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Abstract

A chess tableau is a standard Young tableau in which, for all i and j, the parity
of the entry in cell (i, j) equals the parity of i + j + 1. Chess tableaux were first
defined by Jonas Sjöstrand in his study of the sign-imbalance of certain posets, and
were independently rediscovered by the authors less than a year later in the com-
pletely different context of composing chess problems with interesting enumerative
properties. We prove that the number of 3×n chess tableaux equals the number of
Baxter permutations of n − 1, as a corollary of a more general correspondence be-
tween certain three-rowed chess tableaux and certain three-rowed Dulucq-Guibert
nonconsecutive tableaux. The correspondence itself is proved by means of an ex-
plicit bijection. We also outline how lattice paths, or rat races, can be used to obtain
generating functions for chess tableaux. We conclude by explaining the connection
to chess problems, and raising some unanswered questions, e.g., there are striking
numerical coincidences between chess tableaux and the Charney-Davis statistic; is
there a combinatorial explanation?

1 Introduction

A chess tableau is a standard Young tableau in which, for all i and j, the parity of the
entry in cell (i, j) equals the parity of i + j + 1. If i + j + 1 is even (respectively, odd),
then cell (i, j) is called an even cell (respectively, an odd cell), and in a chess tableau it

the electronic journal of combinatorics 11(2) (2005), #A3 1



necessarily contains an even (respectively, odd) entry. See Figure 1, in which the odd cells
are shaded as a visualization aid.

Figure 1: Example of a chess tableau

We write Chess(λ) for the number of chess tableaux of shape λ. If the parts of λ are
(for example) a, b, and c, then we often write a, b, c instead of λ; for example, we sometimes
write Chess(a, b, c) for Chess(λ). We also adopt the convention that Chess(λ) = 0 if λ is
not a partition (i.e., if it contains negative integers or does not decrease monotonically).

Chess tableaux were first defined by Jonas Sjöstrand [8] in his study of the sign-
imbalance of certain posets. In a remarkable coincidence, chess tableaux were indepen-
dently rediscovered shortly thereafter by the present authors in the completely different
context of composing chess problems with interesting enumerative properties. The con-
nection with chess problems is explained in Section 4 below; here it suffices to remark
that our investigations led us to search for a nice formula for Chess(λ)—if not for all λ,
then at least for some λ. Sjöstrand considered the signed enumeration of chess tableaux,
but we are the first to consider their direct enumeration.

As we shall see shortly, Chess(λ) is easy to compute if λ has only one or two parts.
In Section 2, we consider the much subtler case when λ has three parts, showing that
there is a surprising and mysterious relationship between chess tableaux and so-called
“nonconsecutive tableaux.” In particular, we compute Chess(λ) exactly when λ is a 3×n
rectangle. In Section 3, we show how to derive a rational generating function for Chess(λ)
when λ has a bounded number of parts. Finally, in Section 5, we describe some further
miscellaneous results and open problems. Specifically, a formula for Chess(λ) for arbitrary
λ remains an open question.

We now present a few basic facts about chess tableaux. If λ has only one row, then the
unique standard Young tableau of shape λ is also a chess tableau; hence Chess(λ) = 1. If
λ has two rows, then it turns out that computing Chess(λ) reduces to counting standard
Young tableaux with two rows. More precisely, if we let SYT(λ) denote the number of
standard Young tableaux of shape λ, then we have the following proposition.

Proposition 1. Let a ≥ b > 0. If a is even and b is odd, then Chess(a, b) = 0. Else,
Chess(a, b) = SYT(b(a− 1)/2c, bb/2c). In particular, Chess(2k + 1, 2k + 1) equals the kth

the electronic journal of combinatorics 11(2) (2005), #A3 2



Catalan number and Chess(2k, 2k) = 0.

Proof. If a is even and b is odd, then there are more even cells than odd cells, so a chess
tableau of shape a, b cannot exist. Otherwise, if one constructs a chess tableau of shape
a, b by writing down the entries in consecutive order, then one quickly sees that for i ≥ 1,
the entry 2i + 1 (if it exists at all, i.e., if 2i + 1 ≤ a + b) is forced to appear immediately
to the right of the entry 2i. Therefore, in row 1, we may “glue together” the 2nd and
3rd cells, the 4th and 5th cells, and so on, leaving the last cell in the row unglued if a is
even. Similarly, in row 2, we may glue together the 1st and 2nd cells, the 3rd and 4th
cells, etc., leaving the last cell in the row unglued if b is odd. When constructing a chess
tableau, we enter 1, and then for all i we enter the numbers 2i and 2i + 1 together into a
pair of glued-together cells, and put the largest entry a + b in the remaining unglued cell
(if it exists). From this construction one sees readily that chess tableaux of shape a, b are
equivalent to standard Young tableaux of shape b(a − 1)/2c, bb/2c.

The above argument that Chess(a, b) = 0 if a is even and b is odd is a special case of
an argument of Sjöstrand that applies more generally. The key observation is that the
set of numbers from 1 to n either has an equal number of odd and even numbers or has
an excess of one odd number. This fact easily yields the following proposition.

Proposition 2. If λ has three nonempty rows and all three rows end with a cell of the
same parity (in other words, if the parities of the parts of λ alternate even-odd-even or
odd-even-odd), then Chess(λ) = 0.

Proof. If all three rows end in an odd cell, then each of the first and third rows has one
more odd cell than it has even cells, while the second row has the same number of even
and odd cells, for an overall excess of two odd cells. Similarly, if all three rows end in an
even cell, then each of the first and third rows has the same number of even and odd cells,
while the second row has one more even cell than it has odd cells, for an overall excess of
one even cell.

The importance of the next definition will become clear in the next section.

Definition 1. A partition or a tableau is balanced if it has three parts (not necessarily
nonzero) and the parities of its parts are even-even-odd or odd-odd-even.

Note that if T is a chess tableau with three parts and the lengths of row 2 and row 3
have opposite parity, then T is balanced, by Proposition 2.

Proposition 3. Let T be a balanced chess tableau of shape d, e, f . Let T0 ⊂ T1 ⊂ T2 ⊂
· · · ⊂ Tn = T be a maximal chain where each Tk is a balanced chess tableau and each
containment is strict. Then the chain is unique. Furthermore, the chess tableau T0 has
an odd number of entries in row 1, a single entry in row 2, and an empty row 3. For any
1 ≤ k ≤ n, the number of entries in rows 2 and 3 of Tk is precisely two more than the
number of entries in rows 2 and 3 of Tk−1. We have n = (e + f − 1)/2.
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Figure 2: Decomposition of a balanced chess tableau into a chain of balanced subtableaux

The chess tableau of Figure 1 is balanced, and Figure 2 illustrates the chain described
in Proposition 3 for this tableau.

Proof (of Proposition 3). Because any subtableau of T must consist of a consecutive set
of entries beginning with 1, the chain is unique.

Note that there are no balanced tableaux with a single row. Let y0 be the first entry
in row 2 of T . Note that y0 is even because T is a chess tableau. Therefore, the first y0

entries of T comprise a balanced chess tableau, which must be T0. If T0 = T , the rest of
the proposition follows and we are done. Otherwise, suppose we have constructed Tj for
j < k and Tk−1 6= T . Let xk be the first entry in T not in Tk−1. A simple parity argument
shows that because Tk−1 is balanced, its largest entry must be in row 2 or 3. Therefore,
the parity of the last cell in row 1 of Tk−1 is the same as the parity of xk. This implies
that xk must be in row 2 or 3. Let yk be the smallest entry in T greater than xk which is
also in row 2 or 3. Such an entry must exist because if it did not exist, rows 2 and 3 of T
would have the same parity, contrary to the fact that T is balanced.

Let Tk consist of all entries in T less than or equal to yk. We claim that Tk is balanced.
Because an even number of entries (in fact, exactly two) are added to rows 2 and 3 of Tk−1

to obtain Tk, the parity of the sum of the lengths of rows 2 and 3 remains odd. Hence,
the lengths of rows 2 and 3 of Tk have opposite parity.

Finally, note that there is no balanced tableau strictly between Tk−1 and Tk, for such
a tableau would differ in rows 2 and 3 from Tk−1 by only one entry and therefore would
not be balanced.

Because each step in the chain increases the number of entries in rows 2 and 3
(combined) by two and T0 has exactly one entry in rows 2 and 3, it follows that n =
(e + f − 1)/2.

2 Nonconsecutive Tableaux and the Main Result

A nonconsecutive tableau is a standard Young tableau in which, for all i, the entries i and
i + 1 are in different rows. See Figure 3.
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Figure 3: Example of a nonconsecutive tableau

We write NCon(λ) for the number of nonconsecutive tableaux of shape λ. We write
NConi(λ) for the number of nonconsecutive tableaux of shape λ whose largest entry
appears in row i (necessarily at the end of the row). If λ is not a partition, or if λ
is empty, then we set NCon(λ) = NConi(λ) = 0. As far as we know, nonconsecutive
tableaux were first studied by Dulucq and Guibert [4].

Our main result is the following striking connection between nonconsecutive tableaux
and chess tableaux.

Theorem 1. For any integers a, b, and c,

NCon1(a, b, c) = Chess(a + b − c, a − b + c, 1 − a + b + c) (1)

Theorem 1 indicates an intimate relationship between nonconsecutive tableaux and
chess tableaux, and one might suppose that there must be an obvious bijective proof.
Our proof is bijective, but not obvious, and the reader is encouraged to find a simpler
bijection.

Before proving Theorem 1, we deduce some easy corollaries.

Corollary 1. If a, b, c is a nonempty partition, then NCon(a, b, c) = Chess(a + b− c, a−
b + c, 1 − a + b + c) + Chess(1 + a + b − c, 1 + a − b + c,−a + b + c).

Proof. If T is a nonconsecutive tableau of shape a+1, b, c whose largest entry is in row 1,
then by nonconsecutivity, the second-largest entry of T must be in either row 2 or row 3.
So by deleting the largest entry, we see that

NCon1(a + 1, b, c) = NCon2(a, b, c) + NCon3(a, b, c).

On the other hand, it is obvious that

NCon(a, b, c) = NCon1(a, b, c) + NCon2(a, b, c) + NCon3(a, b, c).

Therefore NCon(a, b, c) = NCon1(a, b, c) + NCon1(a + 1, b, c). Now apply Theorem 1 to
complete the proof.
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It is proved in [4] that

NCon(n, n, n) =
2

n(n + 1)2

n−1∑
k=0

(
n + 1

k

)(
n + 1

k + 1

)(
n + 1

k + 2

)
.

(More specifically, Dulucq and Guibert prove that NCon(n, n, n) equals the number of
Baxter permutations of n, for which the above explicit formula was already known. The
definition of a Baxter permutation is somewhat complicated and we do not need it, so we
omit it, but the reader can find it in [4].)

This fact immediately yields an explicit formula for Chess(n, n, n).

Corollary 2. For n > 1,

Chess(n, n, n) =
2

(n − 1)n2

n−2∑
k=0

(
n

k

)(
n

k + 1

)(
n

k + 2

)
. (2)

Proof. Setting a = b = c = n − 1 in Corollary 1 yields

NCon(n − 1, n − 1, n − 1) = Chess(n − 1, n − 1, n) + Chess(n, n, n − 1).

But n − 1, n − 1, n is not a partition so Chess(n − 1, n − 1, n) = 0. Moreover, the largest
entry of a chess tableau of shape n, n, n must go at the end of row 3, so Chess(n, n, n−1) =
Chess(n, n, n). Using the known explicit formula for NCon(n − 1, n− 1, n− 1) yields the
corollary.

It would be nice to have a direct proof of Corollary 2.

Proof (of Theorem 1). Let d, e, f be a balanced partition and let a = (d + e)/2, b =
(d + f − 1)/2, and c = (e + f − 1)/2. We construct a bijection ϕ from chess tableaux of
shape d, e, f to nonconsecutive tableaux of shape a, b, c with largest entry in row 1.

Step 1: Description of the bijection ϕ. Given a chess tableau T of balanced
shape d, e, f , first decompose it into a maximal set of balanced chess subtableaux T0 ⊂
T1 ⊂ T2 ⊂ · · · ⊂ Tn = T and define xk and yk as in the proof of Proposition 3. That is,
let yk be the largest entry of Tk and let xk = yk−1 + 1. Recall that xk and yk must be in
row 2 or 3.

The image U = ϕ(T ) of T under our bijection will be constructed in stages; let Uk

denote the tableau produced after stage k of the construction.
To construct U0, place the entries 1 through y0 − 1 alternating in rows 1 and 2.
For k > 0, exactly one of the four cases below holds; carry out stage k of the construc-

tion accordingly.
Case 1: xk and yk are both in row 2. Construct Uk by taking Uk−1, appending xk − 1

to row 3, and then alternating xk through yk − 1 in rows 1 and 2, starting with xk in
row 1.
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Case 2: xk is in row 2, yk is in row 3. Construct Uk by taking Uk−1, appending xk −1
to row 3, and then alternating xk through yk − 1 in rows 1 and 2, starting with xk in
row 2.

Case 3: xk is in row 3, yk is in row 2. Construct Uk by taking Uk−1, appending xk −1
to row 2, xk to row 3, and then alternating xk +1 through yk −1 in rows 1 and 2, starting
with xk + 1 in row 1.

Case 4: xk and yk are both in row 3. This case is unique in that Uk is not just an
extension of Uk−1. Begin with Uk−1, but first move its largest entry xk − 2 (along with
the cell it’s in) from row 1 to row 2 or row 3, whichever choice preserves nonconsecutivity.
Then append xk − 1 to row 2 or row 3 (preserving nonconsecutivity), and then alternate
xk through yk − 1 in rows 1 and 2, starting with xk in row 1, to obtain Uk.

Before continuing with the proof, we give an example, showing how the chess tableau
of Figure 1 is carried to the nonconsecutive tableau of Figure 3.
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Step 2: Proof that the description of ϕ makes sense. Denote the shape of Tk

by dk, ek, fk and let ak = (dk + ek)/2, bk = (dk + fk − 1)/2, and ck = (ek + fk − 1)/2. Note
that ak > bk. We show by induction on k that Uk is a nonconsecutive tableau of shape
ak, bk, ck with largest entry in row 1.

Observe that in Cases 1 and 4, xk and yk have opposite parity (so that yk −xk is odd),
while in Cases 2 and 3, xk and yk have the same parity (so that yk − xk is even). This
fact will be used implicitly below, justifying our treating certain expressions of the form
(·)/2 as integers.

In Case 1, xk, the smallest integer not in Tk−1, is in row 2; this means that dk−1 > ek−1.
Therefore, bk−1 > ck−1, so there is no danger of creating an illegal shape by appending
xk − 1 to row 3 of Uk−1. Note that dk = dk−1 + yk − xk − 1, ek = ek−1 + 2, and fk = fk−1.
To Uk−1, we have added (yk − xk + 1)/2 entries to row 1, (yk − xk − 1)/2 entries to row 2,
and a single entry to row 3. So Uk has shape ak, bk, ck.

In Case 2, the same argument as in Case 1 shows that there is no danger of creating
an illegal shape by appending xk − 1 to row 3 of Uk−1. We have dk = dk−1 + yk − xk − 1,
ek = ek−1 + 1, and fk = fk−1 + 1. To Uk−1, we have added (yk − xk)/2 entries to row 1,
(yk − xk)/2 entries to row 2, and a single entry to row 3. So Uk has shape ak, bk, ck.

In Case 3, there is no danger of creating an illegal shape by appending xk −1 to row 2
of Uk−1, because, as we have already observed, ak−1 > bk−1. We have dk = dk−1+yk−xk−1,
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ek = ek−1 + 1, and fk = fk−1 + 1. To Uk−1, we have added (yk − xk)/2 entries to row 1,
(yk − xk)/2 entries to row 2, and a single entry to row 3. So Uk has shape ak, bk, ck.

In Case 4, we have ek−1 > fk−1+2 (strict inequality since Tk−1 is balanced). Therefore,
ak−1 > bk−1 + 1. In Uk−1, if xk − 3 is in row 3, then xk − 2 must be moved to row 2,
and there is no danger of creating an illegal shape. On the other hand, if xk − 3 is not in
row 3 of Uk−1 (and so, by nonconsecutivity, is necessarily in row 2), then we claim that
bk−1 > ck−1. If to the contrary, bk−1 = ck−1, then the last entry in row 2 of Uk−1, namely
xk − 3, could not exceed the last entry in row 3 of Uk−1. However, the only entry in Uk−1

that is higher than xk − 3 is xk − 2, which must be in row 1. This contradiction shows
that bk−1 > ck−1, so moving xk − 2 to row 3 will not create an illegal shape. Moreover,
since ak−1 > bk−1 + 1, row 1 is still longer than row 2 after the move, so appending xk − 1
to row 2 also does not create an illegal shape. We have dk = dk−1 +yk −xk −1, ek = ek−1,
and fk = fk−1 + 2. To obtain Uk, we have increased row 1 of Uk−1 by (yk − xk − 1)/2
entries, row 2 by (yk − xk + 1)/2 entries, and row 3 by a single entry. So Uk has shape
ak, bk, ck.

Note that in Cases 1 through 3, xk − 1 is not placed next to xk − 2, which is in row 1
by induction. Also note that in all four cases, yk − 1 ends up in row 1 for parity reasons.

Step 3: Proving that ϕ is a bijection. We construct ϕ−1 by induction on the
length of row 3. But first, we remark that for parity reasons, if we wish to enlarge any
given balanced chess tableau of shape d, e, f , we can always add d + e + f + 1 to row 2
or row 3, provided that d > e or e > f , respectively. However, it is never possible to add
d + e + f + 1 to row 1. In other words, the parity of the last cell in rows 2 and 3 is equal
to the parity of d + e + f , whereas the last cell in row 1 has parity that of d + e + f + 1.

Let U be a nonconsecutive tableau of shape a, b, c with largest entry in row 1.
If c = 0, then we must have a = b + 1 and U is the unique nonconsecutive tableau

with the entries 1 through a+ b+1 alternating in rows 1 and 2 starting with a 1 in row 1.
Map U to the balanced chess tableau with entries 1 through a + b + 1 in row 1, a + b + 2
in row 2, and empty row 3.

Now assume that c > 0 and, by induction, for all shapes a′, b′, c′ with c′ < c, we have
constructed a map from nonconsecutive tableaux of shape a′, b′, c′ with largest entry in
row 1 to balanced chess tableaux of shape a′ + b′ − c′, a′ − b′ + c′, 1 − a′ + b′ + c′.

Let V be the tableau obtained from U by removing every entry greater than or equal
to the last entry in row 3.

If V has its largest entry in row 1, then let U ′ = V . Let the shape of U ′ be given by
a′, b′, c′. By induction, U ′ is mapped to a balanced chess tableau T ′. Furthermore, the
shape of T ′ is given by d′ = a′ + b′ − c′, e′ = a′ + c′ − b′, f ′ = 1 − a′ + b′ + c′. Let xn − 1
and yn − 1 be the smallest and largest entries removed from U to obtain U ′.

Note that c′ < b′ by construction of V . Therefore d′ > e′. Therefore, we can construct
a chess tableau by adding xn to row 2 of T ′, and then adding the entries xn + 1 through
yn − 1 to row 1. Finally, if xn and yn have the same parity, add yn to row 3; otherwise,
add yn to row 2. Map U to the resulting tableau T .
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Now, suppose that the largest entry of V is not in row 1, but in row 2. (By noncon-
secutivity, the largest entry of V cannot be in row 3.)

If the penultimate entry in V is in row 1, let U ′ be the tableau obtained from V by
deleting the largest entry (which is in row 2). Let the shape of U ′ be given by a′, b′, c′. Since
U ′ is a nonconsecutive tableau with largest entry in row 1, by induction, U ′ is mapped to
a balanced chess tableau T ′. Furthermore, the shape of T ′ is given by d′ = a′ + b′ − c′,
e′ = a′+c′−b′, f ′ = 1−a′+b′+c′. Let xn−1 and yn−1 be the smallest and largest entries
removed from U to obtain U ′. Observe that since the largest entry of V is in row 2, an
even number of entries must have been removed from U to obtain V . This means that xn

and yn have the same parity. Also, note that a′ > b′ because U ′ was obtained from V by
removing the last entry in row 2. This implies that e′ > f ′. Therefore, we can construct
a chess tableau by adding xn to row 3 of T ′, and then adding the entries xn + 1 through
yn − 1 to row 1. Because xn and yn have the same parity, we can finish by adding yn to
row 2 to obtain a chess tableau T . Map U to this T .

Finally, assume that the penultimate entry in V is in row 3. If an even number of
entries were removed from U to obtain V , then let U ′ be the nonconsecutive tableau
obtained by shifting the largest entry in V , along with its cell, into row 1. If an odd
number of entries were removed from U to obtain V , then let U ′ be the nonconsecutive
tableau obtained by adding to row 1 the largest entry in row 3 of U . Let the shape of U ′

be given by a′, b′, c′. Since U ′ is a nonconsecutive tableau with largest entry in row 1, by
induction, U ′ is mapped to a balanced chess tableau T ′. Furthermore, the shape of T ′ is
given by d′ = a′ + b′ − c′, e′ = a′ + c′ − b′, f ′ = 1 − a′ + b′ + c′. Let xn − 1 and yn − 1
be the smallest and largest entries removed from U to obtain U ′. Because U ′ has an even
number of entries fewer than there are in U , we know that xn and yn have opposite parity.
We claim that a′ > b′ + 1. To see this, first note that if the number of entries in U and V
have the same parity, then U ′ was obtained by shifting the last entry in row 2 to row 1,
so that a′ > b′ + 1. If the number of entries in U and V have opposite parity, then the
lengths of rows 1 and 2 of V separately differ from the lengths of rows 1 and 2 of U by
equal amounts, and since a > b, we know that the length of row 1 of V is greater than
the length of its row 2. Since U ′ is obtained from V by adding an entry to row 1, we
conclude again that a′ > b′ +1. Since a′ > b′ +1, we must have e′ > f ′ +1. Therefore, we
can construct a chess tableau T from T ′ by adding xn to row 3, adding the entries xn + 1
through yn − 1 to row 1, and finally adding yn to row 3. Map U to this T .

It is straightforward to check that this map and ϕ are inverse to each other, and hence
are both bijections.

This completes the proof of the theorem for the case in which a+b−c, a−b+c, 1−a+b+c
is a balanced partition. Since a − b + c and 1 − a + b + c automatically have opposite
parity, the only remaining cases are those in which a + b − c, a − b + c, 1 − a + b + c
is not a partition at all. But note that if a > b ≥ c ≥ 0 and a ≤ b + c + 1, then
a + b − c ≥ a − b + c ≥ 1 − a + b + c ≥ 0. Therefore if a + b − c, a − b + c, 1 − a + b + c
is not a partition, then NCon1(a, b, c) = 0 (if a > b + c + 1 then every standard Young
tableau of shape a, b, c must have consecutive entries in row 1), and both sides of (1) are
zero.
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We conclude this section with an alternative description of ϕ−1 that is surprisingly
similar in form to the description of ϕ itself. We leave it to the reader to check that the
following description of a map makes sense and indeed coincides with ϕ−1.

Let U be a nonconsecutive tableau with largest entry in its first row of shape a, b, c.
Let V be the nonconsecutive subtableau of U obtained by removing the entries of U that
are greater than the second largest entry in row 1. Let a′, b′, c′ be the shape of V . Note
that a = a′ + 1.

Assume by induction that we have already defined the bijection on subshapes of a, b, c.
Let S be the chess tableau that V is mapped to by this bijection. We show how to add
entries to S to get a chess tableau T that will be the image of U .

We consider four cases.
Case 1. We have b − b′ = c − c′ and the largest entry of U is in row 2. In this case,

form T by first adding an entry to row 2 of S, then adding another entry to row 1 of S,
and finally adding 2(b − b′) − 1 entries to row 3 of S.

Case 2. We have b − b′ = c − c′ + 1 (in which case the largest entry of U must be in
row 2). In this case, let R be the row of the largest entry in S. Form T by first moving
the largest entry of S from row R to row 1, then adding a new entry to row 1, then adding
an entry to row R, then adding 2(c − c′) entries to row 3.

Case 3. We have b − b′ = c − c′ and the largest entry of U is in row 3. In this case,
form T by first adding an entry to row 3 of S, then adding an entry to row 1, followed by
another entry to row 2, followed by adding 2(b − b′) − 2 entries to row 3.

Case 4. We have b − b′ + 1 = c − c′ (in which case the largest entry of U must be in
row 3). In this case, form T by first adding two entries to row 2 of S, and then adding
2(b − b′) entries to row 3.

3 Generating Functions From Rat Races

For SYT(λ) there is the miraculous hook length formula, but there seems to be no analogue
for Chess(λ). However, when λ has two rows, there are nice expressions. For example:

Chess(2r + 1, 2s) =

(
r + s

r

)
−

(
r + s

r + 1

)
(3)

Similar alternating sum formulas can be obtained for any number of rows by interpreting
tableaux as nontouching rat races, a concept defined in [5]. It is equivalent to noncrossing
lattice paths, but suits our applications in the next section better.

A rat race is an event that takes place on the real line. The rats have separate starting
points, one unit apart to the left of the origin; in fact, rat i starts at coordinate −i. The
running distance for rat i being λi units, it will finish at coordinate λi − i. Every time
step, one of the rats moves one unit to the right. After |λ| time steps, all rats have reached
their final position.

The rat race is completely specified by recording which rat moves in each time step.
In Figure 4, rat one moves in time steps 1, 2, 3, 6, 7 and rat two in time steps 4, 5, 8.

the electronic journal of combinatorics 11(2) (2005), #A3 11



1 2 3 6 7
4 5 8

-

�

�

�

�1
�

�

�

�2

�
�
�
�

�
�
�
�2 1

Rats start
here. . .

. . . and finish
here.

Figure 4: A chess tableau and its nontouching rat race

Standard Young tableaux correspond to nontouching rat races, where two rats never
occupy the same coordinate simultaneously, for this condition means that the columns
are increasing. Touching rat races are those that are not nontouching.

For a general rat race, there is no column condition and no condition on the row
lengths. (Rat one may be a sprinter and rat two a marathon runner.) However, the track
segments are colored black and white, and our rats run black segments only in odd time
steps and white segments only in even time steps. Therefore, nontouching rat races will
correspond exactly to chess tableaux. We let Rats(λ) denote the number of rat races
(with the color restriction just described) in which the ith rat moves λi steps.

For the benefit of the rat crowd, all rats wear yellow T-shirts that carry the row
index in red digits. Once a year, on Involution Day, the rat athletes play a prank on the
unsuspecting crowd. At the very first moment during the race that two rats meet, the
two rats in question switch T-shirts. The spectators now believe that they are watching a
very different rat race. If rats one and two switch shirts, rat one seems to run a distance
λ2−1 while rat two seems to run λ1 +1. Nontouching races are not touched by the prank,
but for the others a bijection is established. If λ = a, b has just two parts a ≥ b, then the
prank occurs if and only if rat two catches rat one, and switching shirts gives a bijection
between touching rat races of shape a, b and all rat races of shape b − 1, a + 1 (since the
latter are necessarily touching). Thus

Chess(a, b) = Rats(a, b) − Rats(b − 1, a + 1) (4)

Counting rat races is much easier than counting chess tableaux, and we readily obtain
formula (3) and similar ones for the other parity cases. A bivariate generating function
C(x, y) for Chess(a, b) is also easy to compute.

C(x, y) =
(1 + x − y)(1 − 2y2)

(1 − y)(1 − x2 − y2)
(5)

Here, Chess(a, b) is the coefficient of the term xayb, unless a < b, in which case the term
is uninteresting.

Rat races work for any number of rows; for three rows, the touching rat races are
of two types: those in which rat two catches rat one first, and those in which rat three
catches rat two first. So we must subtract Rats(b−1, a+1, c) and Rats(a, c−1, b+1) from
Rats(a, b, c), but then to handle double counting we must follow through with alternating
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inclusion/exclusion terms. We obtain the following relation.

Chess(a, b, c) = Rats(a, b, c) − Rats(b − 1, a + 1, c) − Rats(a, c − 1, b + 1)

+ Rats(c − 2, a + 1, b + 1) + Rats(b − 1, c − 1, a + 2)

− Rats(c − 2, b, a + 2) (6)

Counting rat races is not too difficult if you use the obvious recursions. Splitting the
generating function for Rats(a, b, c) into parity cases, we can write

R(x, y, z) = Rbbw + Rbwb + Rwbb + Rwwb + Rwbw + Rbww. (7)

Here Rbbw includes all shapes where the first row ends with a black square, the second
with a black square and the third with a white square (so the row lengths are odd, even,
even). Note that Rbbb and Rwww are zero.

Now we have the following relations.

Rbbw = xRwbw + yRbww

Rbwb = xRwwb + zRbww

Rwbb = yRwwb + zRwbw

Rwwb = xRbwb + yRwbb

Rbww = yRbbw + zRbwb

Rwbw = xRbbw + zRwbb + 1

Solving the system, we obtain the generating function for Rats(a, b, c).

R(x, y, z) =
(1 + y)(1 + x − y + z)

1 − x2 − y2 − z2 − 2xyz
(8)

If we substitute this into (6), we get a rational expression for C(x, y, z), but with a
forbidding numerator and no obvious interesting properties.

C(x, y, z) =
1 − · · · a hundred and forty-seven terms · · · − 8y3z8

(1 − x2 − y2 − z2 − 2xyz)(1 − y2 − z2)2(1 − x2 − z2)(1 − z)
(9)

But we know that Chess(a, a, a) are interesting numbers, so we may try to compute the
diagonal of the ugly generating function. Indeed, for even a, (6) gives a simpler generating
function, the xayaza-coefficient of which is Chess(a, a, a).

Ceven =
P

((1 − x2 − y2 − z2)2 − 4x2y2z2)(1 − x2 − y2)
(10)

where P = 1 − 3x2 − 4y2 − z2 + 4x4 + 9y2x2 + 5y4 + 3z2y2 − 2x6 − 10y2x4

− 6y4x2 − 2y6 + 2z2x4 − 2z2y2x2 − 2z2y4 + 8y4x4

For rectangles with odd row lengths we can obtain a similar but less attractive expression.
Extracting the diagonal of this rational generating function can be done using residue

calculus; for example, Akalu Tefera’s program MultInt [10] can in principle automati-
cally find a recurrence satisfied by the diagonal coefficients. This would yield a proof of
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Corollary 2 that, while not 100% mechanical, would require much less human ingenuity
than our bijective proof. Unfortunately, our rational generating function appears to be
too complex for this plan to be carried out with today’s computers, at least without any
further tricks to simplify the computation.

4 The Connection With Chess Problems

There is a class of composed chess problems called queue problems in which each solution
comprises the same set of moves, but in which the order of the moves varies from solution
to solution. The goal is to find the total number of solutions.

Examples of queue problems may be found in [6] and [9]. In all these examples, the
number of solutions equals the number of linear extensions of some particular finite poset.
(The relations in the poset often correspond to moves that must occur in a certain order
because one piece must vacate a square or a line to allow the next piece to move; this
explains the term “queue problem,” and by thinking of chess pieces as rats, one readily
sees the connection to rat races.) Moreover, all the examples are series-movers, i.e.,
problems in which one side executes a series of consecutive moves while the other side
passively stands by making no moves at all, in violation of one of the official rules of chess.

Shortly before [9] was written, it occurred to us that perhaps it would be possible to
compose combinatorially interesting chess problems in which White and Black alternate
moves. For those familiar with the principle behind the examples in [9], it is easy to see
that instead of linear extensions of posets, we now seek posets whose elements are each
colored either black or white, such that the number of alternating linear extensions—i.e.,
linear extensions in which black and white elements strictly alternate—is a combinatorially
interesting number.

There is an unlimited number of possible posets, and black/white colorings of the
posets, that one can choose to investigate. We chose to start by considering black/white
colorings of Young diagrams, and this quickly led to the definition of a chess tableau.
(Ironically, even though we were motivated by composing chess problems, we initially
used the term “checkerboard tableau,” switching to the term “chess tableau” only after
learning that that was what Sjöstrand had called them.)

Corollary 2 shows that the number of 3 × n chess tableaux is combinatorially inter-
esting, so the task presents itself of composing a chess problem based on this fact. The
problem shown in Figure 5 below, composed by the first author and dedicated to Richard
Stanley on his 60th birthday, is a first attempt in that direction.

The stipulation “H=4.5” means that it is White to move, and that White and Black
are to cooperate so as to stalemate Black after White’s fifth move. White and Black
alternate moves, so Black makes a total of four moves. The usual rules governing the
legality of chess moves apply. The expression “7+7” is a checksum, indicating that there
are 7 White units and 7 Black units on the board.

It turns out that there are precisely two solutions:

• 1.dxe7 Rd7 2.Rxd7 Bc7 3.Rxf5 Ba6 4.bxc7 Rb7 5.Bxa6
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Figure 5: Helpstalemate with 2 solutions

• 1.dxe7 Bc7 2.bxc7 Rd7 3.Rxf5 Rb7 4.Rxd7 Ba6 5.Bxa6

(We have written Black’s moves in boldface for clarity.) These can be thought of as
corresponding to the two chess tableaux of shape 3, 3, 3 as follows. Observe that the
following relationships must hold between the individual moves of the solution:

• dxe7 must precede Rd7 and Bc7.

• Rd7 must precede Rxd7 and Rxf5.

• Bc7 must precede bxc7 and Rxf5.

• Rxf5 and Rxd7 must precede Ba6.

• Rxf5 and bxc7 must precede Rb7.

• Rb7 and Ba6 must precede Bxa6.

(Note: The reason Rb7 must precede Bxa6 is that the rook is pinning the bishop. By
convention, even in series-movers, intermediate positions in which one of the kings is in
check are forbidden.) These conditions impose a partial order on the moves; see Figure 6.

This poset has 42 linear extensions, corresponding to the 42 standard Young tableaux
of shape 3,3,3. If Black and White were free to make the nine moves in question in any
order and were not required to alternate moves, then these 42 tableaux would give rise to
42 solutions. However, the requirement that Black and White alternate moves imposes
an additional constraint, which is readily seen to force the tableaux to be chess tableaux.
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Figure 6: Ordering constraints among the moves

By Corollary 2, there are just two chess tableaux of shape 3,3,3, which give rise to the
two solutions to the problem.

Clearly this example only scratches the surface of the possibilities for composing chess
problems of this sort. There are presumably many other families of bicolored posets
whose alternating linear extensions have a nice enumeration that can be exploited for
compositional purposes.

5 The Charney-Davis Statistic and Open Problems

Given a standard Young tableau T with n cells, let des(T ) denote the number of descents
of T , i.e., the number of positive integers i < n such that the entry i + 1 appears in a
lower-numbered row of T than the entry i does. Given a partition λ, we follow [7] and
define the Charney-Davis statistic by

CD(λ) =
∑

T

(−1)des(T ),

where the sum is over all standard Young tableaux T of shape λ.
In [7], the value of CD(λ) is computed explicitly for k × n rectangles λ for k = 2, 3, 4.

Strikingly, we find that |CD(n, n)| = Chess(n, n) and |CD(n, n, n)| = Chess(n, n, n). This
cries out for a combinatorial explanation, but we do not have one. If we compare CD(λ)
and Chess(λ) for other partitions λ with a small number of parts, then there are not many
other numerical coincidences, so a result like Theorem 1 does not seem likely. In particular,
|CD(5, 5, 5, 5)| = 580 while Chess(5, 5, 5, 5) = 324, and |CD(5, 5, 5, 5, 5)| = 25100 while
Chess(5, 5, 5, 5, 5) = 8716.

As if three different relationships between 3 × n tableaux and Baxter permutations
were not enough, Richard Stanley helped us observe that the summand in equation (2),
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namely (
n

k

)(
n

k + 1

)(
n

k + 2

)/(
n

0

)(
n

1

)(
n

2

)
, (11)

is the number of 3×k semistandard Young tableaux with entries between 1 and n−k +1
inclusive. Dulucq and Guibert show that (11) is the number of 3 × n nonconsecutive
tableaux with k entries i such that i is in row 3 and i+1 is in row 1. In terms of balanced
chess tableaux, the parameter k counts the number of balanced subtableaux Ti falling
into the first two of the four possible cases in the proof of Theorem 1. However, we have
not found a direct bijection with semistandard tableaux.

More generally, the number of Baxter permutations shows up in other places in math-
ematics, e.g., [1], [2], and [3]. Are there bijections with chess tableaux?

Finally, an intriguing observation for which we have no explanation is that the quantity∑
λ`n Chess(λ)2, where the sum ranges over all partitions of n, appears to be divisible by

high powers of two. Specifically, the sequence begins

1, 2, 2, 22, 23, 24, 24 · 3, 25 · 5, 26 · 7, 211, 28 · 52,

29 · 61, 210 · 3 · 41, 211 · 5 · 59, 211 · 1523, 213 · 23 · 83,

213 · 11411, 215 · 103 · 163, . . .

Perhaps the Robinson-Schensted-Knuth correspondence can be used to help explain this
phenomenon.
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