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In honor of my friend Richard Stanley

Abstract

In this paper, we examine partitions π classified according to the number r(π)
of odd parts in π and s(π) the number of odd parts in π′, the conjugate of π. The
generating function for such partitions is obtained when the parts of π are all 5 N .
From this a variety of corollaries follow including a Ramanujan type congruence for
Stanley’s partition function t(n).

1 Introduction

Let π denote a partition of some integer and π′ its conjugate. For definitions of these
concepts, see [1; Ch.1]. Let O(π) denote the number of odd parts of π. For example, if π
is 6 + 5 + 4 + 2 + 2 + 1, then the Ferrers graph of π is

· · · · · ·
· · · · ·
· · · ·
· ·
· ·
·

Reading columns we see that π′ is 6+5+3+3+2+1. Hence O(π) = 2 and O(π′) = 4.
Richard Stanley ([4] and [5]) has shown that if t(n) denotes the number of partitions

π of n for which O(π) ≡ O(π′) (mod 4), then
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t(n) =
1

2

(
p(n) + f(n)

)
, (1)

where p(n) is the total number of partitions of n [1, p. 1], and

∞∑
n=0

f(n)qn =
∏
i=1

(1 + q2i−1)

(1 − q4i)(1 + q4i−2)2
. (2)

Note that t(n) is Stanley’s partition function referred to in the title of this paper.
Stanley’s result for t(n) is related nicely to a general study of sign-balanced, labeled
posets [5]. In this paper, we shall restrict our attention to SN(n, r, s), the number of
partition π of n where each part of π is 5 N, O(π) = r, O(π′) = s. In Section 2, we shall
prove our main result:

Theorem 1.

∑
n,r,s=0

S2N(n, r, s)qnzrys =

∑N
j=0

[
N
j
; q4

]
(−zyq; q4)j(−zy−1q; q4)N−j(yq)2N−2j

(q4; q4)N(z2q2; q4)N

, (3)

and

∑
n,r,s=0

S2N+1(n, r, s)qnzrys =

∑N
j=0

[
N
j
; q4

]
(−zyq; q4)j+1(−zy−1q; q4)N−j(yq)2N−2j

(q4; q4)N(z2q2; q4)N+1

, (4)

where [
N

j
; q

]
=

{
(1−qN )(1−qN−1)...(1−qN−j+1)

(1−qj)(1−qj−1)...(1−q)
, for 0 5 j 5 N ,

0 , if j < 0 or j > N ,
(5)

and
(A; q)M = (1 − A)(1 − Aq) . . . (1 − AqM−1). (6)

From Theorem 1 follows an immediate lovely corollary:

Corollary 1.1.

∑
n,r,s=0

S∞(n, r, s)qnzrys =

∞∏
j=1

(1 + yzq2j−1)

(1 − q4j)(1 − z2q4j−2)(1 − y2q4j−2)
. (7)

From Corollary 1.1, we shall see in Section 3 that

Corollary 1.2.
t(5n + 4) ≡ 0 (mod 5). (8)

Also,
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Corollary 1.3.
∞∑

n=0

t(n)qn =
Q(q2)2Q(q16)5

Q(q)Q(q4)5Q(q32)2
, (9)

where

Q(q) = (q; q)∞ =

∞∏
j=1

(1 − qj). (10)

We conclude with some open questions.

2 The Main Theorem

We begin with some preliminaries about partitions and their conjugates. For a given
partition π with parts each 5 N , we denote by fi(π) the number of appearances of i as a
part of π. The parts of π′ in non-increasing order are thus

N∑
i=1

fi(π),

N∑
i=2

fi(π),

N∑
i=3

fi(π), . . . ,

N∑
i=N

fi(π). (11)

Note that some of the entries in this sequence may well be zero; the non-zero entries
make up the parts of π′. However in light of the fact that 0 is even, we see that O(π′) is
the number of odd entries in the sequence (11) while

O(π) = f1(π) + f3(π) + f5(π) + . . . . (12)

We now define

σN (q, z, y) =

( ∑
n,r,s=0

SN(n, r, s)qnzrys

)
(q4; q4)bN

2
c(z

2q2; q4)bN+1
2

c. (13)

Lemma 2.1. σ0(q, z, y) = 1, and for N = 1,

σ2N(q, z, y) = σ2N−1(q, z, y) + y2Nq2Nσ2N−1(q, z, y
−1) (14)

σ2N−1(q, z, y) = σ2N−2(q, z, y) + zy2N−1q2N−1σ2N−2(q, z, y
−1). (15)

Proof. We shall in the following be dealing with partitions whose parts are all 5 some
given N . We let π̄ be that partition made up of the parts of π that are < N . In light of
(11) we see that if N is a part of π an even number of times, then O(π′) = O(π̄′) and if
N appears an odd number of times in π, then O(π̄′) = N − O(π) (because the removal
of fN(π) from each sum in (11) reverses parity). Initially we note that the only partition
with at most zero parts is the empty partition of 0; hence σ0(q, z, y) = 1.
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Next, for N = 1,

σ2N (q, z, y)

(q4; q4)N(z2q2; q4)N

=
∑

π,parts52N

q
P

ifi(π)zf1(π)+f3(π)+...+f2N−1(π)yO(π′)

=
∑

π,parts52N

f2N (π)even

q
P

ifi(π̄)+2Nf2N (π)zf1(π)+f3(π)+...+f2N−1(π)yO(π̄′)

+
∑

π,parts52N

f2N (π)odd

q
P

ifi(π̄)+2Nf2N (π)zf1(π)+f3(π)+...+f2N−1(π)y2N−O(π′)

=
1

(1 − q4N)

σ2N−1(q, z, y)

(q4; q4)N−1(z2q2; q4)N
+

y2Nq2N

(1 − q4N)

σ2N−1(q, z, y
−1)

(q4; q4)N−1(z2q2; q4)N
,

which is equivalent to (14).
Finally,

σ2N+1(q, z, y)

(q4; q4)N(z2q2; q4)N+1

=
∑

π,parts52N+1

q
P

ifi(π)zf1(π)+f3(π)+...+f2N+1(π)yO(π′)

=
∑

π,parts52N+1

f2N+1(π)even

q
P

ifi(π̄)+(2N+1)f2N+1(π)zf1(π)+...+f2N+1(π)yO(π̄′)

+
∑

π,parts52N+1

f2N+1(π)odd

q
P

ifi(π̄)+(2N+1)f2N+1(π)zf1(π)+...+f2N−1(π)+f2N+1(π)y2N+1−O(π̄′)

=
1

(1 − z2q4N+2)

σ2N (q, z, y)

(q4; q4)N(z2q2; q4)N

+
y2N+1q2N+1z

(1 − z2q4N+2)

σ2N (q, z, y)

(q4; q4)N(z2q2; q4)N

,

which is equivalent to (15) with N replaced by N + 1.

Proof of Theorem 1. We let τ2N (q, z, y) denote the numerator on the right-hand side of
(3) and τ2N+1(q, z, y) denote the numerator on the right-hand side of (4). If we can show
that τN (q, z, y) satisfies (14) and (15), then noting immediately that τ0(q, z, y) = 1, we
will have proved that σN (q, z, y) = τN(q, z, y) for each N = 0 (by mathematical induction)
and will then prove Theorem 1 once we recall (13).
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First,

τ2N−1(q, z, y) + y2Nq2Nτ2N−1(q, z, y
−1)

=
∑
j=0

[
N − 1

j
; q4

]
(−zyq; q4)j+1(−zy−1q; q4)N−j−1(yq)2(N−1−j)

+ y2Nq2N
∑
j=0

[
N − 1

j
; q4

]
(−zy−1q; q4)N−j(−zyq; q4)j(y

−1q)2j

(where j → N − 1 − j in the second sum)

=
∑
j=0

[
N − 1

j − 1
; q4

]
(−zyq; q4)j(−zy−1q; q4)N−j(yq)2(N−j)

+ y2Nq2N
∑
j=0

[
N − 1

j
; q4

]
(−zy−1q; q4)N−j(−zyq; q4)j(y

−1q)2j

(where j → j − 1 in the first sum)

=
∑
j=0

(−zyq; q4)j(−zy−1q; q4)N−j(yq)2(N−j)

{ [
N − 1

j − 1
; q4

]
+ q4j

[
N − 1

j
; q4

]}

=
∑
j=0

(−zyq; q4)j(−zy−1q; q4)N−j(yq)2(N−j)

[
N

j
; q4

]

(by [1, p.35, eq.(3.3.4)])

= τ2N(q, z, y).

Finally,

τ2N (q, z, y) + zy2N+1q2N+1τ(q, z, y−1)

=
∑
j=0

[
N

j
; q4

]
(−zyq; q4)j(−zy−1q; q4)N−j(yq)2N−2j

+ zq2N+1y2N+1
N∑

j=0

[
N

j
; q4

]
(−zy−1q; q4)N−j(−zyq; q4)j(qy

−1)2j

(where j → N − j in the second sum)

=
N∑

j=0

[
N

j
; q4

]
(−zyq; q4)j(−zy−1q; q4)N−j(yq)2N−2j(1 + zyq4j+1)

=
N∑

j=0

[
N

j
; q4

]
(−zyq; q4)j+1(−zy−1q; q4)N−j(yq)2N−2j

= τ2N+1(q, z, y).
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Proof of Corollary 1.1. From Theorem 1 (either (3) or (4) with j → N − j),∑
n,r,s=0

S∞(n, r, s)qnzrys (16)

=
1

(q4; q4)∞(z2q2; q4)∞

∞∑
j=0

1

(q4; q4)j
(−zyq; q4)∞(−zy−1q; q4)j(yq)2j

=
(−zyq; q4)∞

(q4; q4)∞(z2q2; q4)∞

(−zyq3; q4)∞
(y2q2; q4)∞

(by [1, p.17, eq.(2.2.1)])

=
(−zyq; q2)∞

(q4; q4)∞(z2q2; q4)∞(y2q2; q4)∞
,

which is Corollary 1.1.

Corollary 2.1. Identity (1) is valid.

Proof. We note that O(π) ≡ O(π′) (mod 2) because each is clearly congruent (mod 2)
to the number being partitioned. Hence,∑

n=0

t(n)qn =
∑

n,r,s=0
r−s
2

even

S∞(n, r, s)qn (17)

=
1

2

∑
n,r,s=0

S∞(n, r, s)qn(1 + ir−s)

=
1

2

(
(−q; q2)∞

(q4; q4)∞(q2; q4)2∞
+

(−q; q2)∞
(q4; q4)∞(−q2; q4)2∞

)

=
1

2

(
1

(q; q)∞
+

(−q; q2)∞
(q4; q4)∞(−q2; q4)2∞

)

=
1

2

∞∑
n=0

(p(n) + f(n))qn,

and comparing coefficients of qn in the extremes of this identity we deduce (1).

3 Further Properties of t(n)

Corollary 1.2. t(5n + 4) ≡ 0 (mod 5).

Proof. Ramanujan proved [3, p.287, Th. 359] that

p(5n + 4) ≡ 0 (mod 5).

So it follows from (1) that to prove 5|t(5n + 4) we need only prove that 5|f(5n + 4).
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By (2),

∞∑
n=0

f(n)qn =
(−q; q2)

(q4; q4)∞(−q2; q4)2∞
(18)

=
(−q; q4)∞(−q3; q4)∞(q4; q4)∞

(q4; q4)2∞(−q2; q4)2∞

=
1

(−q2;−q2)2∞

∞∑
n=−∞

q2n2−n (by [1, p.21, eq.(2.2.10)])

=
(−q2;−q2)3

∞
(−q2;−q2)5∞

∞∑
n=−∞

q2n2−n

=
1

(−q10;−q10)∞

∞∑
n=∞

q2n2−n

∞∑
j=0

(−1)j+(j+1)/2(2j + 1)qj2+j (mod 5)

(by [3, p.285, Thm. 357]).

Now the only time an exponent of q in the numerator is congruent to 4 (mod 5) is
when n ≡ 4 (mod 5) and j ≡ 2 (mod 5). But then (2j + 1) ≡ 0 (mod 5), i.e. the
coefficient of q5m+4 in the numerator must be divisible by 5. Given that the denominator
is a function of q5, it cannot possibly affect the residue class of any term when it is divided
into the numerator. So,

f(5n + 4) ≡ 0 (mod 5).

Therefore,
t(5n + 4) ≡ 0 (mod 5).

Corollary 1.3. ∑
n=0

t(n)qn =
Q(q)2Q(q16)5

Q(q)Q(q4)5Q(q32)2
, (19)

where
Q(q) = (q; q)∞. (20)
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Proof. By (17),

∑
n=0

t(n)qn =
1

2

(
(−q; q2)∞

(q4; q4)∞(q2; q4)2∞
+

(−q; q2)∞
(q4; q4)∞(−q2; q4)2∞

)

=
(−q; q2)∞

2(q4; q4)2∞(q2; q4)2∞(−q2; q4)2∞

(
(q4; q4)∞(−q2; q4)2

∞ + (q4; q4)∞(q2; q4)2
∞

)

=
(−q; q2)∞

2(q4; q4)2∞(q4; q8)2∞

( ∞∑
n=−∞

q2n2

+

∞∑
n=−∞

(−1)nq2n2

)

(by [1, p.21, eq.(2.2.10)])

=
(−q; q2)∞

(q4; q4)2∞(q4; q8)2∞

∞∑
n=−∞

q8n2

=
(−q; q2)∞(q16; q16)∞(−q8; q16)2

∞
(q4; q4)2∞(q4; q8)2∞

=
Q(q2)2Q(q16)5

Q(q)Q(q4)5Q(q32)2
,

where the last line follows from several applications of the two identities

(q; q2)∞ =
Q(q)

Q(q2)

and

(−q; q2)∞ =
Q(q2)2

Q(q)Q(q4)
.

Corollary 1.3 allows us to multisect the generating function for t(n) modulo 4.

Corollary 3.1. ∑
n=0

t(4n)qn = (q16; q16)∞(−q7; q16)∞(−q9; q16)∞W (q), (21)

∑
n=0

t(4n + 1)qn = (q16; q16)∞(−q5; q16)∞(−q11; q16)∞W (q), (22)

∑
n=0

t(4n + 2)qn = q(q16; q16)∞(−q; q16)∞(−q15; q16)∞W (q), (23)

∑
n=0

t(4n + 3)qn = (q16; q16)∞(−q3; q16)∞(−q13; q16)∞W (q), (24)

where

W (q) =
Q(q4)5

Q(q)5Q(q8)2
. (25)
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Proof. We begin with Gauss’s special case of the Jacobi Triple Product Identity [1, p.23,
eq.(2.2.13)]

∞∑
n=−∞

q2n2−n =
(q2; q2)∞
(q; q2)∞

=
Q(q2)2

Q(q)
(26)

Therefore by Corollary 1.3, we see that

∑
n=0

t(n)qn = W (q4)
∞∑

n=−∞
q2n2−n. (27)

Now 2n2 −n ≡ n (mod 4). So to obtain (3.4)–(3.7) we multisect the right-hand series
in (27) by setting n = 4m + j (0 5 j 5 3), so

∑
n=0

t(n)qn = W (q4)

3∑
j=0

∞∑
m=−∞

q2(4m+j)2−(4m+j).

One then obtains four identities arising from the four residue classes mod 4. We carry
out the full calculations in the case j = 0:

∑
n=0

t(4n)q4n = W (q4)

∞∑
m=−∞

q32m2−4m

= W (q4)(q64; q64)∞(−q28; q64)∞(−q36; q64)∞,

a result equivalent to (3.4) once q is replaced by q1/4. The remaining results are proved
similarly.

4 Conclusion

As is obvious, Theorem 1 is easily proved once it is stated, but the sums appearing in (3)
and (4) seem to arise from nowhere.

I note that by considering the cases N = 1, 2, 3, 4, I discovered empirically that

∑
n,r,s=0

S2N (n, r, s)qnzrys =
1

(q4; q4)N

N∑
j=0

(−zyq; q2)2j

(z2q2; q4)j

[
N

j
; q4

]
(y2q2)N−j (28)

and

∑
n,r,s=0

S2N+1(n, r, s)qnzrys =
1

(q4; q4)N

N∑
j=0

(−zyq; q2)2j+1

(z2q2; q4)j+1

[
N

j
; q4

]
(y2q2)N−j. (29)

One can then pass to (3) and (4) by means of a 3φ2 transformation [2, p.242, eq.(III.13)],
and the proof of Theorem 1 is easiest using (3) and (4).
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The referee notes that both (1.3) and (1.4) can be written as a 2φ1. These 2φ1 series
can both be transformed into 3φ1 series, equivalent to (1.4) and (4.2) by (III.8) of [2].

There are many mysteries surrounding many of the identities in this paper.

Problem 1. Is there a partition statistic that will divide the partitions enumerated by
t(5n + 4) into five equinumerous classes? Dyson’s rank (largest part minus number of
parts) provides such a division at least for n = 0 and 1 (cf. [1, p.175]).

Problem 2. Identity (7) cries out for combinatorial proof.

I have been informed that A. Sills, A. J. Yee, and C. Boulet have independently found
such proofs in addition to further results.
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