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Abstract
In this paper, we establish a new analogue of the classical Bonferroni inequali-
ties and their improvements by Galambos for sums of type ZﬂGP(U)(—l)‘“Fl(]W] -
1)!f(m) where U is a finite set, P(U) is the partition lattice of U and f:P(U) — R
is some suitable non-negative function. Applications of this new analogue are given
to counting connected k-uniform hypergraphs, network reliability, and cumulants.

1 Introduction

The classical Bonferroni inequalities of probability theory state that for any probability
space (£, €, P) and any finite family of events {E, },ev C €,

(-1)"P ( N E) < (=1 (-nip (ﬂE) (r=0,1,2,...). (1)

uelU ICU el
[T]<r

Thus, for even 7 the sum on the right-hand side of (1) provides an upper bound on the
probability P (ﬂueU E_u) that none of the events F,, u € U, happen, while for odd r it
provides a lower bound on this probability. Note that for > |U| the preceding inequality
becomes an identity, which is known as the inclusion-exclusion principle. This principle
and its associated truncation inequalities (1) have many applications in statistics and
reliability theory (see [7] for a detailed survey and [4] for some recent developments).

Galambos [6] sharpened the classical Bonferroni bounds by including additional terms
based on the (r 4 1)-subsets of U in case that U # (:

(—1)P ( N E_u> < (-1 Y (-pMp (ﬂE) - T‘JUT Sy op (ﬂE) .

uelU ICU el ICU el
[I]<r [T|=r+1
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Evidently, the preceding inequality can equivalently be stated in the form

(—1)r S =D))< (1) S (=) — 7““ S fu 2)

ICU ICU ICU
= RS [1|=r+1

where f(I) = P ((;c; E;) for any I C U. Recently, in [5], this latter inequality has been
generalized to a broader class of functions f : 2V — R.

In this paper, we establish an analogue of (2) for non-negative real-valued functions
f defined on the partition lattice P(U) of some finite set U and thus obtain approximate
estimations for Mobius inversions on the lattice of partitions of a set. The need for such

estimations has been pointed out by Gian-Carlo Rota in his famous Fubini Lectures |8,
Problem 11].

2 Main result

Let U be a finite set. A partition of U is a set of pairwise disjoint non-empty subsets of
U whose union is U. We use P(U) to denote the set of partitions of U. The elements of a
partition are called blocks. The number of blocks in a partition 7 is denoted by |r|. The
set of partitions P(U) is given the structure of a lattice by imposing o < 7 if and only if
o is a refinement of 7, which means that each block of ¢ is a subset of a block of .

By R* we denote the set of non-negative reals, and by Z* the set of non-negative
integers. For n, k € Z* we use {Z} to denote the number of k-block partitions of an n-set,
the so-called Stirling number of the second kind.

Theorem 2.1 Let U be a non-empty finite set, and let f,g : P(U) — Rt such that
f(m) =2 o<, 9(o) for any m € P(U). Then, for any r € Z7,

(=17 > (=)™ (x| = Dif (7)

welP(U)

> (0 3 U - DY) + o 3
mEP(U) r+1 7r61P’(U)
|| <r |m|=r+1

or equivalently, by means of Mobius inversion,
(—=1)7g(1) > (=17 > (=) (x| = 1) f(r ‘U| Y fx

=€P(U) r+1 =eP(U)
|w|<r || =r+1

where 1 denotes the largest element {UY} of P(U).

Proof. 1t suffices to prove that

(~17 3 (=D (fx] — Dif () = M} S fim 3)

TeP(U) r—+1 TeP(U)
[m|>r |7|=r+1
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Let S denote the left-hand side of (3). We obtain

S = (=17 Y (=) (xl =11 (o)

weP(U) o<m
[w|>r
= (Y 0l) X () (] - 1)
ceP(U) :Z;T
- o]
=1 X a0 3 T o (@)
celP(U) k=r+1

It is well-known that (see e.g., [10])

{Z} = {2:1}4‘/{{”;1} (nk=1,2,3,...).

Thus, for the inner sum in (4) we obtain

ZU: {’Z‘__f} (=D k=1 + i {“”k_ 1} (—1)F k!

k=r+1 k=r+1
lo|—1 lo]—1
_ o] —1 - o] —1 -
= Z{ A > L (DR
k=r k=r+1

After cancelling out, we are left with {""T_l}(—l)rr!. Thus, we find that

5= % a0 {" e = X e {7

o€eP(U) oceP(U)

Therefore, for any w € P(U),

s> 3 g {“” - 1} >3 o) {""‘T_ 1} "= f(w) {’“"T_ 1} "l

o€eP(U) oc€eP(U)
o<w o<w

By choosing w uniformly at random among all (r 4+ 1)-block partitions of U and taking
the expectation we obtain

S 2 E(fw)r! = ) Problw =alf(m)r! = {\UI > S

r+1 TEP(U)
[7|=r+1 |m|=r+1

which finally proves (3). Thus, the proof of the theorem is complete. [J

The following weaker bounds obtained from Theorem 2.1 may be considered as a
partition lattice analogue of the classical Bonferroni inequalities.
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Corollary 2.2 Under the requirements of Theorem 2.1,

(=07 Y (=) (a = D)) = (=07 Y (=D (] = D) f ()
weP(U) ’ﬂiﬂ?’éﬁ)

respectively,

(=17g() = (=1 Y (=)™ (ja| = Dif (7).

weP(U)
[m|<r

3 Connected k-uniform hypergraphs

It is well-known (cf. [1, 10]) that for any n, &k € N the number ¢, ; of connected k-uniform
hypergraphs on vertex-set {1,...,n} is given by the formula

ol ||
cne = 3 (=) | = 1t TT 205,
meP(V) Xerm
which can equivalently be stated as

Al

Cok = ;(_1)A|—1( )( Al )W H2 (),

where A - n means that X is a number partition of n, that is, A = (A1, ..., \,,) for some
m € N such that A\; +---+ \,, = n, and £()) is an n-tuple whose i-th component counts
the number of occurrences of ¢ in A for ¢ = 1,...,n. We use || to denote the number of
parts in A (that is, the length of A when considered as a tuple), and for any m,7 € N and
any m-tuple j = (41, ..., jm) of non-negative integers we use (;) to denote the multinomial

coefficient
( i ) ol
jla"'ajm jl'jm'

From Theorem 2.1 we now deduce the following bounds on ¢, i, some of which are listed
in Table 1.

Theorem 3.1 For anyn,k € N and r € Z*,

(~1ens 2 (=17 3 (=) (al = ) L 203D + } > T2

mEP(V) Xerm TeP(V) Xem
|m|<r |7w|=r+1

or equivalently, in terms of number partitions,

(~1)eur > (-1) Z(—n'“( )( A )w 1ED

+(r+1 Ry Z O(Hl)ﬁz

(A <r
[A|=r+1
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| n,k | bounds on ¢,  for r =1,...,n — 1 (last bound in each line gives the exact value) |

5,2 | 992, 555, 812, 728

5,3 | 1017, 927, 988, 958

54 | 31, 14, 56, 26

6,2 | 32487, 24109, 28113, 26152, 26704

6,3 | 1048369, 1042160, 1042894, 1042416, 1042632

6,4 | 32761, 32538, 32740, 32380, 32596

7,2 | 2092544, 1807132, 1892306, 1853896, 1870336, 1866256

7,3 | 34359621500, 34352375869, 34352423041, 34352416580, 34352420630, 34352418950
7,4 | 34359734715, 34359508257, 34359510357, 34359508078, 34359511294, 34359509614
7,5 | 2097144, 2096629, 2097265, 2095195, 2098411, 2096731

Table 1: Bounds on ¢, for different values of n, k and r.

Proof. Every hypergraph H on vertex-set V' = {1,...,n} induces a partition of V', where
each block in the partition corresponds to a connected component of H. For any partition
7w € P(V) let g(m) resp. f(m) be the number of k-uniform hypergraphs on V' whose induced
partition is 7 resp. a refinement of w. Then, f(7) =) _ g(o) for any 7 € P(V), and

g(1) = ¢, where 1 = {V'} denotes the largest element of ]P’(V). By Theorem 2.1,

(=1 ear 2 (—1)7 S (=) (|| = 1)1 () T }Z f(x (5)

TeP(V) TeP(V)
|m|<r |7w|=r+1

Since for any partition 7 € P(V') and any block X € 7 there are exactly 2('%") k-uniform

hypergraphs having vertex-set X, we find that f(7) =[]y, 2 o (% ) which in combination
with (5) proves the first inequality of this theorem. Since for any number partition
A= (A1,...,A\n) of n there are exactly ()\)( A )/|)\|' different set partitions in P(V)
whose block sizes agree with Ay,..., \,,, we can re write the right-hand side of the first
inequality as a sum over integer partitions. Thus, the second inequality is proved. [

4 Network reliability

Let G = (V, E) be a finite undirected graph having vertex-set V and edge-set E. We
assume that the edges of G are subject to random and independent failures, while the
nodes are perfectly reliable. The failure probabilities of the edges are assumed to be
known and denoted by ¢. for each edge e € E. Under this random graph model, the
all-terminal reliability R(G) is the probability that each pair of vertices of G is joined by
a path of operating (that is, non-failing) edges. This reliability measure has been studied
extensively, see e.g., Colbourn [3] for a survey. A well-known result due to Buzacott and
Chang [2], which is often referred to as the node partition formula, states that

RG) = Y ()" (x -1 [ < (6)
TeP(V) e€E(G,m)

where F(G, ) denotes the set of edges of G whose endpoints belong to different blocks
of m (see also [11]). The following theorem states that by restricting the sum in (6) to
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partitions having at most 7 blocks lower bounds and upper bounds to R(G) are obtained
depending on whether r is even or odd. As in Theorem 2.1 an additional term is included
in these bounds which sharpens the estimates and which can be omitted if convenient.

Theorem 4.1 Let G = (V,E) be a finite undirected graph whose nodes are perfectly
reliable and whose edges fail randomly and independently with probability q. for each edge
e € E. Then, for anyr € Z*,

CR@ 2 (0 3 -0 T et mr I

mer(v) c€E(G,r) {r+1 TER(V) e€B(Gm)

Proof. The state of the network induces a partition 7 € P(V'), where two nodes are in
the same block of 7 if and only if they are joined by a path of operating edges in G. Let
g(m) denote the probability that 7 is the partition induced by the state of the network
and f(m) denote the probability that the induced partition is a refinement of 7. Then,
f(m) =, g(c) for any 7 € P(V), and g(1) = R(G) where 1 = {V'} denotes the largest
element of P(V). It is easily seen that, on the other hand, f(7) = [ecr(cm) de for any
m € P(V). Thus, the result follows by applying Theorem 2.1. O

Example 4.2 For G = K,, (the complete graph on n nodes), r = 2 and ¢, = ¢ for each
edge e € F the inequality in Theorem 4.1 specializes to

n—1 n—1
1 n n—1
R Kn > 11— = 2 k(n—Fk) _ 1— E k(n—k)
o) = 24 (k)q k=1 k—1)

where the last term in the estimate of Theorem 4.1 has been omitted. Thus, for n =
3,...,6 the following lower bounds on R(K,) are obtained:

R(K3) > 1 -3¢, R(K5) > 1—5¢* — 104°,
R(K,) >1—4¢" —3¢*,  R(Kg) >1—6q¢" — 15¢° — 10¢°.
Figure 1 compares the bound for R(Ks) with the exact reliability given by
R(Kg) = 1 — 6¢° — 15¢% + 20¢° + 120¢"" — 90¢'? — 270¢" + 360¢"* — 120¢"°.

It turns out that the bound for R(Kjg) is close to the exact reliability if the common edge
failure probability ¢ is small. Fortunately, this is the typical case in real-world computer
and communications networks.

5 Cumulants

Let X, ..., X, be random variables. Due to Speed [9] (see also Rota [8]) the multilinear
cumulant of these random variables can be expressed as

R(X1. LX) = Y (=) (x| - ] E (HX,,) (7)

meP({1,..,n}) Bem beB
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Figure 1: Exact and approximate reliability of K.

which, for simplicity, is considered here as a definition. We now generalize the notion
of a multilinear cumulant to what we call a partition cumulant: For any partition o €

P({1,...,n}) we define

ko) = Y. ulmao)[]E (H Xb) (8)

m€P({1,..,n}) Ber beB
<o

where ;1 denotes the Mobius function of P({1,...,n}) (see [10] for details). Since pu(m, 1) =
(=1D)I"=1(|x| — 1)!, where 1 denotes the largest element of P({1,...,n}), we find that
k(1) = k(Xy,...,X,), so (8) generalizes (7).

Theorem 5.1 Let Xy,..., X, be random wvariables such that all partition cumulants of
Xi,..., X, are non-negative. Then, for anyr € Z™,
(D" R(X1,. ., X)) = (=07 > (D) (x| -1 [ E <be>
WEP\(T{F\IQ;’M) Bem beB

r!

oy Y Te(Imw)

r+1J) reP({1,..,n}) Berw beB
|w|=r+1
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Proof. For any 7 € P({1,...,n}) define f(7) = [Ipc, E (ITyep X») and g(7) = (). By
8), glo) = > ., p(m, o) f(r) for any o € P({1,...,n}), whence by Mobius inversion,
f(r) = > .. g(o) for any 7 € P({1,...,n}). By this and the assumption that all
partition cumulants are non-negative, the requirements of Theorem 2.1 are satisfied, and
the result follows. [J

Remark. In statistics, one often considers the nth cumulant k,(X) of a random variable
X which is related to the multilinear cumulant via x,, (X) = k(X,...,X,) with X; = X
for:=1,...,n. Theorem 5.1 provides bounds for the nth cumulant of a random variable
X in terms of the binomial moments E(X), E(X?),..., E(X™), provided the associated
partition cumulants are non-negative. As an example, consider the fifth cumulant of a
random variable X. By applying Theorem 5.1 for » = 1,2 we obtain the inequality

ws(X) < B(X) — 3 BOB(XY) - 2 BX)BE(XY),

respectively

r5(X) > B(X®) - 5E(X)E(X") — 10E(X?)E(X?)

+ % E(X)?E(X?) + g E(X)E(X?)%.
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