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In honor of my friend Richard Stanley

Abstract

In this paper, we examine partitions = classified according to the number r ()
of odd parts in 7 and s(7) the number of odd parts in 7/, the conjugate of 7. The
generating function for such partitions is obtained when the parts of 7 are all £ N.
From this a variety of corollaries follow including a Ramanujan type congruence for
Stanley’s partition function t(n).

1 Introduction

Let 7 denote a partition of some integer and 7’ its conjugate. For definitions of these
concepts, see [1; Ch.1]. Let O(7) denote the number of odd parts of m. For example, if 7
is6+5+4+2+2+1, then the Ferrers graph of 7 is

Reading columns we see that 7" is 6 +5+3+342+1. Hence O(7) = 2 and O(n’) = 4.
Richard Stanley ([4] and [5]) has shown that if ¢(n) denotes the number of partitions
7 of n for which O(7) = O(7’) (mod 4), then
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tn) = 5 (o) + 1) ), 0

where p(n) is the total number of partitions of n [1, p. 1], and

S 0 _ (1+¢*)
; foa =11 (1= ") (1 +q"2)> @

i>1

Note that ¢(n) is Stanley’s partition function referred to in the title of this paper.
Stanley’s result for t(n) is related nicely to a general study of sign-balanced, labeled
posets [5]. In this paper, we shall restrict our attention to Sy(n,r,s), the number of
partition 7 of n where each part of mis £ N, O(w) =r, O(n’) = s. In Section 2, we shall
prove our main result:

Theorem 1.

PO []f q4] (—zya; ") ;(=2y 'qs ¢")n—j(ya)*" >

Son(n,r,s)q"2"y* =
2 Sl (¢* ¢ v (2¢% q*)n

? (3)

n,r,s20
and
> Sonii(n.r,s)q 2"y X []JV q4] (=24 ¢")j01 (=204 ") v (yg)*N > (4)
n,r,s)q"z"y* = ,
n,r,s=>0 e ! y (q4’ q4)N(22q2; q4)N+1
where (1 N)(l N—l) (1 N—'+)
|:N; q:| — (1-¢7)(1=¢i=1)...(1—q) ’ fOT 0 =J]= N’ (5)
J 0, if <0 orj>N,
and
(A = (1 —A)(1 = Aq)...(1— AgM™Y), (6)
From Theorem 1 follows an immediate lovely corollary:
Corollary 1.1.
(1 +yzq¥™1)
Seo(n, "yt = — . 7
3 Sxlnn )iy H g1 2qu2)(1 — o) (7)
From Corollary 1.1, we shall see in Section 3 that
Corollary 1.2.
t(5n+4) =0 (mod 5). (8)

Also,
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Corollary 1.3.

where
o0

Qlq) = (1-¢) (10)

Jj=1

We conclude with some open questions.

2 The Main Theorem

We begin with some preliminaries about partitions and their conjugates. For a given
partition 7 with parts each < N, we denote by f;(7) the number of appearances of i as a
part of w. The parts of 7’ in non-increasing order are thus

Zfi(w), Zfi(w), Zfi(ﬂ),...,Zfi(ﬂ). (11)

Note that some of the entries in this sequence may well be zero; the non-zero entries
make up the parts of 7'. However in light of the fact that 0 is even, we see that O(n’) is
the number of odd entries in the sequence (11) while

O(m) = fi(m) + fa(m) + fs(m) +.... (12)
We now define
on (g2 y) ( > Sn(n,rs)d"="y )(q4;q4)LgJ(22q2;q4)L%J- (13)
n,r,s20

Lemma 2.1. 0¢(q, z,y) = 1, and for N 2 1,

U2N(¢]a z,y) = U2N71(Q7 Z, y) + ?JQNQQN%NA(Q’ Z, yfl) (14)
2N—-1 2N-—1

oan-1(¢, 2, y) = oan-2(q, 2,y) + 2™ 1PN e a(q, 2, y7). (15)
Proof. We shall in the following be dealing with partitions whose parts are all £ some
given N. We let 7 be that partition made up of the parts of 7 that are < N. In light of
(11) we see that if N is a part of 7 an even number of times, then O(7') = O(7') and if
N appears an odd number of times in 7, then O(7') = N — O(7) (because the removal
of fx(m) from each sum in (11) reverses parity). Initially we note that the only partition
with at most zero parts is the empty partition of 0; hence o¢(q, z,y) = 1.
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Next, for N = 1,

oan(q, 2,9)
(¢4 a")n(22¢% ¢Y) N
= Y Oy )
m,parts<2N

_ Z qzifi(ﬁ)‘i‘QNfQN(W)Zfl(7")+f3(7F)+---+f2N71(7")yO(7_‘J)

yO(ﬂ’)

m,parts<2N
fan (m)even

+ Z qZifi(ﬁ)Jr?Nsz(Tf)Zfl(Tf)+f3(7f)+~~~+fzzv—1(7r) 2N-O(x")

Yy
m,parts<2N
fan (m)odd
1 oan-1(¢, 2,Y) y* NN oan-1(q, 2,47
(1= g") (¢4 ¢ )v-1(2¢ ¢ )y (1= ™) (¢4 q")v-1 (22 ¢

which is equivalent to (14).
Finally,

oan+1(4, 2, Y)
(¢* q")n(22¢% ¢ )N+
= Z qzifz'(ﬂ)Zfl(7T)+f3(7f)+---+f2N+1(W)yo(ﬂ/)
m,partsS2N+1
_ Z qzifi(ﬁ)+(2N+1)f2N+1(F)Zfl(ﬂ)+---+f2N+1(7T)

yO(ﬁ/)

m,partsS2N +1
fany1(m)even

+ Z qZ ifi(ﬁ)+(2N+1)f2N+l(7"')Zfl(7T)+~~~+f2N—1(7r)+f2N+l(W)y2N+1*O(ﬁ',)
m,partsS2N+1
fan41(m)odd
_ 1 on(a,2y) v oan(g,2,y)
(1=22¢"2) (5 ¢ In (2P ')y (1= 22¢"VF2) (g% ¢*)n (2%¢% ¢*)n
which is equivalent to (15) with N replaced by N + 1. O

Proof of Theorem 1. We let 7on(q, z,y) denote the numerator on the right-hand side of
(3) and Tan+1(q, z,y) denote the numerator on the right-hand side of (4). If we can show
that 7n(q, z,y) satisfies (14) and (15), then noting immediately that 7o(q, z,y) = 1, we
will have proved that on(q, z,y) = 75 (¢, 2, y) for each N = 0 (by mathematical induction)
and will then prove Theorem 1 once we recall (13).
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First,

Ton-1(¢, 2,Y) +92NQQNT2N (g, z,y7")
=Y l . } —2yq;q") i (—2y " @ ¢ v (yg)
320
+y NNy l . } —2y ' 44" v (—zya; 4" (v q)”
320
(where j — N —1—j in the second sum)
=> l } —2yq;¢"); (=2 a5 ¢ v (yg)* N7
320
+y* NNy l } 2y~ qrq" )Ny (—2ya 4" )Y
320

(where j — 7 — 1 in the first sum)

) [ IN=-1 N-1
= (—2yq:q")(—2y " q: ") v—; () *™ ”Hj_l;q“}Jrq‘“l . ;q4H

320 J

(by [1, p.35, eq.(3.3.4)])
= 7an(4, 2, 9)-
Finally,

Ton(q, 2,y) + 2N PN (g, 2,7

N N
= { .;q4] (—2yq; q)i(—2y " @ ¢ )v—j ()
j=o L/
AN
+ 2NNy {j ;q4} (—2y ™' ¢ v—i(—2yq: q");(qy ™)
=0

(where j — N — j in the second sum)

NN . .

= Z L 1 } —2yq;4");(—2y g3 ¢ ) v () T (1 + 2ygV )
N

=> { 1 } —2y4:q")j+1 (=297 5 ¢ ) v (ya)*"
7=0

= Tan41(4, 2, 9).

THE ELECTRONIC JOURNAL OF COMBINATORICS 11(2) (2004), #R1



Proof of Corollary 1.1. From Theorem 1 (either (3) or (4) with j — N — j),
Z Seo(n,r, 8)q"2"y* (16)

1 = 1 4 -1 4 2j
= (q4q4) (qug,q4) E : (q4,q4)j (_qu;q )OO(_Zy q;4q )](yQ) !
) oo ) % 52 )

O R S
(05 0M)e (2% N (12625 ¢Y)
(by [1, p.17, eq.(2.2.1)])
_ (—2y4; ) oo
(0% 400 (220% 4o (¥20% 4o
which is Corollary 1.1. O

Corollary 2.1. Identity (1) is valid.

Proof. We note that O(7) = O(7') (mod 2) because each is clearly congruent (mod 2)
to the number being partitioned. Hence,

Zt(n)q”: Z Seo(ny1,5)q" (17)

(=4 0%)o0 )

4)2 (0% ¢ oo (=425 ¢*)2

(e
(OO (¢ q() q'(q ;;?q“)%o)
>_(p(n

and comparing coefficients of ¢" in the extremes of this identity we deduce (1). O

3 Further Properties of t(n)

Corollary 1.2. t(5n +4) =0 (mod 5).
Proof. Ramanujan proved [3, p.287, Th. 359] that

p(bn+4) =0 (mod 5).

So it follows from (1) that to prove 5|t(5n + 4) we need only prove that 5| f(5n + 4).
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2500 = )

= (g% ¢*
(=; 4o (— 0% 4 oo (0% ¢*) o
( ;q*)% (—qQ' q*)2,

- - Z v (by [1, p.21, eq.(2.2.10)])

(— q2, —0*)5
= (_q2’_q2)20 i q2n2—n
(—¢% 612)2%:_0o

= —( Z 2n? _”Z 1700225 4+ 1) ¢ i (mod 5)
(by [3, p.2857 Thm. 357]).

Now the only time an exponent of ¢ in the numerator is congruent to 4 (mod 5) is
when n = 4 (mod 5) and j = 2 (mod 5). But then (25 + 1) = 0 (mod 5), i.e. the
coefficient of ¢°™** in the numerator must be divisible by 5. Given that the denominator
is a function of ¢°, it cannot possibly affect the residue class of any term when it is divided
into the numerator. So,

f(bn+4)=0 (mod 5).

Therefore,
t(bn+4) =0 (mod 5).

]
Corollary 1.3.
o Q(q)PQ(¢")’
nzot(n)q -~ Q(0)Q(¢*)°Q(¢%)*’ (19)
where
Q) = (¢:9) 20)
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w1 (=4 ¢%)oo (=4 ¢%)oo
2 tmi" =5 ((q4;q4)oo(q2;q4)io " (q4;q4)oo(—q2;q4)§o)

2(q% g% (6% ¢M) % (=% a2

- 2(614;(61_4312;:](2(1)40;0(18)2 ( i 7+ Z 4 %)

n=—oo n=—oo

(by [1, p-21, eq.(2.2.10)])

(_Q7 2)00
(g% %)% (a% Z v

OO OO

_ Cna)ale” 0)uo(— % )
(¢* ) (q @)%
_ Q(QQ)QQ(QM)E)
Q7)Q(q")°Q(¢*)*’
where the last line follows from several applications of the two identities
L2y Q(q)
(4070 0@
and
Q(q%)

Corollary 1.3 allows us to multisect the generating function for ¢(n) modulo 4.

Corollary 3.1.

D t(4n)q" = (0'% ") oo (4" ¢ oo (—¢": ¢'*) W (q),

n=>0
D t4n+1)¢" = (04" )oo(—¢"1 ¢ )oc(—¢": ") W (9),
n=>0
D t(4n +2)¢" = q(q"% 0" oo (— 30" (—7°: ¢") W (),
n=0
D t(4n+3)¢" = (4% ¢")oo (=% €)oo (—0"% ") W (9),
n=0

where
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Proof. We begin with Gauss’s special case of the Jacobi Triple Product Identity [1, p.23,
eq.(2.2.13)]

o0

I (¢*1¢%)s _ Qg
(69 Qg
Therefore by Corollary 1.3, we see that

D ot =Wigh) Y (27)

n=>0 n=-—00

2)2

(26)

n=—oo

Now 2n? —n =n (mod 4). So to obtain (3.4)-(3.7) we multisect the right-hand series
in (27) by setting n=4m+j (0 < j < 3), so

3

Zt(n)q” = W(q") Z i G2Am )~ ().

n=>0 j=0 m=—o00

One then obtains four identities arising from the four residue classes mod 4. We carry
out the full calculations in the case j = 0:

Y tlan)g" =W(gh) D ¢

n=>0 m=—00
=W (") (¢ ¢ oo (=0 ¢°) oo (—¢*; ¢*) o0,
a result equivalent to (3.4) once ¢ is replaced by ¢'/4. The remaining results are proved
similarly. O

4 Conclusion

As is obvious, Theorem 1 is easily proved once it is stated, but the sums appearing in (3)
and (4) seem to arise from nowhere.
I note that by considering the cases N = 1,2, 3,4, I discovered empirically that

N
1 —2yq;¢%)o; [N iy
Z Son(n,r,s)q"2"y* = Ty Z (( yg q4)2] { . ;q4] )N (28)

e (¢ )v = (2P¢%aY); LJ
and
 (—2y4; 4°) N
n.r,,s 2 1 —J
Z Sont1(n,r,s)q"2"y* = Z 5 It { . ;q4] (v*q¢*)N . (29)
= N 5o Z q?;q! ]+1 J

One can then pass to (3) and (4) by means of a 3¢, transformation [2, p.242, eq.(I11.13)],
and the proof of Theorem 1 is easiest using (3) and (4).
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The referee notes that both (1.3) and (1.4) can be written as a o¢1. These o¢; series
can both be transformed into 3¢ series, equivalent to (1.4) and (4.2) by (IIL.8) of [2].
There are many mysteries surrounding many of the identities in this paper.

Problem 1. Is there a partition statistic that will divide the partitions enumerated by
t(5n + 4) into five equinumerous classes? Dyson’s rank (largest part minus number of
parts) provides such a division at least for n = 0 and 1 (cf. [1, p.175]).

Problem 2. Identity (7) cries out for combinatorial proof.

I have been informed that A. Sills, A. J. Yee, and C. Boulet have independently found
such proofs in addition to further results.
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