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Abstract

A compressed polytope is an integral convex polytope all of whose pulling trian-
gulations are unimodular. A (¢ — 1)-simplex X each of whose vertices is a vertex of
a convex polytope P is said to be a special simplex in P if each facet of P contains
exactly ¢ — 1 of the vertices of X. It will be proved that there is a special simplex
in a compressed polytope P if (and only if) its toric ring K[P] is Gorenstein. In
consequence it follows that the h-vector of a Gorenstein toric ring K[P] is unimodal
if P is compressed.

A compressed polytope [10, p. 337] is an integral convex polytope all of whose “pulling
triangulations” are unimodular. (Recall that an integral convex polytope is an convex
polytope each of whose vertices has integer coordinates.) A typical example of compressed
polytopes is the Birkhoff polytopes [10, Example 2.4 (b)]. Later, in [6], a large class
of compressed polytopes including the Birkhoff polytopes is presented. Recently, Seth
Sullivant [12] proved a surprising result that the class given in [6] does essentially contain
all compressed polytopes.
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Let P C R" be an integral convex polytope. Let K be a field and K[x,x ' t] =
Klzy, 27, ..., 2, 2, t] the Laurent polynomial ring in n+ 1 variables over K. The toric
ring of P is the subalgebra K[P] of K[x,x ! ] which is generated by those monomials
x2t = z7' - - - 2%t such that a = (ay, ..., a,) belongs to P Z". We will regard K[P] as a
homogeneous algebra [2, p. 147] by setting each degx?t = 1 and write F'(K[P], A) for its
Hilbert series. One has F(K[P],\) = (ho+hiA+---+h %) /(1—=X)*" where each h; € Z
with hs # 0 and where d is the dimension of P. The sequence h(K[P]) = (ho, b1, ..., hs)
is called the h-vector of K[P]. If the toric ring K[P] is normal, then K[P] is Cohen-
Macaulay. If K[P] is Cohen-Macaulay, then the h-vector of K[P] is nonnegative, i.e.,
each h; > 0. Moreover, if K[P] is Gorenstein, then the h-vector of K[P] is symmetric,
i.e., hz = hs—i for all i.

A well-known conjecture is that the h-vector (hg, hi, ..., hs) of a Gorenstein toric ring
is unimodal, i.e., hg < hy < -+ < hig9. One of the effective techniques to show that
(ho, b, ..., hs) is unimodal is to find a simplicial complex polytope of dimension s — 1
whose h-vector [11, p. 75] coincides with (ho, b1, ..., hs) (Stanley [9]). In fact, Reiner and
Welker [8] succeeded in showing that the h-vector of a Gorenstein toric ring arising from
a finite distributive lattice (see, e.g., [4]) is equal to the h-vector of a simplicial convex
polytope.

Christos Athanasiadis [1] introduced the concept of a “special simplex” in a convex
polytope. Let P C R™ be a convex polytope. A (¢ — 1)-simplex ¥ each of whose vertices
is a vertex of P is said to be a special simplexr in P if each facet (maximal face) of P
contains exactly ¢ — 1 of the vertices of ¥. It turns out [1, Theorem 3.5] that if P is
compressed and if there is a special simplex in P, then the h-vector of K[P] is equal to
the h-vector of a simplicial convex polytope. In particular, if P is compressed and if there
is a special simplex in P, then K[P] is Gorenstein whose h-vector is unimodal. Examples
for which [1, Theorem 3.5] can be applied include (i) toric rings of the Birkhoff polytopes
([1, Example 3.1]), (ii) Gorenstein toric rings arising from finite distributive lattices (|1,
Example 3.2]), and (iii) Gorenstein toric rings arising from stable polytopes of perfect
graphs ([7, Theorem 3.1 (b)]).

In the present paper we prove that there is a special simplex in a compressed polytope
P if (and only if) its toric ring K[P] is Gorenstein.

Theorem 0.1 Let P be a compressed polytope. Then there exists a special simplex in P
if (and only if) its toric ring K[P] is Gorenstein.

Proof. 1t follows from [12, Theorem 2.4] that every compressed polytope P is lattice
isomorphic to an integral convex polytope of the form C, ()L, where C, C R" is the
n-dimensional unit hypercube and where L is an affine subspace of R™. Without loss of
generality, one can assume that L((C, \ 9C,,) # (), where 9C,, is the boundary of C,,. In
other words, dim P = dim L. Let P = C,, (| L with d = dimP. Thus L is the intersection
of n — d hyperplanes in R”, say

1121 + -+ A1g%q + Tap1 = b

21T + -+ A2qTq + Tap2 = bo
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Up—d1T1 + -+ Qg d®q + Ty = bp_g,

where a;;,b; € Q for all 7 and j. Since P possesses the integer decomposition property [6,
p. 2544], its toric ring coincides with the Ehrhart ring [5, p. 97] of P. Hence the criterion
[3, Corollary 1.2] can be applied for K[P].

To state the criterion [3, Corollary 1.2], let § > 0 denote the smallest integer for
which 6(P \ OP)(Z" # (), where §(P \ OP) = {da : a« € P\ 0P}, and (c1,...,¢,) €
S(P\ OP)NZ". Write Q@ C R? for the convex polytope defined by the inequalities

0<a <1, 1<i<d

together with

0<b—(anz1+ -+ agrq) < 1
0<by— (anzy+ -+ aggrqy) < 1
0<by_g— (an—giz1 + -+ ap_garqs) < 1.

Then Q is an integral convex polytope of dimension d with K[Q] & K[P]. Let Qf =
§Q — (c1,...,cq). Then QF is an integral convex polytope of dimension d and the origin
of R? belongs to the interior of Qf. By using [3, Corollary 1.2] the toric ring K[Q] is
Gorenstein if and only if the equation of the supporting hyperplane of each facet of OF is
of the form ¢i2; + - - - + gq24 = 1 with each ¢; € Z.

Claim. Suppose that K[Q] is Gorenstein. Then, for each 1 <1i <n, one has¢; =0 — 1
(resp. ¢; = 1) if the hyperplane in R™ defined by the equation x; = 1 (resp. x; =0) is a
supporting hyperplane of a facet of P.

Proof of Claim. Let 1 < i < d. If the equation z; = 1 (resp. z; = 0) defines a facet of P,
then the equation z; +¢; = § (resp. x; + ¢; = 0) defines a facet of Q. Since 0 < ¢; < 6,
one has ¢; =6 — 1 (resp. ¢; = 1), as desired.

Let 1 <i <n —d. If the equation x4,; = 1 defines a facet of P, then the equation
ai(zy + 1)+ 4 aig(xg +cq) = 5(b; — 1)
defines a facet of QF. Since a;jc; + - - - + ajqCq + Cari = Ob;, the equation
a1y + o+ gy = Cpi — 0 (1)
defines a facet of Q. We write the equation (1) of the form
(/@) (a1 + -+ + @jgTa) = cari — 6,

where al;,...,a}, are integers which are relatively prime, and where p and ¢ > 0 are
integers which are relatively prime. Then ¢(c4y; — 0)/p = £1. Hence ¢ = 1. Thus each
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a;j € Z is divided by p. We write the equation a;1x1 + - - - + ajqTq + Tayi = b; of the form
playzy + -+ + alyxq) + xas = b Since L(Cy \ 0C,,) # 0, there is a vertex (vy, ..., v,)
of P = C,NL with vgy; = 0. Thus b; € Z is divided by p, say, b; = pb; with b, € Z.

Let (v1,...,v,) be a vertex of P with vgy; = 1. However, unless p = 41, such the vertex
cannot lie on the hyperplane defined by the equation p(aj;x1 + - -+ + @} zq) + x41i = pb.
Thus p = £1. Since cgy; — 6 = p and cqy; < 90, one has p = —1 and ¢4y = 6 — 1, as

desired. On the other hand, modify the above technique slightly, and one has ¢;,; = 1 if
the hyperplane in R" defined by the equation z4,; = 0.

Now, we proceed to the final step of our proof of Theorem 0.1. Since (cy,...,c,)
belongs to 6(P \ OP)(Z", there exists 0 vertices vy,...,vs of P with (c1,...,¢,) =
vi+ -+ vs. Write X for the convex hull of {vy,...,vs}. Our work is to show that 3
is a special simplex in P. Let a facet F of P be defined by the equation x; = 1 (resp.
x; =0). Then ¢; =6 — 1 (resp. ¢; = 1). Since each vertex of P is a (0, 1)-vector, exactly
d — 1 vertices of vy,...,vs lie on F. Finally, to see why ¥ is a (§ — 1)-simplex, suppose
that, say, vs belongs to the convex hull of {vy,...,vs_1} and that vs; does not lie on a
facet G of P. Then all of vy,...,vs_1; must belong to G. Hence ¥ C G. Thus v,, € G,
which contradicts v, € G. Q. E. D.

By virtue of [1, Theorem 3.5] together with Theorem 0.1 it follows that

Corollary 0.2 Let P be a compressed polytope and suppose that the toric ring K[P] is
Gorenstein. Then the h-vector of K[P] is unimodal.
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