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Abstract

The leading term of a convolution of quasipolynomials with periods p and q is
periodic with period gcd(p, q), smaller than expected. The degree of the convolution
is usually d+e+1; we characterize the exceptions. To do this we need to characterize
the null space of a circulant matrix.

We wish to point out a simple yet unexpected property of quasipolynomial calculus.
A quasipolynomial is a function of positive integers that is given by a cyclically repeating
sequence of polynomials; that is,

f(t) =

d∑
k=0

at,kt
k for t = 1, 2, 3, . . . ,

where the coefficient at,k is a periodic function of t for each k. Suppose at,k cycles with
period pk; then p := lcm(p0, p1, . . . , pd) is the period of f , meaning that f(t) = ft(t)
where f1, f2, . . . is a sequence of polynomials, ft+p = ft for all t, and p is the smallest
positive number for which that is so. The degree of f is the largest degree of any ft. A
quasipolynomial function extends to all integers, but we shall not need that fact. It is well
known that a quasipolynomial is a function of positive integers whose generating function

Gf(x) :=
∑
t≥1

f(t)xt
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is a rational function with denominator (1−xp)d+1 and with numerator of the form xϕ(x)
where deg(ϕ) < p(d + 1). (See [7, Section 4.4]; slight adjustments are needed because
Stanley’s quasipolynomials are defined for t ≥ 0.)

We are interested in concocting a new function F by what might be called discrete
integration or, in general, convolution. Here is a simple example:

(1) F (t) := f(t− q) + f(t− 2q) + · · · =
∑

0<s<t
s≡tmod q

f(s).

This example arises in the course of counting semimagic squares [3, 4]. Another example,
from counting the same squares in a different way, has the form

(2) F (t) :=
∑

0<s<t

(t− s− 1)f(s).

These are examples of convolution of quasipolynomials:

(3) F (t) :=
∑

0<s<t

f(s)g(t− s).

In (1), g is the function 1q defined by 1q(r) := 1 if q | r and 0 if not, while in (2),
g(r) = r − 1.

It is obvious that F has degree at most d+ e+1 where d := deg f and e := deg g, and
that the period of F divides the least common multiple l := lcm(p, q) of the periods p of
f and q of g; for letting

Gf(x) =
xϕ(x)

(1 − xp)d+1
and Gg(x) =

xψ(x)

(1 − xq)e+1
,

then

GF (x) = Gf (x)Gg(x) =
x2ϕ(x)ψ(x)

(1 − xp)d+1(1 − xq)e+1
=

xΦ(x)

(1 − xl)d+e+2

where Φ is a polynomial of degree less than (d+ e+ 2)l.
It is not as obvious, and seems not to have been noticed before, that the coefficient

of td+e+1 in F has period that divides the greatest common divisor gcd(p, q). (That is
not necessarily so for lower coefficients.) We formulate this in a slightly stronger way as
a theorem. Additional notation:

g(t) =

e∑
k=0

bt,kt
k, F (t) =

d+e+1∑
k=0

ct,kt
k,

and qk := period of bt,k, Pk := period of ct,k, as functions of t with k held fixed.

Theorem 1 Pd+e+1 divides gcd(pd, qe), and in general

Pk | lcm
{
pk+1, . . . , pd, qk+1, . . . , qe, gcd(pl, qm) : l +m = k with 0 ≤ l ≤ d, 0 ≤ m ≤ e

}
.
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Proof. For the first part it suffices to consider quasipolynomials f(t) = att
d and

g(t) = btt
e with periods p and q, respectively. The coefficient cd+e+1 is easily seen to be a

positive constant times

γt :=

l−1∑
σ=0

aσbt−σ

(taking subscripts modulo l). An obvious period of γt is q. Another is p, since

∑
σ

aσbt+p−σ =
∑

σ

aσ−pbt−(σ−p) =
∑

σ

aσbt−σ.

Thus, gcd(p, q) is a period.
The second part follows by routine calculations.

Thus, for example, in F the coefficient of td+e+1 is constant if g is a polynomial, or if
f has constant leading coefficient, as when f is the Ehrhart quasipolynomial of a rational
polytope [7, Section 4.6, pp. 235ff.].

One might call cd+e+1 the generic leading coefficient of F because, although in general
it is the leading coefficient, it could be identically zero. We give two simple criteria for
this to occur. In Cn let

η(j)
n := (1, ωj, ω2j, . . . , ω(n−1)j)

where ω is a primitive nth root of unity. The circulant matrix of a ∈ Cn is

Circ(a) :=




a0 a1 · · · an−1

an−1 a0 · · · an−2
...

...
...

a1 a2 · · · a0


 .

Theorem 2 Let n be any multiple of lcm(pd, qe) and let k := gcd(pd, qe). The following
properties of F are equivalent:

(i) F has degree less than d+ e+ 1.

(ii) a := (ad,1, ad,2, . . . , ad,n) and b := (be,1, be,2, . . . , be,n) belong to subspaces generated by

complementary subsets of {η(j)
n }n−1

j=0 in Cn.

(iii) â := (âd,1, âd,2, . . . , âd,k) and b̂ := (b̂e,1, b̂e,2, . . . , b̂e,k) belong to subspaces generated by

complementary subsets of {η(j)
k }k−1

j=0 in Ck, where

âj := aj + aj+k + · · ·+ aj+(p−k) and b̂j := bj + bj+k + · · · + bj+(q−k).

Proof. We apply Lemma 3 to deduce equivalence of (i) and (ii). The proof that
(i) and (iii) are equivalent is similar but it begins by noting that (Circ b∗)aT = 0 ⇐⇒
(Circ b̂∗)âT = 0 due to Theorem 1.

the electronic journal of combinatorics 11(2) (2004), #R11 3



If b = (b0, b1, . . . , bn−1) ∈ C
n, define

b∗ := (bn−1, . . . , b1, b0).

Also, from now on η(j) denotes η
(j)
n .

Lemma 3 For vectors a, b ∈ Cn, and taking subscripts modulo n, we have aT ∈ Nul Circ(b∗)
⇐⇒ bT ∈ Nul Circ(a∗) ⇐⇒ ∑n−1

σ=0 aσbτ−σ = 0 for all τ = 0, 1, . . . , n− 1 ⇐⇒ a and b
belong to subspaces generated by complementary subsets of {η(j)}n−1

j=0 .

First Proof. The set {η(j)}n−1
j=0 is a basis of Cn. We can therefore write a =

∑n−1
j=0 αjη

(j)

and b =
∑n−1

j=0 βjη
(j). Then

∑
σ

aσbτ−σ =
∑

σ

∑
j

αjω
jσ

∑
k

βkω
k(τ−σ) =

∑
j

∑
k

αjβkω
kτζ(ωj−k)

where ζ(x) := 1 + x+ · · ·+ xn−1. But ζ(ωm) = 0 if 0 < m < n, so

∑
σ

aσbτ−σ = n
∑

k

αkβkω
kτ .

Now define the polynomial θ(x) :=
∑n−1

k=0 αkβkx
k. We have shown that

∑
σ aσbτ−σ = 0 if

and only if ωτ is a zero of θ. It follows that, if
∑

σ aσbτ−σ = 0 for all τ , then θ is identically
zero; that is, for each k = 0, 1, . . . , n − 1, either αk or βk equals 0; and the converse is
obvious. That proves the lemma.

Let Ω(a) be the smallest subset of {η(j)}n−1
j=0 required to span a and Ω c(a) its com-

plementary subset. That is, Ω c(a) = {η(j) : a · η(j) = 0}, the dot denoting the standard
Hermitian inner product. Then

(4) Nul Circ(a∗) = 〈Ω c(a)〉,
the linear span of Ω c(a), by Lemma 3.

Second Proof. The set {η(j)}n−1
j=0 is an orthogonal basis of eigenvectors of any circulant

matrix of order n; see [5]. The fact that Circ(a)η(j) = (a · η(−j))η(j) shows that η(j) is an
eigenvector of Circ(a) ⇐⇒ a ·η(−j) = 0 ⇐⇒ η(−j) ∈ Ω c(a) ⇐⇒ η(j) ∈ Ω c(a), the set of
complex conjugates of vectors in Ω c(a). Hence, 〈Ω c(a)〉 ⊆ Nul Circ(a). The eigenvalues
of Circ(a) being the numbers a · η(−j), we see that dim Nul Circ(a) = |Ω c(a)|, whence

Nul Circ(a) = 〈Ω c(a)〉.
Now, a∗ · η(j) = ω−j(a · η(−j)), so Ω c(a∗) = Ω c(a), thus (4) holds and the lemma follows.

Suppose f fixed in the convolution (3), and fix n to be a multiple of p. Since |Ω(a)|
is independent of n, in the vector space of quasipolynomials g of period dividing n, the
subspace of those for which degF ≤ d+ e has codimension |Ω(a)|.
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In some cases it is obvious without Theorem 2 that deg F = d + e+ 1. For instance,
of the leading coefficients of f and g, one may be constant and the other nonnegative—as
for instance in Equation (1) when f has constant leading term.

That is the situation in the enumeration of semimagic squares in [3]. Such a square is a
q× q array of positive integers, all different, in which every row and column has the same
sum, called the magic sum. Every semimagic square can be normalized by permuting
rows and columns so that x11 = min xjk, the top row and left column are increasing, and
(by a diagonal reflection if needed) x21 > x12. By subtracting x11 from every entry we
get a supernomalized square, which is positive except in the top left corner. Let F (t)
be the number of nomralized squares with magic sum t, and let f(s) be the number of
supernormalized squares with magic sum s, for s, t > 0. These functions satisfy (1).
Therefore, if f has constant leading term, by Theorem 1 so does F . In fact, both f and
F are generalized Ehrhart quasipolynomials. Let P be the polytope of normalized doubly
stochastic matrices (normalized as above but with weak rather than strict inequalities)
and Q the subpolytope of those in which x11 = 0. The normalized, or supernormalized,
squares are the integral points inside the dilation tP , or sQ, that lie in no hyperplane of
the form xjk = xlm; thus they are counted by an “inside-out” Ehrhart quasipolynomial
(see [2]) whose leading coefficient is the volume of the polytope. (See [4].) The latter
observation explains why f has constant leading coefficient; and it gives a geometrical
explanation for the constancy of that of F , independent of the algebraic explanation
supplied by Theorem 1. The geometrical interpretation here of Equation (1) is that P is
dissected into slices of one less dimension that are translates of Q. This analysis makes
it feasible to carry out an exact computation for q = 3 in [3, 4].

A different way of counting semimagic squares leads to an equation of the form (2).
Instead of the magic sum, let t be a strict upper bound on the values of the numbers xjk;
that is, 0 < xjk < t. For normalized 3 × 3 squares, the largest entry is x13 [4]. Taking
F (t) to be the number of 3 × 3 semimagic squares with all xjk < t, and f(s) the number
of supernormalized squares with x33 = s, Equation (2) holds. Again, geometry shows
that f has constant leading coefficient and either algebra (an obvious case of Theorem
1) or geometry implies constancy of the leading coefficient of F ; acording to Theorem 1
one reaches the same conclusion for every quasipolynomial f . We use this approach to
evaluate F (t) in [3, 4].

It was the combination of these two semimagic enumerations that suggested Theorem
1.

As a final example we consider (1) with an extremely simple quasipolynomial; we let
f = 1p. For positive t, F (t) is the number of representations t = jp+kq with j, k positive
integers. The point of this example is to show that Theorem 1 is in some sense best
possible, because the period of the second leading coefficient can be equal to lcm(p, q).
For simplicity we assume p and q are relatively prime; then l := lcm(p, q) = pq. By
Theorem 1 we know that F (t) = c1t+ ct,0. From its definition, F takes integer values and
F (t) = F (t− l) + 1 if t > l. It follows that F cannot have a period less than l; thus, ct,0
has period l.

We show an exact formula for ct,0. Let τ denote the least nonnegative residue of
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tmod l. Then F (t) = F (τ) + bt/lc. As F (l) = 1, we know F (0) = 0. Thus, F (τ) = 0 or
1 for 0 ≤ τ < l and

(5) F (t) =
1

l
t+

[
F (τ) − τ

l

]
.

Some will recognize F as the counting function involved with the two-variable Frobe-
nius coin problem when every coin denomination must be used at least once. (In the
standard problem it is not obligatory to use every denomination. The problems are ob-
viously equivalent. We call our counting function strict.) The strict function for the
Frobenius problem with m coins of relatively prime denominations p1, . . . , pm (cognate to
the standard counting function pA of [1]) is the convolution of 1p1, . . . , 1pm, better known
by its generating function

∏ [
xpj/(1 − xpj)

]
. The formula (5) for the strict function of

two variables should be compared to that of Popoviciu ([6]; or see [1]) for the standard
2-coin function, where nonpolynomiality is handled in a different way.
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