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Abstract
In this paper, we establish a new analogue of the classical Bonferroni inequali-

ties and their improvements by Galambos for sums of type
∑

π∈P(U)(−1)|π|−1(|π| −
1)!f(π) where U is a finite set, P(U) is the partition lattice of U and f : P(U) → R

is some suitable non-negative function. Applications of this new analogue are given
to counting connected k-uniform hypergraphs, network reliability, and cumulants.

1 Introduction

The classical Bonferroni inequalities of probability theory state that for any probability
space (Ω, E, P ) and any finite family of events {Eu}u∈U ⊆ E,

(−1)r P

( ⋂
u∈U

Eu

)
≤ (−1)r

∑
I⊆U
|I|≤r

(−1)|I| P

(⋂
i∈I

Ei

)
(r = 0, 1, 2, . . . ). (1)

Thus, for even r the sum on the right-hand side of (1) provides an upper bound on the
probability P

(⋂
u∈U Eu

)
that none of the events Eu, u ∈ U , happen, while for odd r it

provides a lower bound on this probability. Note that for r ≥ |U | the preceding inequality
becomes an identity, which is known as the inclusion-exclusion principle. This principle
and its associated truncation inequalities (1) have many applications in statistics and
reliability theory (see [7] for a detailed survey and [4] for some recent developments).

Galambos [6] sharpened the classical Bonferroni bounds by including additional terms
based on the (r + 1)-subsets of U in case that U 6= ∅:

(−1)rP

( ⋂
u∈U

Eu

)
≤ (−1)r

∑
I⊆U
|I|≤r

(−1)|I|P

(⋂
i∈I

Ei

)
− r + 1

|U |
∑
I⊆U

|I|=r+1

P

(⋂
i∈I

Ei

)
.
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Evidently, the preceding inequality can equivalently be stated in the form

(−1)r
∑
I⊆U

(−1)|I|f(I) ≤ (−1)r
∑
I⊆U
|I|≤r

(−1)|I|f(I) − r + 1

|U |
∑
I⊆U

|I|=r+1

f(I) (2)

where f(I) = P
(⋂

i∈I Ei

)
for any I ⊆ U . Recently, in [5], this latter inequality has been

generalized to a broader class of functions f : 2U → R.
In this paper, we establish an analogue of (2) for non-negative real-valued functions

f defined on the partition lattice P(U) of some finite set U and thus obtain approximate
estimations for Möbius inversions on the lattice of partitions of a set. The need for such
estimations has been pointed out by Gian-Carlo Rota in his famous Fubini Lectures [8,
Problem 11].

2 Main result

Let U be a finite set. A partition of U is a set of pairwise disjoint non-empty subsets of
U whose union is U . We use P(U) to denote the set of partitions of U . The elements of a
partition are called blocks. The number of blocks in a partition π is denoted by |π|. The
set of partitions P(U) is given the structure of a lattice by imposing σ ≤ π if and only if
σ is a refinement of π, which means that each block of σ is a subset of a block of π.

By R
+ we denote the set of non-negative reals, and by Z

+ the set of non-negative
integers. For n, k ∈ Z

+ we use
{

n
k

}
to denote the number of k-block partitions of an n-set,

the so-called Stirling number of the second kind .

Theorem 2.1 Let U be a non-empty finite set, and let f, g : P(U) → R
+ such that

f(π) =
∑

σ≤π g(σ) for any π ∈ P(U). Then, for any r ∈ Z
+,

(−1)r
∑

π∈P(U)

(−1)|π|−1(|π| − 1)!f(π)

≥ (−1)r
∑

π∈P(U)
|π|≤r

(−1)|π|−1(|π| − 1)!f(π) +
r!{ |U |

r+1

} ∑
π∈P(U)
|π|=r+1

f(π)

or equivalently, by means of Möbius inversion,

(−1)rg(1̂) ≥ (−1)r
∑

π∈P(U)
|π|≤r

(−1)|π|−1(|π| − 1)!f(π) +
r!{ |U |

r+1

} ∑
π∈P(U)
|π|=r+1

f(π)

where 1̂ denotes the largest element {U} of P(U).

Proof. It suffices to prove that

(−1)r
∑

π∈P(U)
|π|>r

(−1)|π|−1(|π| − 1)!f(π) ≥ r!{ |U |
r+1

} ∑
π∈P(U)
|π|=r+1

f(π) . (3)
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Let S denote the left-hand side of (3). We obtain

S = (−1)r
∑

π∈P(U)
|π|>r

(−1)|π|−1(|π| − 1)!
∑
σ≤π

g(σ)

= (−1)r
∑

σ∈P(U)

g(σ)
∑
π≥σ
|π|>r

(−1)|π|−1(|π| − 1)!

= (−1)r
∑

σ∈P(U)

g(σ)

|σ|∑
k=r+1

{|σ|
k

}
(−1)k−1(k − 1)! . (4)

It is well-known that (see e.g., [10]){
n
k

}
=

{
n − 1
k − 1

}
+ k

{
n − 1

k

}
(n, k = 1, 2, 3, . . . ).

Thus, for the inner sum in (4) we obtain

|σ|∑
k=r+1

{|σ| − 1

k − 1

}
(−1)k−1(k − 1)! +

|σ|∑
k=r+1

{|σ| − 1

k

}
(−1)k−1k!

=

|σ|−1∑
k=r

{|σ| − 1

k

}
(−1)kk! −

|σ|−1∑
k=r+1

{|σ| − 1

k

}
(−1)kk! .

After cancelling out, we are left with
{|σ|−1

r

}
(−1)rr!. Thus, we find that

S = (−1)r
∑

σ∈P(U)

g(σ)

{|σ| − 1

r

}
(−1)rr! =

∑
σ∈P(U)

g(σ)

{|σ| − 1

r

}
r! .

Therefore, for any ω ∈ P(U),

S ≥
∑

σ∈P(U)
σ≤ω

g(σ)

{|σ| − 1

r

}
r! ≥

∑
σ∈P(U)

σ≤ω

g(σ)

{|ω| − 1

r

}
r! = f(ω)

{|ω| − 1

r

}
r! .

By choosing ω uniformly at random among all (r + 1)-block partitions of U and taking
the expectation we obtain

S ≥ E(f(ω))r! =
∑

π∈P(U)
|π|=r+1

Prob[ω = π]f(π)r! =
r!{ |U |

r+1

} ∑
π∈P(U)
|π|=r+1

f(π) ,

which finally proves (3). Thus, the proof of the theorem is complete. �
The following weaker bounds obtained from Theorem 2.1 may be considered as a

partition lattice analogue of the classical Bonferroni inequalities.
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Corollary 2.2 Under the requirements of Theorem 2.1,

(−1)r
∑

π∈P(U)

(−1)|π|−1(|π| − 1)!f(π) ≥ (−1)r
∑

π∈P(U)
|π|≤r

(−1)|π|−1(|π| − 1)!f(π)

respectively,

(−1)rg(1̂) ≥ (−1)r
∑

π∈P(U)
|π|≤r

(−1)|π|−1(|π| − 1)!f(π) .

3 Connected k-uniform hypergraphs

It is well-known (cf. [1, 10]) that for any n, k ∈ N the number cn,k of connected k-uniform
hypergraphs on vertex-set {1, . . . , n} is given by the formula

cn,k =
∑

π∈P(V )

(−1)|π|−1(|π| − 1)!
∏
X∈π

2(|X|
k ),

which can equivalently be stated as

cn,k =
∑
λ`n

(−1)|λ|−1

(
n

λ

)( |λ|
κ(λ)

)
1

|λ|
|λ|∏
i=1

2(λi
k ),

where λ ` n means that λ is a number partition of n, that is, λ = (λ1, . . . , λm) for some
m ∈ N such that λ1 + · · ·+ λm = n, and κ(λ) is an n-tuple whose i-th component counts
the number of occurrences of i in λ for i = 1, . . . , n. We use |λ| to denote the number of
parts in λ (that is, the length of λ when considered as a tuple), and for any m, i ∈ N and
any m-tuple j = (j1, . . . , jm) of non-negative integers we use

(
i
j

)
to denote the multinomial

coefficient (
i

j1, . . . , jm

)
=

i!

j1! · · · jm!
.

From Theorem 2.1 we now deduce the following bounds on cn,k, some of which are listed
in Table 1.

Theorem 3.1 For any n, k ∈ N and r ∈ Z
+,

(−1)rcn,k ≥ (−1)r
∑

π∈P(V)
|π|≤r

(−1)|π|−1(|π| − 1)!
∏
X∈π

2(|X|
k ) +

r!{
n

r+1

} ∑
π∈P(V)
|π|=r+1

∏
X∈π

2(|X|
k ),

or equivalently, in terms of number partitions,

(−1)rcn,k ≥ (−1)r
∑
λ`n
|λ|≤r

(−1)|λ|−1

(
n

λ

)( |λ|
κ(λ)

)
1

|λ|
|λ|∏
i=1

2(λi
k )

+
1

(r + 1)
{

n
r+1

} ∑
λ`n

|λ|=r+1

(
n

λ

)(
r + 1

κ(λ)

) r+1∏
i=1

2(λi
k ).
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n, k bounds on cn,k for r = 1, . . . , n − 1 (last bound in each line gives the exact value)

5,2 992, 555, 812, 728
5,3 1017, 927, 988, 958
5,4 31, 14, 56, 26
6,2 32487, 24109, 28113, 26152, 26704
6,3 1048369, 1042160, 1042894, 1042416, 1042632
6,4 32761, 32538, 32740, 32380, 32596
7,2 2092544, 1807132, 1892306, 1853896, 1870336, 1866256
7,3 34359621500, 34352375869, 34352423041, 34352416580, 34352420630, 34352418950
7,4 34359734715, 34359508257, 34359510357, 34359508078, 34359511294, 34359509614
7,5 2097144, 2096629, 2097265, 2095195, 2098411, 2096731

Table 1: Bounds on cn,k for different values of n, k and r.

Proof. Every hypergraph H on vertex-set V = {1, . . . , n} induces a partition of V , where
each block in the partition corresponds to a connected component of H . For any partition
π ∈ P(V ) let g(π) resp. f(π) be the number of k-uniform hypergraphs on V whose induced
partition is π resp. a refinement of π. Then, f(π) =

∑
σ≤π g(σ) for any π ∈ P(V ), and

g(1̂) = cn,k where 1̂ = {V } denotes the largest element of P(V ). By Theorem 2.1,

(−1)rcn,k ≥ (−1)r
∑

π∈P(V )
|π|≤r

(−1)|π|−1(|π| − 1)!f(π) +
r!{
n

r+1

} ∑
π∈P(V )
|π|=r+1

f(π). (5)

Since for any partition π ∈ P(V ) and any block X ∈ π there are exactly 2(|X|
k ) k-uniform

hypergraphs having vertex-set X, we find that f(π) =
∏

X∈π 2(|X|
k ), which in combination

with (5) proves the first inequality of this theorem. Since for any number partition
λ = (λ1, . . . , λm) of n there are exactly

(
n
λ

)( |λ|
κ(λ)

)
/|λ|! different set partitions in P(V )

whose block sizes agree with λ1, . . . , λm, we can re-write the right-hand side of the first
inequality as a sum over integer partitions. Thus, the second inequality is proved. �

4 Network reliability

Let G = (V, E) be a finite undirected graph having vertex-set V and edge-set E. We
assume that the edges of G are subject to random and independent failures, while the
nodes are perfectly reliable. The failure probabilities of the edges are assumed to be
known and denoted by qe for each edge e ∈ E. Under this random graph model, the
all-terminal reliability R(G) is the probability that each pair of vertices of G is joined by
a path of operating (that is, non-failing) edges. This reliability measure has been studied
extensively, see e.g., Colbourn [3] for a survey. A well-known result due to Buzacott and
Chang [2], which is often referred to as the node partition formula, states that

R(G) =
∑

π∈P(V )

(−1)|π|−1 (|π| − 1)!
∏

e∈E(G,π)

qe (6)

where E(G, π) denotes the set of edges of G whose endpoints belong to different blocks
of π (see also [11]). The following theorem states that by restricting the sum in (6) to
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partitions having at most r blocks lower bounds and upper bounds to R(G) are obtained
depending on whether r is even or odd. As in Theorem 2.1 an additional term is included
in these bounds which sharpens the estimates and which can be omitted if convenient.

Theorem 4.1 Let G = (V, E) be a finite undirected graph whose nodes are perfectly
reliable and whose edges fail randomly and independently with probability qe for each edge
e ∈ E. Then, for any r ∈ Z

+,

(−1)rR(G) ≥ (−1)r
∑

π∈P(V)
|π|≤r

(−1)|π|−1 (|π| − 1)!
∏

e∈E(G,π)

qe +
r!{ |V |

r+1

} ∑
π∈P(V )
|π|=r+1

∏
e∈E(G,π)

qe .

Proof. The state of the network induces a partition π ∈ P(V ), where two nodes are in
the same block of π if and only if they are joined by a path of operating edges in G. Let
g(π) denote the probability that π is the partition induced by the state of the network
and f(π) denote the probability that the induced partition is a refinement of π. Then,
f(π) =

∑
σ≤π g(σ) for any π ∈ P(V ), and g(1̂) = R(G) where 1̂ = {V } denotes the largest

element of P(V ). It is easily seen that, on the other hand, f(π) =
∏

e∈E(G,π) qe for any

π ∈ P(V ). Thus, the result follows by applying Theorem 2.1. �

Example 4.2 For G = Kn (the complete graph on n nodes), r = 2 and qe = q for each
edge e ∈ E the inequality in Theorem 4.1 specializes to

R(Kn) ≥ 1 − 1

2

n−1∑
k=1

(
n

k

)
qk(n−k) = 1 −

n−1∑
k=1

(
n − 1

k − 1

)
qk(n−k)

where the last term in the estimate of Theorem 4.1 has been omitted. Thus, for n =
3, . . . , 6 the following lower bounds on R(Kn) are obtained:

R(K3) ≥ 1 − 3q2, R(K5) ≥ 1 − 5q4 − 10q6,

R(K4) ≥ 1 − 4q3 − 3q4, R(K6) ≥ 1 − 6q5 − 15q8 − 10q9.

Figure 1 compares the bound for R(K6) with the exact reliability given by

R(K6) = 1 − 6q5 − 15q8 + 20q9 + 120q11 − 90q12 − 270q13 + 360q14 − 120q15.

It turns out that the bound for R(K6) is close to the exact reliability if the common edge
failure probability q is small. Fortunately, this is the typical case in real-world computer
and communications networks.

5 Cumulants

Let X1, . . . , Xn be random variables. Due to Speed [9] (see also Rota [8]) the multilinear
cumulant of these random variables can be expressed as

κ(X1, . . . , Xn) =
∑

π∈P({1,...,n})
(−1)|π|−1(|π| − 1)!

∏
B∈π

E

(∏
b∈B

Xb

)
(7)
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Figure 1: Exact and approximate reliability of K6.

which, for simplicity, is considered here as a definition. We now generalize the notion
of a multilinear cumulant to what we call a partition cumulant : For any partition σ ∈
P({1, . . . , n}) we define

κ(σ) =
∑

π∈P({1,...,n})
π≤σ

µ(π, σ)
∏
B∈π

E

(∏
b∈B

Xb

)
(8)

where µ denotes the Möbius function of P({1, . . . , n}) (see [10] for details). Since µ(π, 1̂) =
(−1)|π|−1(|π| − 1)!, where 1̂ denotes the largest element of P({1, . . . , n}), we find that
κ(1̂) = κ(X1, . . . , Xn), so (8) generalizes (7).

Theorem 5.1 Let X1, . . . , Xn be random variables such that all partition cumulants of
X1, . . . , Xn are non-negative. Then, for any r ∈ Z

+,

(−1)rκ(X1, . . . , Xn) ≥ (−1)r
∑

π∈P({1,...,n})
|π|≤r

(−1)|π|−1(|π| − 1)!
∏
B∈π

E

(∏
b∈B

Xb

)

+
r!{
n

r+1

} ∑
π∈P({1,...,n})

|π|=r+1

∏
B∈π

E

(∏
b∈B

Xb

)
.
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Proof. For any π ∈ P({1, . . . , n}) define f(π) =
∏

B∈π E
(∏

b∈B Xb

)
and g(π) = κ(π). By

(8), g(σ) =
∑

π≤σ µ(π, σ)f(π) for any σ ∈ P({1, . . . , n}), whence by Möbius inversion,
f(π) =

∑
σ≤π g(σ) for any π ∈ P({1, . . . , n}). By this and the assumption that all

partition cumulants are non-negative, the requirements of Theorem 2.1 are satisfied, and
the result follows. �

Remark. In statistics, one often considers the nth cumulant κn(X) of a random variable
X which is related to the multilinear cumulant via κn(X) = κ(X1, . . . , Xn) with Xi = X
for i = 1, . . . , n. Theorem 5.1 provides bounds for the nth cumulant of a random variable
X in terms of the binomial moments E(X), E(X2), . . . , E(Xn), provided the associated
partition cumulants are non-negative. As an example, consider the fifth cumulant of a
random variable X. By applying Theorem 5.1 for r = 1, 2 we obtain the inequality

κ5(X) ≤ E(X5) − 1

3
E(X)E(X4) − 2

3
E(X2)E(X3),

respectively

κ5(X) ≥ E(X5) − 5E(X)E(X4) − 10E(X2)E(X3)

+
4

5
E(X)2E(X3) +

6

5
E(X)E(X2)2.

References

[1] E.A. Bender and J.R. Goldman, On the applications of Möbius inversion in combi-
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