then we first look
at such rows which are weakly above [, but if there are not j such rows weakly above row [, then
we cycle around starting at the bottom row until we find a total of j rows to attack. We then
let ,g (B,) denote the set of all placements P of n rooks in B, such that there is at most one
rook in each row and column and such that no rook j-attacks another rook. This given, we can
then define W), ; ., (P) just as we did in section 1, namely,

Wﬁ,q, 5. (P) =q"* (P) b (P) (82)

where

ap(P) equals the number of cells of B which lie above a rook in P and which are not j-attacked
by any rook in P and

bp(P) equals the number of cells of B which lie below a rook in P and which are not j-attacked
by any rook in P.

For example, consider the placement P € N3 (B(1,3,5,7)19) pictured in Figure 10. We shall
denote the positions of the four rooks, reading from left to right, by placing circled elements
containing the numbers 1, 2, 3 and 4. We shall then indicate the cells which are 3-attacked by
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‘I—‘TJUTJUUUUD—‘HU@.Q

‘Uuuuuuuu(wgg

Figure 10: An example of qu,B(P)

the circled rook with label ¢ by placing ¢’s in such cells. We shall place a g or a p in those cells
which are not 3-attacked by any rook in P depending on whether the cell contributes a factor
of g or p to W, 4 5, (P) from which it will be clear that W), , g, (P) = ¢%p*.

This given, we shall show that (81) results from two different ways of computing the sum

S= Z Wp,q,Bx(P)- (83)
PEN,(Bz)

That is, first consider the contribution to S of the possible placements of rooks in each column
proceeding from left to right. For the first column, it is easy to see that the contribution to S
by placing rooks in the cells starting at the top and going down to the bottom are, respectively,
pute=l gpute=2 g2pate=3 gaitr=2y, paitr—1 " Thyg the contribution to S from the first
column is [a; + ], 4. We can apply the same argument to the second column except that j-cells
in that column will be j-attacked by the rook in column 1 so the the contribution to S from
the second column is [a2 + = — j], 4. Similarly, the contribution to S from the third column is
[asz + 2 — 2j], 4 since a total of 2j cells in column 3 will be j-attacked by the rooks in columns 1

and 2. Continuing on in this way, we see that

n

S=IJlar +2 = (r = Djlpg (84)

r=1
Next fix a placement Q of k rooks in B. We want to compute

S(Q) = > Wi,q.5, (P). (85)

PeNI(B,),PNB=Q

It is easy to see that ¢@8(DpP8(2¢e5(Q) is the contribution W), , g, (P) of the cells above the bar.
Now if P has rooks in columns cy,...,c; where 1 < ¢y < ... < ¢ < n, then the cells in those
columns, which lie below the bar and which are not j-attacked by a rook in P, each contribute
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a factor of p to W), 4 B, (P). Note that there are ¢; —t rooks of P below the bar which lie to the
left of column ¢;, and each such rook will j-attack exactly j cells in column ¢;. Thus the total
number of cells below the bar in columns ci,...,c; which are not j-attacked by any rook in P
is

kE+1

(o= e = 19) + = (ca =20 +ooo+ o (e =) = o+ (]

>j—(cl+'~—|—ck)j.

Thus such cells below the bar contribute a factor of pk‘H(k;l)j*(Cl*”*c’“)j to Wpq.B.(P). Fi-
nally consider the contribution to W), 4 g, (P) of the cells below the bar in the remaining n — k
columns. For the leftmost such column, it is easy to see that the contribution to S by plac-
ing rooks in the cells starting at the top and going down to the bottom are, respectively,
P ap*2,¢*p" 3, ..., ¢ %p,¢* 1. Thus the contribution to S(Q) from the leftmost column
which contains a rook below the bar is is [z], 4. We can apply the same argument to the second
leftmost column that contains a rook below the bar except that j-cells in that column will be
j-attacked by the rook in the leftmost column which contains a rook below the bar. Thus the
the contribution to S(Q) from the second such column is [z — j], ;. Similarly, the contribution
to S from the third such column is [z — 2j], , since at total of 2j cells in that column will be
j-attacked by the rooks in below the bar to its left. Continuing on in this way, we see that

contribution to S(Q) from the cells in the remains n — k columns is

n—k
H [z = (r = D)jlpg = [lpg In—t,; -
r=1
It follows that
S(Q) = ¢ QprQgen(@p(erteteniphat (5[], 0 1,
~ k41Y -
= Woan(QP" 2 Vel Lnois (86)
Thus
n k1Y ~
S = ZPWF( 2 ) [@]p,q In—k,j Z Whp.q,B(Q)
k=0 QeN(B)
i ] o (P14
= > A e Ve Ly (87)
k=0
Combining (84) and (87) yields (81) as desired. [

Next we define the (p, ¢)-file number (of type II) for a j-attacking board B = B(ay,...,an)
by
feslpg)= Y. @, 5(P) (88)

PeFr(B)

where for any P € F,(B), we define
w;ﬁq’B(p) _ an(P)pﬁB(P)pEB(P) (89)

where
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1. ap(P) equals the number of cells of B which lie above a rook in P,
2. Bp(P) equals the number of cells of B which lie below a rook in P,
3. ep(P) equals the number of cells of B which lie in a column with no rook in P.

We are now in a position to give our combinatorial interpretations of §ank (p,q) and S;]k (p,q)

defined in the introduction. Set 6%(1), q) = (-1)"~ kfzjk(p, q). Let ¢ > 0 and j > 0 be integers
and let B ;, be the board B(i,i + j,i +2j,...,i+ (n —1)j). Then we have the following.

Theorem 8. If n is a positive integer and k is an integer such that 0 < k < n, then

and o |

Proof. Tt is easy to check that fn,k(p,q,Biyj’n) and 7, (p,q, Bjjn) satisfy the appropriate
recursions. That is, B; j1 = B((¢)) so that it immediately follows from our definitions that for
all ¢ and j,

f (p7q7B,], ) = Tl(p7q7BJ, ) [ﬂpﬂ’
f(p,q,Bu,) = p'and
#(p,q,Bij1) = .

It follows from (30) and (32) that

ahpg) = Slo(p,Q) [i]p.q:
&h(p.q) = pland
SHpa) = 4.

Thus for k € {0, 1},
5?,]1;(19761) = fi—r(p,q Bij1) and
SPipa) = #_.(p.q Bija)-

Clearly fk.(p, q, Bi,j,'n) =0 and fi(p, ¢,Bijn) =0if k> n or k < 0 since there are no placements

in Fi(Bsjn) or Nl(Bijn) if k> n or k < 0. Thus to verify that (90) and (91) hold we need
only verify that for alln > 1 and 0 < k < n,

Fot1-1(D, @ Bijns1) = P fu k104, Bijin) + [i + ndlp.g fa—k(Dy @ Bijin) (92)

and

fi+1_k(p7 q, Bi,j,n-i—l) = qurk] ] (p7 q, B’i,j,n) + pi(nJrl)j [’L + kj]p,qfi_k(pa q, Bz,],n) (93)

Both recursions can be proved in the same way. That is, to prove (92), we simply partition the
elements of F,11_(Bj jnt1) into two sets No and Last where No consists of the placements of
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Frt1—k(Bi jmn+1) which have no rook in the last column and Last consists of the placements of
Frt1-k(Bi jn+1) which have a rook in the last column. It is easy to see that a placement in No
has n — k — 1 rooks to the left of the last column and the weight of any placement P € No is
P 0y g, ;.. (P') where P’ is the placement in F,,_(;_1)(Bi,n) that results by eliminating the
last column of P. Thus

Z @pﬂ,Bi,j,nﬂ(P) = Z pnj+iﬁ)p,q,Bi,j,n (P') = pnj+ifn—(k—1)(p’ ¢, Bijn).
PeNo P'eFn—(k—1)(Bijn)

To compute D ey Wp,g,B; ;nir (P) Observe that if we fix a placement Q € F,_1(B; jn), then
we can extend Q to a placement P € Last by placing an additional rook in the last column.
Since the height of the last column of B; ;.1 is 7 + nj, there will be 7 4 nj such placements.
Moreover, it is easy to see that if we place the rook in the s-th row of the last column, where we
label the row with 1,...,i+nj reading from bottom to top, then the weight of the corresponding
placement P? is ¢t =5p*~lw, . p. . (Q). It follows that

Z ’J)pv(LBi,j,n+1 (P)

PeLast

= Z (@7 g2 g g I, s (Q)
Q€F—k(Bijn)

= [Z + nj]p,qfnfk(pa q, Bla]:”)

7,

The argument to prove (93) is essentially the same. That is, again partition the ele-

ments of TJZ +1_k(Bi,j7n+1) into two sets No and Last where No consists of the placements
of ./\/i L1 4 (Bi jn+1) which have no rook in the last column and Last consists of the placements

of N£+1_k(Bi,j,n+1) which have a rook in the last column. If P € No, then there are n + 1 — k
rooks to the left of the last column in P. These rook j-attack a total of (n 41— k)j cells in the
last column. Thus there are a total of nj +i— (n+1—k)j = (k—1)j +i cells in last column
of B jn+1 which are not j-attacked by any rook in P. Each such cell is counted in €p; jnt+1(P)
so that these cells contribute a factor of ¢*=17+% to vaq’Bi,j,nH(P). Thus

Z WP,Q,Bi,j,nH(P) = q(kil)jJﬂ' Z Wp,q,Bi,j,n(Q)

PeNo QGNZ_(k_l)(Bi7j7n)

(kfl)jﬂ?;i_(k_l) (9.0 Bijn)-

q
To compute Y peros WP7QaBi,j,n+l(7D) observe that if we fix a placement Q € N,{_k(Bz‘,j,n), then
we can extend Q to a placement P € N by placing an additional rook in the last column. In
this case, the n — k rooks in Q will j-attack exactly (n — k)j cells in the last column. Since the
height of the last column of B; j 41 is i +nj, there will be i +nj — (n —k)j = i+ kj cells in the
last column of B; j ,41 which are not j-attacked and hence there will be i + kj such placements.
Moreover, it is easy to see that if we place the rook in the s-th row of the non-j-attacked cells of
the last column, where we label such rows with 1,...,i 4+ kj reading from bottom to top, then
the weight of the corresponding placement P* is ¢t5J _Sps_lﬁ/nq’ B; ;. (Q). Finally there is an

extra factor of p~*1) in W, . p (P) that does not occur in Wy, 4 5, . (Q) due to the rook

i,5,n+1
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in column n + 1 in P. It follows that

Z va%Bi,j,nJrl (P)

PeLast
=p N (T T P 4 g, L (Q)
QeN? _, (Bijn)

— p i 4 kjlp™ _(p @, Bijn)-

We note that when B = B; ; ,, then Theorem 7 becomes

n
[z +ilp = Z S:{]kp(n_k)ﬁ(nigﬂ)j [@lp,q Lk
k=0
which is just (59). Thus (59) has a combinatorial proof.
n—k o~
We can also give a combinatorial proof that the matrices Hp( 2)i Sy%(p,q)|| and

‘](pq)*(g)jp*ikq*ingifk(p, q)|| are inverses of each other. In fact, we can use the same proof that

we used to give a combinatorial proof that the matrices HS;]k (p,q)|| and

P p,q)|| are inverses of each other. That is, we must show that for all n and 0 < r < n,
n,k
n —k41\ . ~s k\ - . . ..
S o218 (0, q) (pa) =RV~ 5 (p,q) = x(n =1). (94)
k=r

Note that if » = n, then (94) reduces down to
1= 859, (p, a)(pa)~BVp~ =55, (p, ). (95)

Now both Ng_n(Bm,n) and F,_, (B jn) consist solely of the empty placement £. Then it is
easy to see that our definitions ensure that

Wy (€) = aZhais0i — (v
ﬂ)p,q,Bi’jyn((‘:) = ps=

It thus follows that S'fﬂn(p, q) = q(g)jﬂ'" and §Zjn(p, q) = p(g)jﬂ'" and hence (95) holds.
Now suppose that n > r. Then

TN (R g —(5Vj, —ir —ik zi,j

S =I5 (0, q)pa)~Rpirg*E (p,q) = (96)
k=r

n n—k+41): ~ (*Yi —ir —ik ~

Z Z p( ? )]Wp,q,Bi,j,n(P)(PQ) (Q)JP q kwp,q,Bi,j,k(Q)Sgn(Q)

k=r(P,Q)eN? , (Bijn)XFi—r(Bijx)

where sgn(Q) = (—1)k—" = (—1)no- of rooks in @ e partition the elements

n

(P,Q) € (N _y(Bijn) X Frr(Bijk)

k=r
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into three classes just as we did in section 2.
Class I. There is a rook of P in the last column of B; ;.

Class II. There is no rook of P in the last column of B;;,, but there is a rook of Q in the
last column of B; ;.

Class III. There is no rook of P in the last column of B;;, and there is no rook of Q in
the last column of B; ; .

Let f be the bijection from Class I to Class II defined at the end of section 1. Thus f is a sign
reversing bijection which for each » < k < n maps the elements of Ngb_k(Bi,j,n) X Fr—r(Bij k)
in Class I to the elements Ni—k—1(BZ’,j,n) X Fryi—r(Bijr+1) in Class II. Now suppose that
(P,Q) € N?_(Bijn) x Fi—r(Bij k) and f((P,Q)) = (P, Q). Thus there i + kj cells of P in
the last column which are not j-attacked by any rook to the right of the last column. Thus the
effect of removing the last rook 7, in P and placing it in the corresponding position in a new
column of height i + kj to the left of Q means that we lose a factor of p~™ and we gain a factor
of ¢"*t*7 since the last column of P’ is now empty. Thus

qi+kjpanpvqui,j,n (p)wpv(LBi,j,k(Q) = va‘JaBi,j,n (,P,)’J)qu:Bi,j,k+11(Q,)' (97)
But then
n—k+1\ . ~ (kY _; ik ~
U Wy, (P 0a) ™ Vp g ¥ 5, (Q)sgn(Q)

nok) iTx —(*tH; j—ir_—i i

= p("2Vipe =Ry, g (PY(pg) 2 (pg) = g D i, g 5, (Q)sgn(Q)
2 T (kY e N

— gt (p(" )]Wp,q,Bi,j,n(P)(pQ) (5 )ip=irg iy 05,4 (Q)sgn(Q))

- k+1

n—~k\ - . . . ~
— "W, g, (P (pg) (2 Vipmirg i g, (Q)sgn(Q)))

which is precisely the sign-reversing weight preserving property required to show that f can-
cels all the elements in Classes I and II in the sum (96). If we let 75, 5 = N (Bijn) X
Fi—r(Bijn), then f shows that

n
n—k+1): ~ —(5)g,—ir —ik >

Z Z p( 2 )ij,q,Bi,j,n(p)(pQ) (2)jp "q kap,qui,j,n(Q)‘Sgn(Q)
k=r (P,Q)€Ty k. ri,j

n

n—k+1): ~ ~(5)j —ir —ik,~

:Z Z p( 2 )]Wp,q,Bi,j,n(P)(pQ) (2)jp "q kap,qui,j,n(Q)‘Sgn(Q)'

k=r (P,Q)e€T, k ri;

(P,Q)eClass I11

Again if r = 0, then there are no elements in Class III. Thus if » = 0, then f shows that
n—k+1\ . ~; » kYN . .

S o p( 2’ )JSZ’Jk(p, q)(pq)*(2)3q*1ksz7]0(p, q) = 0. Fina1‘1y if » > 1, we again use the bijection g

defined in section 1 which maps Class I1I onto Z;Ll J ok (Bijm—1) X Fr—r—1)(Bijk)- That

is, if (P, Q) is in Class III, then g((P, Q)) = (P", Q") where P” is obtained from P by removing

its last column and Q" is obtained from Q by removing its last column. In this case, it is easy
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to see that since there i 4+ (k — 1)j cells in the last column of P which are not j-attacked by any
rook to the left of last column we lose a factor of ¢'+(#=1)J from the W, , B; ;. (P) by removing
the last column. Similarly we lose a factor of pi+t(*#=1J from the W, , B; ;. (Q) by removing the
last column. Thus if g((P, Q)) = (P’, Q'), then

(pQ)_i_(k_l)jqu,Bi,j,n (P)wp7Q7Bi,j,k (Q) = Wpy(IyBi,j,nfl (Pl)wpy(bBi,j,k—l (Q/) (98)

But then
n—k+1 AT —ir _—ik ~
)J Wp q, Bz 2 Jsm (P)(pq) (2)Jp q kwp,q,Bi,]’,k (Q)Sgn(Q)
(n—k+1 —(F5Y; —(k=1)j, —i(r—1), —i —i(k—1) —i_~
=W, s, (P (pg) ™2 ) (pg) = Vil pmig i =i, - (Q)sgn(Q)
(n— k+ (k=1 —i(r— —
= (pq) "=V ("I, s (P (pg) (2 VI m D, p (Q)sgn(Q))

(n—1)— (k 1)+1 (PG _i(r— "
( )]Wp7q7Bi,j,n—1(P )(pq) (" )]P ( 1) = Uqu,Buk 1(Q )sgn(Q’)

Pl

/—\

Thus g shows that

("5 iy N I—
Yk=r Z(p, QET, k., Py 2 TWyg.B, 5, (P)pa) (2T g Bp,q,B; ;5 (Qs91(Q)

(P,Q)eClass IIJI

n (= h )5 - / =(8)d i1y —ie—1) g / /

= Ek=(,,,1> (PN ETy 1 gy ;P 2 Wp.4.B; j n_1 (P)(Pa) \2/7p q Bp,q,B; j 1 (2)sgn(Q)
=x(n—1=7r—-1)

where the last equality follows from our induction hypothesis. Thus (94) holds as claimed.

4 Generating Functions

In this section, we shall present some basic generating functions for sequences involving cn k(p, q),
Snk(p, q), cnk(p, q) and Sn’]k(p, q). In the case that (p,q,7) = (1,1,1), our results reduce to
results on Whitney numbers of Dowling lattices appearing in work of Benoumhani [2], [3]. The
connection with Dowling lattices is discussed in Section 5.

First we consider exponential generating functions when p = ¢ = 1.

Theorem 9. Let /() = Y, i (L, 1) 2 and Ry (z) = 32,5, Si% (1, 1)1 Then for all
j>0,

F (@) = L(In((1 = jo)~ Vi) (99)
o 1 . o
F(z) = Pt §) " (n((1 — j2) ") * if i > 0 and k > 0, (100)
and
R (z) = kk'e 2 — )% ifi >0 and k > 0, (101)

Proof. All of these results can be obtained by taking appropriate limits in (13) which is Hsu and
Shiue’s exponential generating function for the sequence {S! , (o, 3,7)}n>r when a8 # 0. It is
also easy to give more direct proofs. 7

For example, if £ =0 and ¢ > 0, then it is easy to see that

cfz’jo(l, 1) = i(t+7)---(i+(n—1)j) and
Sih(1,1) = "
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Thus in that case,

Fylw) = D ilitg)-- (4 (n—1Dj)= (102)
n>0
I T SO S R AN G
—HZZO]Q (5= =)=
= (1—jz)™"

by Newton’s binomial theorem. Similarly

Ry ( Z i (103)

n>0

When £ =7 = 0, cg”%(l,l) = 52’7{)(1, 1) = 0 when n > 0 since one cannot place n rooks on
Bo,jn :AB(O,j, 2j,...,(n —1)7) with out placing at least two rooks in the same column. Since
Cd]() = Sy = 1, it follows that
Fy (x) = Ry () = 1. (104)
Now if £ > 0 and 7 > 0, then

d . xnfl
_F 7.7 — 2y
@) = D ek (n—1)!

n>k
j . Ny xnfl
= D (el T it (- 1)])07{71,k)m
n>k
—1
= ch Lh=1(0 — 1)1 +chn L (= 1)1 "‘chn Lk — 2!
n>k n>k n>k
— Fk’il(x) + sz’](:c) —|—j$£(Fk’](CC))
so that )
L (F @) = ——F (1) + ——F () (105)
de "k 1 — xR 1—ja *
Similarly if £ > 0 and ¢ > 0, then
d _i;j i x”_
L@ = Sy
n>k
ij zg xn—l
n>k
i xn—l ‘ . i xn—l
= Z Sn’fl,kflm + (Z + k‘j) Z S"’*Lkm
n>k n>k
= B \(x) + (i + k)R (x). (106)
If kK > 0, then for all ¢ > 0 and j > 0,
y y 1
Fk’] ()| 6 = Rk’](ac)|gc;c = (107)
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Now it is easy to see that when i > 0, (105), (107) and (102) completely determine the family
{F;” (2)}k>0- Since the family {5 (1 — jz) =7 (In((1 — ja)~/9))*};>¢ satisties (105), (107) and
(102), it follows that for all £ > 0,

Fy (@) = o5 (1= ja) F(n((1 = ja) )k if i > 0.

If i = 0, then (105), (107) and (104) completely determine the family {F,?’j(x)}kzo. Since the
family {Z;(In((1 — j)~Y9)) ks satisfies (105), (107) and (104), it follows that for all k > 0,
1 .
= Ln( - )
Similarly, it is easy to check that when ¢ > 0, then (106), (107) and (103) completely
determine the family {R}”(x)}r>0. Since the {ﬁeix(eﬂ — 1)F} i satisfies (106), (107) and
(103), it immediately follows that for all £ > 0

F ()

. 1 . ;
R (@) = Spget (e =DV i i > 0,

If i = 0, then (106), (107) and (104) completely determine the family {F,?’j(x)}kzo. Since the
family {ﬁ(eﬂ — 1)k}>0 satisfies (106), (107) and (104), it follows that for all k > 0,
1

By (@) = (e =

Note that it follows from Theorem 9 that for i > 0,

ZWZC%(UW = Zukzcﬁfk(lvl)g (108)
| & !

n>0 k>0 n>k
Nk
3 —Z . u ’L . —’L .
= - Y a1 — )y
k>0 ’
_ (1 _ jx)fi/je% In((1—jz)~i/7)
= (L= ja) (1= ) = (1= ),

Thus replacing x by z/j in (108), we get

> (Z cf;?m,l)u’f) = (1 —a) 0/, (109)

n>0 k=0

There is a natural g-analogue of (109). That is, it follows from Theorem 4 that

n

S (1, q)ak = (@ + [lg) (@ + [i+ 1) (@ + [ + (0 — 1))
k=0
i e i)
— (x4 11_(;)(H11qu)...(x+1ffq
- ﬁ(gj(l @)+ 1= @l —q)+1 =) (2(l—q) + 1)
_(x(l—q)+1)" q ¢ ' / .
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Thus

1+ 1—q¢)- un(1 — ) < (1, Q)ﬂﬂk) (110)

_1q Yy (Helza 4 (1= sl (1 — sl @) - (1= sy a™ )
(1—q)) - (1—q") '

We can now apply Cauchy’s formula, see [1],

Y1 —aq)--- (1 —ag™ ) = (1 —atq™)
1+ t" = - 111
Z T T k=D ()
Thus
x (1 Lg)
1+ _ G - — . (112)
Z (1-— q] (1—g¢q J (Z ) }_[0 (1— U(fc((ll_;l)‘f'l)qn])

Hence if we replace u by u(1 — ¢) in (112), we obtain the following theorem.

Theorem 10. For: >0 and k > 0,

n i xk? B 0 (1 _ uqiqnj)
1+ Z [njlq (Z C”’Jk(l’Q) > N l—IO (1 —u(z((1—q)+1)gm) (113)

n>1 k=0 n=

Next we consider an ordinary generating function for the S;’J}g(p, q)’s.

Theorem 11. For all k > 0 and i > 0,
k

_ i, . . |
- %Sn,k(pv D = e =T+ Jlya®) (= + Kilya) (114)

Proof. We proceed by induction on k. For k = 0, we have observed that S;”](')(p, q) = [i],, for
all n > 0. Thus

HY (z) =) [i]} 2" = ——. (115)
o @) = 2" =
For k£ > 0,
H(x) = Y S (p.q)a"
n>k
= Y (S i) + [+ kilpg Sy 0y a))a”
n>k
= @ (S oy )e" T [ kil Y S, (0 0))a"
n>k n>k
= :):H,iﬂl(x) +[i + kj]pﬂxH,i’j(x).
Thus ‘ z .
HoF (2) = = _HY (). (116)
g (1= [i + Kjlp,gz) *1
Thus (114) easily follows by induction. [
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We also obtain the following expression for Sn k(p, q) as a corollary of Theorem 11.

Corollary 12. For all0 < k <n,

S(p,a) = > [l li + dlig - [+ kgl (117)

a0+a1+...ak:n
a0>0,a;>1 if i>0
Note that from (61) and (117), one can also get a closed expression for S ( . q)-
We can get another closed expression for Sh k(p, q) (and sz’]k(l, q)). To motlvate our result,
observe that Sn’Jk(l, 1) = Sn k(l, 1) so that it follows from (101) that

S = e 1) (118)
_ ﬁZ (k) (C1)b-sgliine .
_ ﬁi(’j( (AT

We then have the following (p, g)-analogue of (118).
Theorem 13.
- (2k—n)(n+1)j/2 . ey
&i p k —s N—sn) (*2j1s n
Suk(p4) = " D [ s} (—1)r=sp/ (@)= (Vs 4 s (119)
Jp.q¥lpi e 2o 2y

Proof. We first prove the p = 1 case,
9. (1,q) 'Z [ } 1)k=¢("2)]i + 5511 (120)

We proceed by induction on n. Clearly the formula holds for n = 0 since 56’7%(1, q) = 1. Next
assume that formula holds for n. Then
Sel i) = g TETDISH L (1,q) + [i+ KjlgS, % (1 q)

gt k=1i k-1 [ E—1
k 1
Ulg [k = 1g! =

¢ 5=
k k—s)\
+ [i+ kil 'Z [ ] 1)k=54("2 )J[,'Jrsj]g
q

s=

k—1—

e e R

k—1

- W ([z'+kj13“+2['§] ,(—1)’”q<l“?‘>j[z‘+sﬂszs)

s=0
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where

. . . k — 8]
Zy = [i+kjl,— ql+(k3—1)J[k.]q]. [j]qq—J(k—l—S)ﬂ
[k]qj
= [i+kjlg — ¢ [flqlk — 8] 4o

= [i+kjly— ¢k~ 5)jlg = [i + sl

It thus follows that

k
Silia(la) ,Z [ ] 1)f=0q(2 )i 4 50t
S=
as desired. o
To prove the general result (119), we use (61) to express S)” (p,q) as a power of p times
S’i’]}c(l,q/p). Then we apply (120) to gf‘z’]}c(l,q/p). [

Next we introduce a (p, ¢)-analogue of the Bell numbers in our setting by defining
Bii(p,q Z S (p.q (121)

Since S%7 (1,1) = §% (1,1), our next result immediately follows from (101).

Theorem 14. For all 3,5 > 0,

ejxfl

> B, DI =™ (122)

n>0

Next let

S

€j,q(T) = Z Hxi

(123
>0 1 oi!ll3 )

Then we have the following g-analogue of the Dobinski’s equality for our generalized Bell numbers
By’ (1,q), which reduces to Milne’s g-analogue [20] of Dobinski’s equality when (4, j) = (0, 1).
Theorem 15. For alli >0, and j > 1,

1 [i + s j]g
D 2 [l

Bji(1,q) = (124)
Proof. Let

Ajr(x) = [jalgli (@ = Dy - [ =k + D (125)
and V; be the vector space generated by the set of all A;;(x) with £ > 0 with coefficients in
R(q), the set of rational functions in ¢ with real coefficients. We claim that the set {A; 1(x)}r>0

is a basis for V. Clearly {A;(x)}r>0 span V; by our definition of Vj. If {A; x(x)}r>0 is not a
linearly independent set, then we can find a linear combination

> cn(@)Ajr(a) =0 (126)

keT
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where T is some finite set and cx(q) are non-zero polynomials in ¢ for all £ € T" and g — 1 does
not divide ¢;(q) for some [ € T. But then when we set ¢ = 1 in (126), we get

> (1) () L= 0

keT

which would violate the linear independence of {(x) |} since ¢;(1) # 0. Thus {A; x(x)}r>0 are
linearly independent and hence they form a basis for Vj.
Next it follows from Theorem 7 with B = B; ; , and x replaced by jz that

> Sl a)lialglite = Dlg -+ [(i(x = k+ D]y = [i + jaly. (127)
k=0
We then define a linear functional L; : V; — R(q) by setting L;(A;x(x)) = 1 for all k. Note
that
1

(1) = gm (128)

1
R T
[s70al(s = Dl [(s = n + 1),
Tl Ulels — a5 —n+ U lla(s — a5 ™)

(129)
Thus

LiAjn(e)) = 1= — o 3 funld) (130)

(1) 2[5l 175

for all n. Since L; is linear and {A; ,(x)}m>0 is a basis for Vj, it follows that for any p(x) € V,

Litpe) = -1 2 [s]if!s[?j]g' 13y

Thus if we apply L; to both sides of (127), we get
1 [i + sjly

¢ja(1) &5 sl 'l

= Li(li + j=lg)

= L (ZS:;Z‘IC(LQ)A]',IC(QU)>
k=0

k=0
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Next we derive a formula for §;Jk(p, q).

Theorem 16.
~i,7 1 g n—s( S oSVt (n—s)i, (5)j+is | TV
srfk(p, q) = WZ(_D <k>q( 2 )+ )p(Q)]Jr { s ] . (132)
s=k q’,p

Proof. We can rewrite (58) as

(@ —p*) (w4i) (k) (N~ (D)imi i (@ —pTT)E
- N = prTo pgq) \2 msn’ P, Q)< 133
SHO (a—p) kzzo (v4) N (133)
Multiplying both sides of (133) by (¢ — p)", we get
Rl | ((COREY (134)
s=0 p
S z+1)(n— —(0)j—ni ~i,J n— a+ki D\ati
= 3 ) () =Gl 5 (p, ) (g — p)" R (L) 1),
k=0 p
Thus
n—l q . . " .. ny - . q .
[T(@) et 1) = 37503 (0, g)a~ BV (g = p) K = 1)k, (135)
s=0 p k=0 p
By the g-binomial Theorem,
n—1
H(g)(:v—(n—l)jJrsj) —1) (136)
s=0 p

=> 0|
s=0

— i(_l)n—s n (g)(;)j(g)—(n—l)js—is(g)(gc+i)s
s=0

_3_(%)119 D D

- n—s | T 4\ (5)j—(n—1)js—is 4\ (x+i s
D B(Ce Vil I B O (LS ES E)
=0 Loy P p

(_1)7173 n (g)(;)j_(”_l)js_is Z <j) ((g)(erl) — 1)t.

5=0 L2 @y P t=0 p

Using (136), we can see that taking the coefficient of ((1%)(:‘”) — 1)* on both sides of (135), we
get that

59 (0, g~ (2)mi(q — pyn k= i(—l)"fs [ ; ]( () Gmn-Diomso (Z) (137)

%)j b
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. s n n— s n ") "
Using the fact that (n —1)s — (3) = (3) — ("3") and that [ s ] +=0)-G) [ k Lp’ we

q

P
can see that if we multiply the right hand side of (137) by q( )+ni , then the power of ¢ in the
k-th term in the sum is

(v ()= (3 - (5 v

and the power of p in the k-th term in the sum is
S - n—=s\. n 4 ( ny . n—s )+ si = S F1si
2)7 2 )77 \2)? TN\ 2)! o JITET )l T

~1,7 1 - n—s| S ") i+ (n—s)i, (3)j+is n
Suye(Pia) = WZ(—U (k>q( Hn=ipliet [ s ] L
s=k P

which is what we wanted to prove. |

Thus

5 Permutation Statistics, Colored Partitions, and Restricted
Growth Functions

In this section we shall give alternative interpretations of our generalized (p, ¢)-Stirling numbers
which are connected to a well-known generalization of the partition lattice called the Dowling
lattice. We start by giving two closely related interpretations of S;”Jk(l, 1). Through out this
section, we shall assume that 0 < ¢ < j. Let CP be the collection of all set partitions of
{0,1,...,n} whose nonzero elements are colored with colors from the set {0,...,7 —1}. We
refer to the block of a colored partition that contains 0 as the zero-block. Define CP ’] to be the
subset of CP consisting of partitions with k + 1 blocks where the elements are colored so that

(a) the nonzero elements of the zero-block have colors in {0,...,7 — 1}
(b) the smallest element of each block other than the zero-block has color 0.

Remark 17. When ¢ = 1, the set CP;Jk consists of the elements of rank n— k41 in the Dowling
lattice Qn(Z;) (see, eg., [13] for the definition of a Dowling lattice). Hence the \CPL,'C| are the
Whitney numbers of the second kind for the Dowling lattice @, (Z;). When j = 1, Qn( ;) is
the partition lattice II,11. So in this case, the Whitney numbers of the second kind become
the Stirling numbers of the second kind. Note that when (7,7) = (0,1), the elements of CP;;?,C
correspond to the elements of rank n — k 4 1 in the partition lattice II,,. So again we get the
Stirling numbers of the second kind.

There is a natural way to encode the partitions of [n] as restricted growth functions. A

restricted growth function is a word wj ---w, over alphabet [n] such that w; = 1 and for
s = 2,...,n, we have wy < 1 4+ max{wi,...,ws—1}. To a partition 7 = (my,...,7), where
min(m) < --- < min(m), we associate the restricted growth function wyws ... w,, where ws =t
if t € mg. It is easy to generalize this encoding to colored partitions.

Let m = (mg,...,m) € CP! g Where min(m) < --+ < min(m) and let w(m) = wowy -+ wp

where forall0 < s S n,ws =1t if s € m¢. We then color wg with same color that s was colored with
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in 7. For example, if w = ({0,1',4%},{2°,5'}, {3°,6°}}) € CPG5, then w(r) = 00'1°200°1"2>
We let RG,”7, = {w(r) : 7 € CP;”}. Then it is easy to see that RG,”, is the set of all colored
words w = wy - - - w, such that

(a) wp =0 and wy is uncolored,

(b) forall 1 <s <n,ws <1+ maz{wy,..., ws_1},

(c) for all 1 < s < n,if ws > max{wy,...,ws—1}, then wy is colored with 0,

(d) for all 1 < s < n, if wy < max{wp,...,ws—1}, then w, is colored with a color from
{0,...,7 — 1},

(e) for all 1 < s <mn, if ws =0 then w; is colored with a color from {0,...,i — 1},

(£) mazx{wo,...,w,} = k.

We can express the colored word wow{'ws? - - - we™ as a pair of words (wowy - - - Wy;

e1---ep). The elements of Rg;k will be referred to as colored restricted growth functions.
We have the following.

Theorem 18. For all 0 <i < j, S:[]}c(lv 1) = ]Rg;]k\ = \CPi;jk .

Proof. The second equation follows from the bijection w : CP;’jk — jo;jk described above. To
prove the first equation we shall construct a simple bijection ¢ : RQ:L],C — Nﬂ;,k(Bi,j,n)- Let

(w,e) € Rngk Starting from column 1 of B; ;, we place rooks from left to right; so that in
column s, we place a rook in the i+wsj — e available (i.e., not j-attacked) cell from the bottom.
If no such cell is available then we leave column s empty. It is easy to see that this will happen
if and only if ws > max{wy,...,ws—1}. Hence ¢ is well-defined. It is also straight forward to
check that ¢ is bijective. |

We can use the correspondence ¢ to define a weight function Ué’,é such that for each v €
RGY, . we have
n,k’

U = Wyl g (6(7))-

This weight function turns out to have a nice description in terms of natural statistics on colored
restricted growth functions. For each (w,e) € RG”, define

MAX (w,e) = {s€[n]:ws>max{wg,...,ws_1}}
maz(w,e) = |MAX(w,e)|

Ymaz(w,e) = st(sEMAX(w,e))

s=1

inv(w,e) = j Z x(ws > wy & s € MAX(w,e)) ‘1‘268
s=1

1<s<t<n

We remark that if we set (i,7) = (0,1), then inv becomes one of the statistics on restricted
growth functions introduced by Milne [21].
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Define N
D (pg) = Y pomergn),
VERG,

Theorem 19. For each v € Rgf;jk, we have

,] n—Fk)(i— i(nk—(* —jXmaz 4\ inv
W, (0(7)) = pl DO priimesta) (yime ),
Consequently,
i n— i— i(nk— k ’L’,' 1 q
S5 (na) = p OOk C) Dl (1) (138)
P p
and
i (n=k)(=1) | o (K i 1 q
DY) =p o ) Stk (_17_1> : (139)
pi pi

Proof. For a rook placement P, recall that «(P) is defined to be the number of cells that lie
directly above some rook and are not j attacked by any rook on the left and S(P) is defined to
be the number of cells that lie directly below some rook and are not j attacked by any rook on
the left.

Let v = (w,e). First we compute a(p(y)). We observe that for each s = 1,...,n, column
s of ¢(7y) has i + jms(y) cells that are not j-attacked by any rooks on the left, where mg(y) =
max{wi,...,ws—1}. This implies that the number of cells oy above a rook in column s that are
not j-attacked by a rook to the left is

i+jms(7)_(i+jws_€s) = j(ms(’)/)_ws)"i'es
JHt < s:w >ws &t € MAX(Y)}] + es.

By summing over all s for which column s has a rook, we get

a(d(v)) = inv(y).

Next we compute 5(¢(y)). The number of non-j-attacked cells below a rook in column s is
i+ jms(y) — as — 1. By summing over all s for which column s has a rook, we get

k

B(¢(7)) = (n = k)i = 1) = inv(y) +j Y _(tre1 =t = r, (140)

r=1

where {t; <t < -+ <tr} = MAX(v) and ty41 = n+ 1. We have

b k+1 k
Sttty = Sntr-1 -3 (*3)

r=1 r=1
_ (n+1)k—gtr— <k"2“>
=i (£) - Smastn.
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By substituting this into (140), we get

BO0)) = (0 = B)li = 1) ino(y) + sk — () ~ Emaz ).

It follows that

pA0) ga6(r) (n*k)(ifl)ﬂ'(nk*(g)*Emax('Y))(g)mv(v)

p
from which the result follows. |

=P

)

The following consequence of (139) and (32) also follows directly from the combinatorial
definiton of D:L’?k(p, q).

Theorem 20. For 0 < k <n,
D:;7Jk(pa q) = nDnJ 1,k— 1(pg) +[i+ jk]qD;’],Lk(p, q)- (141)

Next we consider two closely related combinatorial interpretations for ci;fk(l, 1). Recall that
the wreath product of the cyclic group Z; and the symmetric group S, Z;8§S,,, consists of colored
permutations (o, e) where 0 € S, and e is an n-tuple of elements from Z;. If e = ejez---ep,
then we say letter s in o is colored with e, for all s.

Let cyc” denote the set of colored permutations (o, e) € Z;§S,, such that

(I) the largest element in any cycle of o is colored with a color from {0,...,i},
(IT) there are exactly k-cycles of o whose largest element is colored with 0.

There is a classical bijection on permutations called Foata’s first fundamental transformation
which takes permutations with k cycles to permutations with & left-to-right maxima, where o (t)
is called a left-to-right maxima of o € S,, if o(t) > o(1),...,0(t — 1). The permutation o maps
to the permutation f(o) obtained by first listing the cycles of ¢ in increasing order of largest
element, then writing each cycle with largest element first, and then dropping the parenthesis.
Foata’s first fundamental transformation generalizes to Z;§S, in the obvious way by coloring
each letter of f(o) with the same color that was used in o, that is, (0,e) maps to (f(o0),e).
Clearly, the image of Cnyz’;k under this bijection is the set LRM;k of all colored permutations
(0,€) € Z;§S,, such that

(1) ifo(t) > o(1),...,0(t — 1), then o(t) is colored with a color from {0, ...,i},
(i) k=|{ten]:0(t)>0c(1),...,0(t —1) & o(t)has color 0}|.

Recall from Remark 17, that the Whitney numbers of the second kind for the Dowling lattice
count colored restricted growth funtions. Colored permutations are also related to Dowling
lattices. The signless Whitney numbers of the first kind for geometric lattices (or more generally
Cohen-Macaulay posets) are the dimensions of Whitney homology of the poset. A basis for the
Whitney homology of the Dowling lattice Q,(Z;) consisting of cycles that are naturally indexed
by elements of LRME nk Was constructed by Gottlieb and Wachs [13]. Hence, they gave a
combinatorial 1nterpretat10n of the signless Whitney numbers of the first kind for Q,(Z;) as
|£RMn’7k|. Below we give a p, g-analogue of this interpretation.

We start with the following.
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Theorem 21. For all0 <i<j, ¢ ( 1) = |[,7?,/\/l | = |CyC

Proof. The second equation follows from the leeCtIOIl described above. To prove the first equa-
tion we shall construct a bijection 6 : LRM? | — F,_(B; jn). Let (0,e) € LRM;? . Define

(o) == {s <t:o(s) >a(t)}

We construct 6(o, e) as follows. For each t = 1,...,n, place a rook in the r;th cell of column ¢
reading from top to bottom, where

re = lby(0) + et — (ep — i) x(er > 7).

It is easy to check that 6 is a well-defined bijection by listing the values of r;. First note that
b, takes on each value between 0 and ¢t — 1 exactly once for each e; < ¢ and [b; takes on each
value between 1 and t — 1 exactly once for each e; > i. We list the values of 7, in increasing
order first for e; = 0, next for e, = 1, and so on, ending with e; = j — 1. This produces the list
0,1,...,7(t—1)+i. Note that column ¢ is empty (i.e. r; = 0) if and only if ¢ € MAX (0, e) and
e; = 0. Hence 0 is a well-defined bijection. |

Once again we can use the correspondence to define a weight function up a ' such that for each
(0,€) € ERM;JC, we have
ubl (1) = w;’i?Bi’j’n(ﬁf{fé(w)).
As before the weight function has a nice description in terms of natural statistics on elements

of the wreath product Z;8S,,.
For (0,e) € Z;§S,, and i < j, define

MAX (o,e) = {ten]:o(t)>0c(1),...,0(t—-1) & e =0}

maz(o,e) = |MAX(o,e)
Ymaz(o,e) = Zt X(t € MAX(o,e))
=1
inv(o,e) = Z x(o(s) > + Zett — (er —i)x(er > 1).
1<s<t<n t=1

Define N
a7 (p,q) = Z pEmar)ginv(),
VELRM,

Theorem 22. For each v € ERM i we have

0 s (001)) = ot Iy ),

Consequently,

1
lpa) =g g (21, (142

) . (143)
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p]
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Proof. For a rook placement P, recall that a(P) is defined to be the number of cells that lie
directly above some rook and b(P) is defined to be the number of cells that lie directly below
some rook.

First we compute a(6(7)). Let v = (o,e). First note that in the rook placement 6(7), the
number of cells above a rook in column ¢ is 7, — 1. Note also that

n
Z re = no(y).
t=1
Hence by summing over all columns that contain a rook, we get

a(0(v)) = inv(y) — (n — k).

Next we compute b(6(y)). The number of cells below a rook in column ¢ is j(t — 1) + ¢ — ry.
Summing over all columns that contain a rook, we get

bO(y) = Y t-D+i — ino(y)

tEMAX(y)

= in—k)+Y jt-1)— Y jt-1) — ino(y)
t=1 tEMAX ()

= i(n—k) +j<2) + jk — jSmaz(y) — inv(7).

It follows that

b(0(7)) ,a0(r)) _ pi(nfk)ﬂ'(;’)Jrjkijmaw(v)qk—n(Q)mv(w)

)qa
p

p

i

from which the result follows. [ |

When j = 1,2, the wreath product groups Z;8§S,, are the symmetric group and the hype-
roctahedral group, respectively. These groups when viewed as Coxeter groups have a natural
length function. For the symmetric group, the Coxeter length is just the usual inversion statistic
Y i<sct<n X(0(8) > o(t)). This is precisely what inv reduces to when (i,5) = (0,1). For the
hyperoctahedral group the Coxeter length is described as follows (cf. [24]):

loye) = > xlo(s)>o(t) & e =0)

1<s<t<n
+ ) xlo(s)<ot) & e=1)
1<s<t<n
n
+ Zett
t=1

Clearly, our inv statistic does not reduce to length when (7, j) = (1,2). However, we can modify
our definition of inv to obtain a statistic on Z;8S,, which does generalize the length function of
both the hyperoctahedral group and the symmetric group. The important thing is that all the
results (and proofs) of this paper pertaining to inv hold for the modified inv.
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First define,
Iby(o) if e, =0
rp = (t—=1) = Ib(0) + est ife,=1,2,...,1 .
(t—l)—lbt(0)+€tt—€t+l+1 1f6t22+1,2+2,,j—1

Next define the bijection 6’ : ERM;J_,C — Fn—k(Bijn) exactly as 0, but with r" instead of r.
Now define

in'(oe) = > x(o(s)>0a(t) & e=0)

1<s<t<n

+ > x(o(s)<a(t) & e #0)

1<s<t<n

M:l

+ et — (et — 17— 1)X(€t > ’L)

t=1

Clearly when (i,7) = (0,1) and (1,2), inv’ reduces to the Coxeter length function for the
symmetric group and the hyperoctahedral group. If we replace r, 6 and inv with 7/, §’ and
inv’, respectively, all results and proofs pertaining to these notions go through unchanged.
Consequently,
&)= >, pmeblgn),
VELRM,

We chose our original definitions for the sake of simplicity.

The following consequence of (143) and (30) can also be proved directly from the combina-
torial definition of dn 7.0, q).

Theorem 23. For 0 < k < n,
d;”]k(p, ) p dn 1,k— 1(177 ) + Q[i —|—j(n - 1)]qd:{]_1,k(177 Q)' (144)

Theorem 24. For fized i < j, the matrices H(—l)"*kd;’f (p,q)|| and ||g"* *"(kH)an(p, 7l
are inverses of each other.

)n k Z:]

Proof. Note that since the matrices ||(—1 ¢k (P, )| and HSiL’]}C(p, q)|| are inverses of each

other, we have for any 0 < k < n,
Z p " D (p, q) (— 1) Fdl(p, )

_prn (14+1) qn L (n=0)(i=1)/j+nl— ()S’J (

n,l
=k

.
q\n—k, (n—k)(i— i1 q kij[ 1 q
= (=) Fpln R I/JZS y <—; _1.> (=1 Fep (—;v—;>
p I—k pi pI pI pI

q n—=k)(i— j
:(F) Fpm=R)=D/iy (n = k)
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which verifies that the matrices ||p~"(*+1gn—+D"/ %@, @)|| and [|(— )”_kdfl’{k(p, q)|| are inverses
of each other. ]

Remark 25. It is known that the matrix formed by the Whitney numbers of the first kind of
the Dowling lattice is the inverse of the matrix formed by Whitney numbers of the second kind
(see [25, Exercises 3.50 and 3.51]). Hence Theorem 24 provides a p, g-analogue of this result.

Define S57 to be the set of all colored permutations (o,e) € 78Sy, such that if o(t) >

o(1),...,0(t — 1), then o(t) is colored with a color from {0,...,4}. In other words S’ is the
union of the LRM”, over all k.

Theorem 26. Fori < j

@™ ] @ = (n+alily) (watali+ile) (ws+ali+2]y) - - (zntgli+(n—1)j]y). (145)
esid LEMAX (o)

Proof. To prove (145), let R,, = {0,...,i} x{0,...,i4j} x---x{0,...,i+j(n—1)} and define
a bijection r : Sy — R, by
r(y)=(r1,...,mm)

where 7, is as in the proof of Theorem 21 . Recall that

inv(y) = Zrt
t=1
MAX(y) = {t:r, =0}
Thus

Z qim)('y) H o Z qr1+...+rn H T

oeSy teMAX(y) (r1,--7n)ERR t: r¢=0

+i(t—
Lli‘t+ Z

I
’:]:

I
I\

I
s

(@ 4+ qli + 5(t = Dlg)-

~~
Il
—

Setting x; = ap’ in (145), we obtain the following.
Corollary 27.

Zd;’]k p,q)z" = (px + qlily) Pz + qli + jlg) Pz + qli + 25]) - (P "z + q[i + (n — 1)j],).

By inverting we obtain,

Corollary 28.

k
> DD (p,q) [[ (e — qli + (¢ — 1)j]g) = 2™
t=1
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6 Final Remarks

We note that it is a natural question to ask whether there are combinatorial interpretations of
our (p, q)-analogues of the generalized Stirling numbers s:fk’q(oz, B,r), S:L’i’q(a, B,1), 52?,;(1(04, B,1),
and Sf;’zq(a, B,r) for other vaules of a, f and r. In a forthcoming paper with K. Briggs [8], we
show that when a,( and r are non-negative integers, then we can give such combinatorial
interpretations in terms of pairs of rook placements on two boards B and B’. Our model allows
rooks in a given board to cancel cells not only on its own board but also on its companion board.

We should also note that in the special case when ¢ = 0 and j = 1, Briggs and Remmel [6]
showed that there is a (p, ¢)-analogue of the hit polynomial corresponding to the rook number
7L, 5(p,q). That is, given a board B contained in the n x n board B, we define the p, ¢-hit
polyﬁomial of B, denoted Hpg(z,p,q), as follows:

n
HB(xapa Q) = th,n(vav Q)xk
k=0

n n

~ k41 n— e
= N i p(Pg)ln — Ko O T (@ - ¢lp" ).
k=0 l=n—k+1

Briggs and Remmel [6] showed that when B = B(ay,...,a,) is a Ferrers board, i.e. 0 < a; <
... < ap < n, then hy,,(B,p,q) is polynomial in p and ¢ with non-negative integer coefficients.
Moreover, Briggs [4, 5] has shown that if Hy ,(B) is the set of all placements P in Ny (B,,) such
that P has exactly k rooks in B, then there are statistics ap(P) and Sg(P) such that

hk,n(vaa Q) = Z pO‘B(P)qﬁB("P).
'PGHk’n(B)

We should also note that Briggs and Remmel [6] showed that there is another connection be-
tween permutation statistics and our (p, ¢)-rook placements of type II. That is, they proved the
following (p, ¢)-analogue of a formula of Frobenius:

i go’i(p’ q)[k.]p q!p("7§+1)+k(nfk)xk Z cs qmaj(a)pcomaj(a)xdes(a)—l—l ( )
- 7 —— = = - 146
k=0 [Ti=o(1 — zg'p™—7) [Tizo(1 — zg'p"™")

where for any permutation o = o1 ...0, € Sy,

Des(o) = {i:o0; > 0ip1},
Rise(o) = {i:o0; <0it1},
des(c) = |Des(o)],
maj(o) = Z i, and
i€Des(o)
comaj(o) = Z i.
1€Rise(o)

Certain special cases of the rook numbers 7:,% p(1,q) also have shown up in another rook
theory model due to Haglund and Remmel [16] where the rook placements naturally correspond
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to partial perfect matchings in the complete graph Ks,. Haglund and Remmel also develop
a combinatorial theory of hit polynomials in that model. Finally, certain special cases of the
more general (p,q) rook numbers fi7 5(1,q) show up in yet another rook theory model due to
Briggs and Remmel [4, 7] where the rook placements naturally correspond to elements of the
wreath product of the cyclic group Zj and the symmetric group S,,, Zx8S,. Again there is a
natural combinatorial theory of hit polynomials in their model. We do not know, however, how
to develop a natural theory of hit polynomials for either the type I or the type II (p, q)-rook
numbers in the rook theory model presented in this paper.
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