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Abstract
R. Redheffer described an n×n matrix of 0’s and 1’s the size of whose determi-

nant is connected to the Riemann Hypothesis. We describe the permutations that
contribute to its determinant and its permanent in terms of integer factorizations.
We generalize the Redheffer matrix to finite posets that have a 0 element and find
the analogous results in the more general situation.

1 Introduction

In 1977, R. Redheffer described a matrix that is closely connected to the Riemann Hy-
pothesis (RH). Let Rn be the n × n matrix whose (i, j) entry is 1 if i|j or if j = 1, and
otherwise is 0, for 1 ≤ i, j ≤ n. For example,

R8 =




1 1 1 1 1 1 1 1
1 1 0 1 0 1 0 1
1 0 1 0 0 1 0 0
1 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1




He showed that the proposition “for every ε > 0 we have | det Rn| = O(n
1
2
+ε)” is equivalent

to RH. More precisely, he showed that

det (Rn) =
n∑

k=1

µ(k), (1)
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where µ is the classical Möbius function, and the equivalence of the O(n
1
2
+ε) growth bound

of the right side of (1) to the RH is well known (see, e.g., [10], Thm. 14.25(C)).
Here we will first describe the permutations of n letters that contribute to the deter-

minant of Rn, i.e., the permutations that do not hit any 0 entries in the matrix. Then
we will count those permutations, which is to say that we will evaluate the permanent of
the Redheffer matrix. It turns out that this permanent is also nicely expressible in terms
of well known number theoretic functions.

After that we will generalize the Redheffer matrix to posets other than the positive
integers under divisibility, and find an application in the case of the Boolean lattice.

2 The permanent

Which permutations of n letters contribute a ±1 to the determinant above? Let

τ = Ri1,1Ri2,2 . . . Rin,n

be a nonvanishing term of that determinant. Fix some integer j1, 2 ≤ j1 ≤ n. Then in
the term τ there is a factor Rj1,j2 for some unique j2. If j2 6= j1, then there is also a factor
Rj2,j3 for some j3, etc. Finally, we will have identified a collection of nonvanishing factors
(cycle) σ = Rj1,j2Rj2,j3 . . . Rjk,j1 in the term τ . By the definition of the matrix, we must
have j1 < j2 ≤ j3 ≤ . . . ≤ jk ≤ j1, which is a contradiction. Hence it must be that either
j1 = 1 or j2 = j1.

It follows that in any collection σ of contributing factors, we either have j2 = j1,
i.e., σ has just a single factor in it, namely a diagonal element of the matrix, or else
j1 = 1. Suppose j1 = 1. Then the collection σ is of the form R1,j2Rj2,j3 . . . Rjk,1, and for
this to give a nonzero contribution what we need is that j2|j3| . . . |jk, i.e., the sequence
j2, j3, . . . , jk forms a chain under divisibility.

We can therefore match nonvanishing contributions to the determinant of Rn with
permutations in which the cycle that contains 1 is a division chain, and the other cycles
are all fixed points.

To phrase this in more a traditional number theoretic way, recall that an ordered
factorization of an integer m is a representation m = a1a2 . . . ak, in which all ais are ≥ 2
and the order of the factors is important. Now in our case, the successive quotients

j2/j1, j3/j2, . . . , jk/jk−1 (j1 = 1)

are an ordered factorization of some integer (namely jk) which is ≤ n. The number of
contributing permutations is therefore equal to the number of all ordered factorizations
of all positive integers ≤ n, plus 1 more to account for the empty factorization. Hence we
have the following result.

Theorem 1 The permanent of the Redheffer matrix Rn is
∑n

k=1 f(k), where f(k) is the
number of ordered factorizations of the integer k. The permutations that contribute to this
permanent are, if n > 1, those in which there is just one cycle of length > 1, the letter 1
lives in that cycle, and the elements of that cycle form a division chain.
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For n = 1 to 10 the sequence of their values is 1, 2, 3, 5, 6, 9, 10, 14, 16, 19. It is known [5]
that this sequence grows like Cna for large n, where a = ζ−1(2) = 1.73...

It is now easy to give another proof of Redheffer’s evaluation of the determinant. If
the cycle that contains 1 contains k letters altogether, the highest of which is r, then the
contributing permutation has n − k + 1 cycles on n letters, so its sign is (−1)k−1. The
contribution of all such permutations in which the highest letter of the cycle that contains
1 is r is

∑
φ(−1)k(φ), extended over all ordered factorizations φ of r, where k(φ) is the

number of factors in φ. It is a known result from number theory (for a bijective proof see
[3]) that this sum is ∑

φ

(−1)k(φ) = µ(r),

from which the evaluation (1) follows by summing on r.

3 Generalizations

The analysis of the preceding section can be carried out in general posets. Let (S,�) be a
finite poset that has a 0 element, and suppose the elements of S have been labeled by the
positive integers so that the ζ matrix of S is upper-triangular. We define the Redheffer
matrix R(S) of S to be the result of replacing the first column (i.e., the column that is
labeled by the 0-element) of the ζ-matrix of S by a column of all 1’s.

By the argument of the preceding section, the permanent of R(S) is the number of
�-chains in S that contain the 0 element. The permutations of [ |S| ] that contribute to
the permanent are those all of whose cycles are fixed points except for the cycle that
contains 0, which must be a chain in S. The determinant of R(S) is the sum of (−1)L(C)

over all chains C in P − {0}, where L(C) is the length of the chain C. If we group the
terms of this sum according to the largest element of each chain C, then the contributions
whose largest element is some fixed x sum up to µ(0, x), where µ is the Möbius function of
the poset. If we sum over x we find that the determinant of the general Redheffer matrix
is

∑
x µ(0, x).

Theorem 2 Let R = R(S) be the Redheffer matrix of a finite poset S that contains a
0 element. Then the permanent of R is the number of chains of S that contain the 0
element, and the determinant of R is

∑
x∈S µ(0, x), where µ is the Möbius function of S.

If the poset has a “1” element then this sum is 0, and the Redheffer matrix is singular.
Thus in the Boolean lattice Bn on n elements, for example, the 2n × 2n Redheffer matrix
is singular. Its permanent is the number of chains in Bn that contain {∅}. These numbers

1, 2, 6, 26, 150, 1082, . . .

form sequence number A00629 in Sloane’s database.
It is easy to write out the inverse of the generalized Redheffer matrix. This follows at

once from the formula for finding the inverse of a matrix that differs from one of known
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inverse by a matrix of rank 1. The formula is

(B + uvT )−1 = B−1 − B−1uvT B−1

1 + (v, B−1u)
.

It yields, in our case,

(R−1)x,y = µ(x, y) − µ(0, y)
∑

z 6=0 µ(x, z)∑
z µ(0, z)

. (x, y ∈ S)

4 Some related literature

In a general partially ordered set, Richard Stanley [9] has introduced a matrix that is
closely related to ours. Indeed, take the Redheffer matrix R(S) of some partially ordered
set S, in the sense of this paper, and subtract its first column of all 1’s from every other
column, and then multiply each of columns 2, 3, . . . , n by −1. Then expand the determi-
nant by the first row, and only one term, namely det (A − I), will survive, where A is the
matrix considered by Stanley in [9]. According to his main theorem, this determinant is
an alternating sum of chain lengths, which is equivalent to the determinantal evaluation
in our Theorem 2 by Philip Hall’s theorem.

In the original case, where the partially ordered set is the set of integers 1, 2, . . . , n
under divisibility, a number of papers have explored spectral properties of R. Barrett,
Forcade and Pollington [1] showed that all but blog 2nc + 1 of the n eigenvalues of R are
equal to 1, and also that there is an eigenvalue xn ∼ √

n. Jarvis [6] proved that there is a
real negative eigenvalue ∼ −√

n, and that the other eigenvalues cannot exceed xn/ log n
in modulus. Vaughan [11] found quite sharp estimates for the two dominant eigenvalues,
and showed that the eigenvalues that are neither dominant nor equal to 1 are o((log n)2/5).
Added in proof: our evaluation of the permanent of the original matrix of Redheffer, given
in Theorem 1 above, had been found by Vladeta Jovovic in 2003 (see sequence A025523
in Sloane’s database [8] of integer sequences).
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