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Abstract
A partition structure is a sequence of probability distributions for πn, a random

partition of n, such that if πn is regarded as a random allocation of n unlabeled
balls into some random number of unlabeled boxes, and given πn some x of the n
balls are removed by uniform random deletion without replacement, the remaining
random partition of n − x is distributed like πn−x, for all 1 ≤ x ≤ n. We call a
partition structure regenerative if for each n it is possible to delete a single box of
balls from πn in such a way that for each 1 ≤ x ≤ n, given the deleted box contains
x balls, the remaining partition of n − x balls is distributed like πn−x. Examples
are provided by the Ewens partition structures, which Kingman characterised by
regeneration with respect to deletion of the box containing a uniformly selected ran-
dom ball. We associate each regenerative partition structure with a corresponding
regenerative composition structure, which (as we showed in a previous paper) is
associated in turn with a regenerative random subset of the positive halfline. Such
a regenerative random set is the closure of the range of a subordinator (that is an
increasing process with stationary independent increments). The probability dis-
tribution of a general regenerative partition structure is thus represented in terms
of the Laplace exponent of an associated subordinator, for which exponent an in-
tegral representation is provided by the Lévy-Khintchine formula. The extended
Ewens family of partition structures, previously studied by Pitman and Yor, with
two parameters (α, θ), is characterised for 0 ≤ α < 1 and θ > 0 by regeneration
with respect to deletion of each distinct part of size x with probability proportional
to (n − x)τ + x(1 − τ), where τ = α/(α + θ).
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1 Introduction and main results

This paper is concerned with sequences of probability distributions for random partitions
πn of a positive integer n. We may represent πn as a sequence of integer-valued random
variables

πn = (πn,1, πn,2, . . .) with πn,1 ≥ πn,2 ≥ · · · ≥ 0

so πn,i is the size of the ith largest part of πn, and
∑

i πn,i = n. We may also treat πn

as a multiset of positive integers with sum n, regarding πn as a random allocation of n
unlabeled balls into some random number of unlabeled boxes, with each box containing
at least one ball. We call πn regenerative if it is possible to delete a single box of balls
from πn in such a way that for each 1 ≤ x ≤ n, given the deleted box contained x balls,
the remaining partition of n − x balls is distributed as if x balls had been deleted from
πn by uniform random sampling without replacement. We spell this out more precisely
in Definition 1 below.

To be more precise, we assume that πn is defined on some probability space (Ω,F , P)
which is rich enough to allow various further randomisations considered below, including
the choice of some random part Xn ∈ πn, meaning that Xn is one of the positive integers
in the multiset πn with sum n. The distribution of πn is then specified by some partition
probability function

p(λ) := P(πn = λ) (λ ` n) (1)

where the notation λ ` n indicates that λ is a partition of n. The joint distribution of
πn and Xn is determined by the partition probability function p and some deletion kernel
d = d(λ, x), λ ` n, 1 ≤ x ≤ n, which describes the conditional distribution of Xn given
πn, according to the formula

p(λ)d(λ, x) = P(πn = λ, Xn = x). (2)

The requirement that Xn is a part of πn makes d(λ, x) = 0 unless x is a part of λ, and∑
x∈λ

d(λ, x) = 1 (3)

for all partitions λ of n. Without loss of generality, we suppose further that πn is the se-
quence of ranked sizes of classes of some random partition Πn of the set [n] := {1, . . . , n},
where conditionally given πn all possible values of Πn are equally likely. (Here and through-
out the paper, we use the term ranked to mean that the terms of a sequence are weakly
decreasing.) Equivalently, Πn is an exchangeable random partition of [n] as defined in
[15]. For 1 ≤ m ≤ n let Πm be the restriction of Πn to [m], and let πm be the se-
quence of ranked sizes of classes of Πm. We say that the random partition πm of m is
derived from πn by random sampling, and call the distributions of the random partitions
πm for 1 ≤ m ≤ n sampling consistent. A partition structure is a function p(λ) as in (1)
for a sampling consistent sequence of distributions of πn for n = 1, 2, . . .. This concept
was introduced by Kingman [10], who established a one-to-one correspondence between
partition structures p and distributions for a sequence of nonnegative random variables
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V1, V2, . . . with V1 ≥ V2 ≥ . . . and
∑

i Vi ≤ 1. In Kingman’s paintbox representation of
p, the random partition πn of n is constructed as follows from (Vk) and a sequence of
independent random variables Ui with uniform distribution on [0, 1], with (Ui) and (Vk)
are independent: πn as in (1) is defined to be the sequence of ranked sizes of blocks of the
partition of [n] generated by a random equivalence relation ∼ on positive integers, with
i ∼ j if and only if either i = j or both Ui and Uj fall in Ik for some k, where the Ik are
some disjoint random sub-intervals of [0, 1] of lengths Vk. See also [15] and papers cited
there for further background.

Definition 1 Call a random partition πn of n regenerative, if it is possible to select a
random part Xn of πn in such a way that for each 1 ≤ x < n, conditionally given that Xn =
x the remaining partition of n−x is distributed according to the unconditional distribution
of πn−x derived from πn by random sampling. Then πn may also be called regenerative
with respect to deletion of Xn, or regenerative with respect to d if the conditional law of
Xn given πn is specified by a deletion kernel d as in (2). Call a partition structure p
regenerative if the corresponding πn is regenerative for each n = 1, 2, . . ..

According to this definition, πn is regenerative with respect to deletion of some part
Xn ∈ πn if and only if for each partition λ of n and each part x ∈ λ,

P(πn = λ, Xn = x) = P(Xn = x) P(πn−x = λ − {x}) (λ ` n) (4)

where λ− {x} is the partition of n− x obtained by deleting the part x from λ, and πn−x

is derived from πn by sampling. Put another way, πn is regenerative with respect to a
deletion kernel d iff

p(λ)d(λ, x) = q(n, x)p(λ − {x}) , x ∈ λ (λ ` n) (5)

where p(µ) := P(πm = µ) for µ ` m and 1 ≤ m ≤ n and

q(n, x) :=
∑

{λ`n : x∈λ}
d(λ, x)p(λ) = P(Xn = x) (1 ≤ x ≤ n) (6)

is the unconditional probability that the deletion rule removes a part of size x from πn.
A well known partition structure is obtained by letting πn be the partition of n gener-

ated by the sizes of cycles of a uniformly distributed random permutation σn of [n]. If Xn

is the size of the cycle of σn containing 1, then πn is regenerative with respect to deletion
of Xn, because given Xn = x the remaining partition of n−x is generated by the cycles of
a uniform random permutation of a set of size n − x. In this example, the unconditional
distribution q(n, ·) of Xn is uniform on [n]. The deletion kernel is

d(λ, x) =
xax(λ)

n
(λ ` n) (7)

where ax(λ) is the number of parts of λ of size x, so
∑n

x=1 xax(λ) = n. More generally,
a part Xn is chosen from a random partition πn of n according to (7) may be called a
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size-biased part of πn. According to a well known result of Kingman [10], if a partition
structure is regenerative with respect to deletion of a size-biased part, then it is governed
by the Ewens sampling formula

p(λ) =
n!θ`

(θ)n↑1

∏
r

1

rarar!
(8)

for some parameter θ ≥ 0, where λ is encoded by its multiplicities ar = ar(λ) for r =
1, 2, . . ., with

` = Σar , n = Σ rar (9)

and

(θ)n↑b :=
n∏

i=1

(θ + (i − 1)b).

The case θ = 1 gives the distribution of the partition generated by cycles of a uniform
random permutation. Pitman [11, 12] introduced a two-parameter extension of the Ewens
family of partition structures, defined by the sampling formula

p(λ) =
n!(θ)`↑α
(θ)n↑1

∏
r

(
(1 − α)r−1↑1

r!

)ar 1

ar!
(10)

for suitable parameters (α, θ), including

{(α, θ) : 0 ≤ α ≤ 1, θ ≥ 0} (11)

where boundary cases are defined by continuity. See [15] for a review of various applica-
tions of this formula. The result of [4, Theorem 8.1 and Corollary 8.2] shows that each
(α, θ) partition structure with parameters subject to (11) is regenerative with respect to
the deletion kernel

d(λ, r) =
ar

n

(n − r)τ + r(1 − τ)

1 − τ + (` − 1)τ
, (12)

where τ = α/(α + θ) ∈ [0, 1], and (3) follows easily from (9). In Section 2 we establish:

Theorem 2 For each τ ∈ [0, 1], the only partition structures which are regenerative
with respect to the deletion kernel (12) are the (α, θ) partition structures subject to (11)
with α/(α + θ) = τ .

The following three cases are of special interest:

Size-biased deletion This is the case τ = 0: each part r is selected with probability
proportional to r. Here, and in following descriptions, we assume that the parts of a
partition are labeled in some arbitrary way, to distinguish parts of equal size. In particular,
if πn is the partition of n derived from an exchangeable random partition Πn of [n], then
for each i ∈ [n] the size Xn(i) of the part of Πn containing i defines a size-biased pick
from the parts of πn. Theorem 2 in this case reduces to Kingman’s characterisation
of the Ewens family of (0, θ) partition structures. Section 7 compares Theorem 2 with
another characterisation of (α, θ) partition structures provided by Pitman [13] in terms
of a size-biased random permutation of parts defined by iterated size-biased deletion.
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Unbiased (uniform) deletion This is the case τ = 1/2: given that πn has ` parts,
each part is chosen with probability 1/`. Iteration of this operation puts the parts of πn

in an exchangeable random order. In this case, the conclusion of Theorem 2 is that the
(α, α) partition structures for 0 ≤ α ≤ 1 are the only partition structures invariant under
uniform deletion. This conclusion can also be drawn from Theorem 10.1 of [4]. As shown
in [12, 14], the (α, α) partition structures are generated by sampling from the interval
partition of [0, 1] into excursion intervals of a Bessel bridge of dimension 2−2α. The case
α = 1/2 corresponds to excursions of a standard Brownian bridge.

Cosize-biased deletion In the case τ = 1, each part of size r is selected with probabil-
ity proportional to the size n − r of the remaining partition. The conclusion of Theorem
2 in this case is that the (α, 0) partition structures for 0 ≤ α ≤ 1 are the only partition
structures invariant under this operation. As shown in [12, 14], these partition structures
are generated by sampling from the interval partition generated by excursion intervals of
an unconditioned Bessel process of dimension 2 − 2α. The case α = 1/2 corresponds to
excursions of a standard Brownian motion.

The next theorem, which is proved in Section 3, puts Theorem 2 in a more general
context:

Theorem 3 For each probability distribution q(n, · ) on [n], there exists a unique joint
distribution of a random partition πn of n and a random part Xn of πn such that Xn has
distribution q(n, ·) and πn is regenerative with respect to deletion of Xn.

Let πm, 1 ≤ m ≤ n be derived from πn by random sampling. Then for each 1 ≤ m ≤ n
the random partition πm is regenerative with respect to deletion of some part Xm, whose
distribution q(m, ·) is that of Hm given Hm > 0, where Hm is the number of balls in the
sample of size m which fall in some particular box containing Xn balls in πn.

The main point of this theorem is its implication that if πn is regenerative with respect
to deletion of Xn according to some deletion kernel d(λ, ·), which might be defined in the
first instance only for partitions λ of n, then there is for each 1 ≤ m ≤ n an essentially
unique way to construct d(λ, ·) for partitions λ of m, so that formula (5) holds also for m
instead of n. Iterated deletion of parts of πn according to this extended deletion kernel
puts the parts of πn in a particular random order, call it the order of deletion according to
d. This defines a random composition of n, that is a sequence of strictly positive integer
random variables (of random length) with sum n. We may represent such a random
composition of n as an infinite sequence of random variables, by padding with zeros. The
various distributions involved in this representation of πn are spelled out in the following
corollary, which follows easily from the theorem.

Corollary 4 In the setting of the preceding theorem,

(i) for each 1 ≤ m ≤ n the distribution q(m, ·) of Hm is derived from q(n, ·) by the
formula

q(m, k) =
q0(m, k)

1 − q0(m, 0)
(1 ≤ k ≤ m) (13)
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where

q0(m, k) :=

n∑
x=1

q(n, x)

(
n−x
m−k

)(
x
k

)(
n
m

) (0 ≤ k ≤ m).

(ii) Let Xn,1, Xn,2, . . . be a sequence of non-negative integer valued random variables such
that Xn,1 has distribution q(n, ·), and for j ≥ 1

P(Xn,j+1 = · |Xn,1 + · · · + Xn,j = r) = q(n − r, ·) (14)

with Xn,j+1 = 0 if Xn,1 + · · · + Xn,j = n, so Xn := (Xn,1, Xn,2, . . .) is a random
composition of n with

P(Xn = λ) =
∏̀
j=1

q(λj + · · · + λ`, λj) (15)

for each composition λ of n with ` parts of sizes λ1, λ2, . . . , λ`. Then (πn, Xn) with
the joint distribution described by Theorem 3 can be constructed as follows: let
Xn = Xn,1 and define πn by ranking Xn.

(iii) For each 1 ≤ m ≤ n the distribution of πm is given by the formula

P(πm = λ) =
∑

σ

∏̀
j=1

q(λσ(j) + · · ·+ λσ(`), λσ(j)) (16)

where λ is a partition of m into ` parts of sizes λ1 ≥ λ2 ≥ · · · ≥ λ` > 0, and the
summation extends over all m!/

∏
aj(λ)! distinct permutations σ of the ` parts of

λ, with aj(λ) being the number of parts of λ of size j.

(iv) Let d(λ, x) for partitions λ of m ≤ n and x a part of λ be derived from q and p via
formula (5), and let Xn be the random composition of n defined by the parts of πn

in order of deletion according to d. Then Xn has the distribution described in part
(ii).

Following [4], we call a transition probability matrix q(m, j) indexed by 1 ≤ j ≤ m ≤
n, with

∑m
j=1 q(m, j) = 1, a decrement matrix. A random composition of n generated by

q is a sequence of random variables Xn := (Xn,1, Xn,2, . . .) with distribution defined as in
part (ii) of the previous corollary. Hoppe [7] called this scheme for generating a random
composition of n a discrete residual allocation model.

Suppose now that Xn is the sequence of sizes of classes in a random ordered partition
Π̃n of the set [n], meaning a sequence of disjoint non-empty sets whose union is [n], and

that conditionally given Xn all possible choices of Π̃n are equally likely. Let Xm be the
sequence of sizes of classes of the ordered partition of [m] defined by restriction of Π̃n

to [m]. Then the Xm is said to be derived from Xn by sampling, and the sequence of
distributions of Xm is called sampling consistent. A composition structure is a sampling
consistent sequence of distributions of compositions Xn of n for n = 1, 2, . . ..
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Definition 5 Following [4], we call a random composition Xn = (Xn,1, Xn,2, . . .) of
n regenerative, if for each 1 ≤ x < n, conditionally given that Xn,1 = x the remaining
composition (Xn,2, . . .) of n−x is distributed according to the unconditional distribution of
Xn−x derived from Xn by random sampling. Call a composition structure (Xn) regenerative
if Xn is regenerative for each n = 1, 2, . . ..

Note the close parallel between this definition of regenerative compositions and Definition
1 of regenerative partitions. The regenerative property of a random partition is more
subtle, because it involves random selection of some part to delete, and this selection
process is allowed to be as general as possible, while for random compositions it is simply
the first part that is deleted. The relation between the two concepts is provided by the
following further corollary of Theorem 3:

Corollary 6 If the parts of a regenerative partition πn of n are put in deletion order
to define a random composition of Xn of n, as in part (iv) of the previous corollary, then
Xn is a regenerative composition of n.

This reduces the study of regenerative partitions to that of regenerative compositions,
for which a rather complete theory has already been presented in [4]. In particular, the
basic results of [4], recalled here in Section 5, provide an explicit paintbox representation
of regenerative partition structures, along with an integral representation of corresponding
decrement matrices q. See also Section 4 for some variants of Corollary 6.

For obvious reasons, a partition structure πn cannot be regenerative if πn has at most m
parts for every n, for some m < ∞. In particular, the two-parameter partition structures
defined by (10) for α < 0 and θ = −mα > 0 are not regenerative. Less obviously,
the partition structures defined by (10) for 0 < α < 1 and −α < θ < 0, which have
an unbounded number of parts, are also not regenerative. This follows from Corollary
(6) and the discussion of [4], where it was shown that for this range of parameters the
two-parameter partition structure cannot be associated with a regenerative composition
structure.

2 Proof of Theorem 2

This is an extension of the argument of Kingman [10] in the case τ = 0. Recall first that
when partitions λ are encoded by their multiplicities, ar = ar(λ) for r = 1, 2, . . ., the
sampling consistency condition on a partition probability function p is expressed by the
formula

p(a1, a2, . . .) = p(a1 + 1, a2, . . .)
a1 + 1

n + 1
+

∑
r>1

p(. . . , ar−1 − 1, ar + 1, . . .)
r(ar + 1)

n + 1
(17)

where p is assumed to vanish except when its arguments are non-negative integers, and
n =

∑
r rar.

the electronic journal of combinatorics 11(2) (2005), #R12 7



Assuming that p is a regenerative with respect to d, iterating (5) we have for parts
r, s ∈ λ,

p(λ) =
q(n, r)

d(λ, r)

q(n − r, s)

d(λ − {r}, s) p(λ − {r, s}), (18)

which can clearly be expanded further. Since this expression is invariant under permuta-
tions of the parts, interchanging r and s we get

q(n, r)

d(λ, r)

q(n − r, s)

d(λ − {r}, s) =
q(n, s)

d(λ, s)

q(n − s, r)

d(λ − {s}, r) .

Assume now that d is given by (12). Introducing

b(n, r) :=
q(n, r)n

(n − r)τ + r(1 − τ)

formula (18) yields b(n, r)b(n − r, s) = b(n, s)b(n − s, r). Taking s = 1 and abbreviating
f(n) := b(n, 1) we obtain b(n, r)/b(n − 1, r) = f(n)/f(n − r), thus

b(n, r) = f(n − r + 1) · · ·f(n − 1)f(n)g(r) , for g(r) :=
b(r, r)

f(1) · · ·f(r)
.

The full expansion of p now reads

p(λ) =

`−1∏
i=0

(1 − τ + i τ)

n∏
k=1

f(k)
∏

r

g(r)ar

ar!

where ar is the number of parts of λ of size r, with Σ ar = ` and Σ rar = n. By
homogeneity we can choose the normalisation g(1) = 1. Assuming that p is a partition
structure, substituting into (17) and cancelling common terms gives

n + 1

f(n + 1)
= (1 − τ + ` τ) +

∑
r>1

r ar−1
g(r)

g(r − 1)
.

Now defining h(r) by the substitution

g(r)

g(r − 1)
= −τ

r
+

r − 1

r
h(r)

we obtain
n + 1

f(n + 1)
= 1 − τ +

∑
r>1

(r − 1)ar−1h(r)

which must hold for arbitrary partitions, hence h(r) = γ for some constant. Therefore

f(n) =
n

1 − τ + (n − 1)γ
, g(r) =

(γ − τ)r−1 ↑γ
r!

.
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It follows that

p(λ) =
n! (1 − τ)` ↑τ
(1 − τ)n↑γ

∏
r

(
(γ − τ)r−1 ↑γ

r!

)ar 1

ar!

which is positive for all λ iff γ > τ . The substitution

α =
τ

γ
, θ =

1 − τ

γ

reduces this expression to the two-parameter formula (10), and Theorem 2 follows.

3 Fragmented permutations

We use the term fragmented permutation of [n] for a pair γ = (σ, λ) ∈ Sn × Cn, where
Sn is the set of all permutations of [n], and Cn is the set of all compositions of n. We
interpret a fragmented permutation γ as a way to first arrange n balls labeled by [n] in
a sequence, then fragment this sequence into some number of boxes. We may represent a
fragmented permutation in an obvious way, e.g.

γ = 2, 3, 9 | 1, 8 | 6, 7, 5 | 4
describes the configuration with balls 2, 3 and 9 in that order in the first box, balls 1 and 8
in that order in the second box, and so on, that is γ = (σ, λ) for σ = (2, 3, 9, 1, 8, 6, 7, 5, 4)
and λ = (3, 2, 3, 1).

We now define a transition probability matrix on the set of all fragmented permutations
of [n]. We assume that some probability distribution q(n, ·) is specified on [n]. Given some
initial fragmented permutation γ,

• let Xn be a random variable with distribution q(n, ·), meaning

P(Xn = x) = q(n, x), 1 ≤ x ≤ n;

• given Xn = x, pick a sequence of x different balls uniformly at random from the

n(n − 1) · · · (n − x + 1)

possible sequences;

• remove these x balls from their boxes and put them, in the order they are chosen,
into a new box to the left of the remaining n − x balls in boxes.

To illustrate for n = 9, if the initial fragmented permutation is γ = 2, 3, 9 | 1, 8 | 6, 7, 5 | 4
as above, X9 = 4 and the sequence of balls chosen is (7, 4, 8, 1), then the new fragmented
permutation is

7, 4, 8, 1 | 2, 3, 9 | 6, 5.
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Definition 7 Call the Markov chain with this transition mechanism the q(n, ·)-chain
on fragmented permutations of [n].

To prepare for the next definition, we recall a basic method of transformation of
transition probability functions. Let Q be a transition probability matrix on a finite set
S, and let f : S → T be a surjection from S onto some other finite set T . Suppose that
the Q(s, ·) distribution of f depends only on the value of f(s), that is∑

x:f(x)=t

Q(s, x) = Q̂(f(s), t), (t ∈ T ) (19)

for some matrix Q̂ on T . The following consequences of this condition are elementary and
well known:

• if (Yn, n = 0, 1, 2, . . .) is a Markov chain with transition matrix Q and starting state

x0, then (f(Yn), n = 0, 1, 2, . . .) is a Markov chain with transition matrix Q̂ and
starting state f(x0);

• if Q has a unique invariant probability measure π, then Q̂ has unique invariant
probability measure π̂ which is the π distribution of f .

To decribe this situation, we may say that Q̂ is the push-forward of Q by f .

Definition 8 The q(n, ·)-chain on permutations of [n] is the q(n, ·)-chain on frag-
mented permutations of [n] pushed forward by projection from (σ, λ) to σ. Similarly,
pushing forward from (σ, λ) to λ defines the q(n, ·)-chain on compositions of n and push-
ing forward further from compositions to partitions, by ranking, defines the q(n, ·)-chain
on partitions of n.

In terms of shuffling a deck of cards, the q(n, ·)-chain on permutations of [n] can be
represented as a random to top shuffle in which a number X is first picked at random
according to q(n, ·), then X cards are picked one by one from the deck and put in uniform
random order to form a packet which is then placed on top of the deck. This is the inverse
of the top X to random shuffle studied by Diaconis, Fill and Pitman [3], in which X cards
are cut off the top of the deck, then inserted one by one uniformly at random into the
bottom of the deck. Keeping track of packets of cards in this shuffle leads naturally to
the richer state space of fragmented permutations.

The mechanism of the q(n, ·)-chain on compositions of n is identical to that described
above for fragmented permutations, except that the labels of the balls are ignored. The
mechanism of the q(n, ·)-chain on partitions of n is obtained by further ignoring the order
of boxes in the composition. The following lemma connects these Markov chains to the
basic definitions of regenerative partitions and regenerative compositions which we made
in Section 1.

Lemma 9 Let q(n, ·) be a probability distribution on [n]. Then
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(i) a random composition Xn = (Xn,1, Xn,2, . . .), with Xn,1 distributed according to
q(n, ·), is regenerative if and only if the distribution of Xn is an invariant distri-
bution for the q(n, ·)-chain on compositions of n,

(ii) a random partition πn is regenerative with respect to deletion of some part Xn with
distribution q(n, ·) if and only if the distribution of πn is an invariant distribution
for the q(n, ·)-chain on partitions of n.

Proof. The proofs of the two cases are similar, so we provide details only in case (ii). The
condition that πn is regenerative with respect to deletion of Xn can be written as follows:

πn − {Xn} d
= π̂n−Xn

where

(a)
d
= denotes equality in distribution of two random elements of the set of partitions
of m for some 0 ≤ m ≤ n, allowing a trivial partition of 0,

(b) on the left side πn − {Xn} denotes the random partition of n−Xn derived from πn

by deletion of the part Xn of πn,

(c) on the right side (π̂m, 0 ≤ m ≤ n) is a sampling consistent sequence of random

partitions, independent of Xn, with π̂n
d
= πn.

Consider the random partition

π∗
n := π̂n−Xn ∪ {Xn}

obtained from π̂n by first removing Xn balls from π̂n by random sampling, then putting all
these balls in a new box. The conditional distribution of π∗

n given π̂n defines a transition
probability matrix on the set of partitions of n, which is the transition matrix of the
q(n, ·)-chain on partitions of n. If πn is regenerative with respect to deletion of Xn, then

πn
d
= π̂n

d
= π∗

n. That is to say, the distribution of πn is an invariant probability measure
for the q(n, ·)-chain on partitions of n. Conversely, if the distribution of π̂n is invariant

for the q(n, ·)-chain on partitions of n, so π̂n
d
= π∗

n, we can set πn := π∗
n, and then by

construction
πn − {Xn} = π∗

n − {Xn} = π̂n−Xn .

So πn is regenerative with respect to deletion of Xn with distribution q(n, ·). �

Theorem 3 and its corollaries now follow easily from the previous lemma and the
following lemma:

Lemma 10 For each probability distribution q(n, ·) on [n], the q(n, ·)-chain on frag-
mented permutations of [n] has a unique stationary distribution. Under this distribution,

(i) the permutation of [n] has uniform distribution;
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(ii) the permutation and the composition are independent;

(iii) the composition of n is generated by q according to Corollary 4.

Hence, the distribution on compositions described by Corollary 4 (ii) is the unique sta-
tionary probability distribution for the q(n, ·)-chain on compositions of n, and distribution
of πn described by formula (16) is the unique stationary probability distribution for the
q(n, ·)-chain on partitions of n.

Proof. Let m := max{x : q(n, x) > 0}, and write n = km + r for positive integers k and
r with 1 ≤ r < m. We argue that whatever the initial state γ, there is a strictly positive
probability that after k + 1 steps the q(n, ·)-chain on fragmented permutations reaches
the state

1, 2, . . . , m | · · · | (k − 1)m + 1, . . . , km | km + 1, . . . , n

in which the permutation is the identity and the composition is (m, · · · , m, r). To see
this, note that the transition mechanism ensures that after one step from γ it is possible
to reach a state of the form

n − m + 1, n − m + 2, . . . , n | . . . . . .

for some . . . . . . determined by the initial configuration γ. Then after two steps it is
possible to reach a state of the form

(k − 1)m + 1, . . . , km | km + 1, . . . , n | . . . . . .

for some . . . . . ., and so on. Since there is a state which can be reached eventually no
matter what the initial state, it follows from the elementary theory of Markov chains that
a stationary distribution exists and is unique.

Let Pq(n,·) denote the push-forward of this stationary distribution to compositions of n,
that is the stationary distribution of the q(n, ·)-chain on compositions of n. By definition
of the q(n, ·)-chain on fragmented permutations,

• under Pq(n,·) the number of balls in the first box has distribution q(n, ·);
• under Pq(n,·), for each 1 ≤ m < n, given that the first box contains n−m balls, the

remaining composition of m has the distribution on compositions of m derived from
Pq(n,·) by taking a random sample of m out of the n balls, to be denoted (Pq(n,·))n→m.

To complete the proof of the lemma, it just remains to check the key identity

(Pq(n,·))n→m = Pq(m,·) (20)

where q(m, ·) is derived from q(n, ·) by formula (13). Due to independence of the compo-
sition and the permutation, a composition of m with distribution (Pq(n,·))n→m is obtained
from the stationary distribution of the q(n, ·)-chain on fragmented permutations by ig-
noring balls m + 1, . . . , n, and considering the composition of m induced by the balls
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labeled by [m]. But when the fragmented permutation evolves according to the q(n, ·)-
chain, it is clear that at each step, no matter what the initial state, for 0 ≤ s ≤ m, the
probability that exactly s of the m balls get moved to the left is q0(m, s) as in (13). Let
q(m, ·) be as in formula (13). Since the probability of moving at least one of the first
m balls is 1 − q0(m, 0), no matter what the initial state, the q(n, ·)-chain on fragmented
permutations of [n] pushes forward to a Markov chain on fragmented permutations of [m].
The transition matrix of this chain is a mixture of the identity matrix and the matrix of
q(m, ·)-chain on fragmented permutations of [m], with weights q0(m, 0) and 1 − q0(m, 0)
respectively. Hence the equilibrium distribution of this chain with state space fragmented
permutations of [m] is identical to the equilibrium distribution of the q(m, ·)-chain on
fragmented permutations of [m], whose projection onto compositions of [m] is Pq(m,·).
This proves (20). �

4 Some corollaries

This section spells out some further corollaries of Theorem 3.

Corollary 11 The distribution of every regenerative partition πn of n is obtained by
ranking the components of some regenerative composition Xn of n, whose distribution is
uniquely determined by that of πn. Then πn is regenerative with respect to deletion of
Xn distributed like the first component of Xn. This correspondence, made precise by the
formulae of Corollary 4, establishes bijections between the following sets of probability
distributions:

(i) probability distributions q(n, ·) on [n];

(ii) distributions of regenerative compostions Xn of n;

(iii) distributions of regenerative partitions πn on n.

An explicit link from (iii) to (i) is provided by a recursive formula [4, Equation (34)]
expressing q(n, ·) via the probabilities of one-part partitions (p(j), j = 1, . . . , n). There is
also an explicit formula expressing q(n, ·) as a rational function of probabilities (p(1m), m =
1, . . . , n) where 1m ` m is the partition with only singleton parts.

As a variant of the above corollary, we record also:

Corollary 12 Given a decrement matrix q = (q(m, j), 1 ≤ j ≤ m ≤ n) for some fixed
n, for 1 ≤ m ≤ n let Xm be the random composition of m generated by q, and πm the
random partition of m obtained by ranking Xm. The following conditions are equivalent:

(i) the entire decrement matrix q is determined by q(n, ·) according to formula (13);

(ii) the sequence of compositions (Xm, 1 ≤ m ≤ n) derived from q is sampling consistent;

(iii) the sequence of partitions (πm, 1 ≤ m ≤ n) derived from q as in (16) is sampling
consistent.
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The equivalence of (i) and (ii) can also be read from [4], where formula (13) was given only
for m = n − 1 as a means of recursively computing q(m, ·) from q(n, ·) for m < n. That
(ii) implies (iii) is obvious. That (iii) implies (ii) is not obvious, but this is an immediate
consequence of Theorem 3 and Corollary 4, because (iii) means that πn is regenerative
with respect to deletion of the first term of Xn.

Corollary 13 The following two conditions on a random composition of n

Xn := (Xn,1, Xn,2, . . .)

are equivalent:

(i) Xn is regenerative;

(ii) for each 1 ≤ j ≤ k < n, conditionally given Xn,1, . . . , Xn,j with Xn,1+· · ·+Xn,j = k,
the partition of n−k obtained by ranking Xn,j+1, Xn,j+2, . . . has the same distribution
as πn−k, the partition of n − k obtained by sampling from Xn.

Proof. That (i) implies (ii) is obvious. Conversely, condition (ii) for j = 1 states that
the partition πn derived from Xn is regenerative with respect to deletion of Xn,1. Let
q(n, ·) be the distribution of Xn,1, and let d denote the corresponding deletion kernel,
extended to partitions of m for 1 ≤ m ≤ n in accordance with Theorem 3. Condition (ii)
for j = 2 implies that for each i such that q(n, i) > 0, the partition πn−i is regenerative
with respect to deletion of a part whose unconditional distribution equals the conditional
distribution of Xn,2 given Xn,1 = i. According to the uniqueness statement of Theorem
3, this distribution must be the distribution q(n − i, ·) determined by q(n, ·) via (13). So
the joint law of (Xn,1, Xn,2) is identical to that described in Corollary 4 (ii). Continuing
in this way, it is clear that the distribution of the entire sequence Xn is that described in
Corollary 4 (ii). The conclusion now follows from Corollary 6. �

5 Paintbox representations

Gnedin’s paintbox representation of composition structures [6] uses a random closed set
R ⊂ [0, 1] to separate points of a uniform sample into clusters. Given R, define an interval
partition of [0, 1] comprised of gaps, that is open interval components of [0, 1] \ R, and
of individual points of R. A random ordered partition of [n] is then constructed from
R and independent uniform sample points U1, . . . , Un by grouping the indices of sample
points which fall in the same gap, and letting the points which hit R to be singletons.
A random composition Xn of n is then constructed as the sequence of block sizes in this
partition of [n], ordering the blocks from left to right, according to the location of the
corresponding sample points in [0, 1]. Gnedin showed that every composition structure
(Xn) can be so represented. As in Kingman’s representation of partition structures, R
can be interpreted as an asymptotic shape of Xn, provided Xn is properly encoded as an
element of the metric space of closed subsets of [0, 1] with the Hausdorff distance function.
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According to the main result of [4], each regenerative composition structure (Xn) is
associated in this way with an R which is multiplicatively regenerative in the following
sense: for t ∈ [0, 1] let Dt := inf([t, 1] ∩R), and given that Dt < 1 let

R[Dt,1] := {(z − Dt)/(1 − Dt), z ∈ R ∩ [Dt, 1]}
which is the restriction of R to [Dt, 1] scaled back to [0, 1]; then

(R[Dt,1] |Dt with Dt < 1 ,R∩ [0, Dt])
d
= R (21)

meaning that the conditional distribution of R[Dt,1], given Dt with Dt < 1 and given
R∩ [0, Dt], is identical to the unconditional distribution of R. This condition holds if and
only if − log(1−R) is a regenerative subset of [0,∞[ in the usual (additive) sense. So by
a result of Maisonneuve, the most general multiplicatively regenerative subset R can be
constructed as the closure of {1− exp(−St), t ≥ 0} for some subordinator (St, t ≥ 0), that
is an increasing process with stationary independent increments [1]. Thus regenerative
composition structures are parameterised by a pair (ν̃, d) where ν̃ is a measure on ]0, 1]
with finite first moment and d ≥ 0. The measure ν̃(du) is the image of the Lévy measure
ν(ds) of the subordinator via the transformation from s to 1− exp(−s). and d is the drift
parameter of the subordinator. So the Laplace exponent of the subordinator, evaluated
at a positive integer n, is

Φ(n) = nd +

∫
]0,1]

(1 − (1 − x)n)ν̃(dx) .

The decrement matrix of the regenerative composition is then

q(n, r) =
Φ(n, r)

Φ(n)
, 1 ≤ r ≤ n , n = 1, 2, . . .

where

Φ(n, r) = nd 1(r = 1) +

(
n

r

) ∫
]0,1]

xr(1 − x)n−rν̃(dx) .

Uniqueness of the parameterisation is achieved by a normalisation condition, e.g. Φ(1) =
1.

The partition structure derived by sampling from a random closed subset R of [0, 1]
depends only on the distribution of the sequence of ranked lengths induced by R

V (R) := (V1(R), V2(R), . . .)

where Vi(R) is the length of the ith longest interval component of [0, 1] \ R. Our con-
sideration of regenerative partition structures suggests the following definition. Call R
weakly multiplicatively regenerative if for each t ∈ [0, 1]

(V (R[Dt,1]) |Dt with Dt < 1 ,R∩ [0, Dt])
d
= V (R) (22)
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meaning that the conditional distribution of relative ranked lengths induced by R ∩
[Dt, 1], given Dt with Dt < 1 and given the restricted set R ∩ [0, Dt], is identical to the
unconditional distribution of ranked lengths induced by R. From Theorem 3 we easily
deduce:

Corollary 14 A random closed subset R of [0, 1] is weakly multiplicatively regenerative
if and only if it is multiplicatively regenerative.

Proof. The “if” part is obvious by measurability of the map from R to V (R). To argue
the converse, suppose that R is weakly multiplicatively regenerative. Without loss of
generality, it can be supposed that R is defined on the same probability space as a sequence
of independent uniform [0, 1] variables Ui for i = 1, 2, . . .. Let Xn = (Xn,1, Xn,2, . . .) for
n = 1, 2, . . . be the sequence of compositions of n derived from R by sampling with these
independent uniform variables, and let πn be the partition of n defined by ranking Xn.
By consideration of (22) with t replaced by Un,1, where Un,k is the kth order statistic
of U1, . . . , Un, it is easily argued that πn is regenerative with respect to deletion of Xn,1.
If Xn,1 < n, we apply (22) at t = Un,Xn,1+1 and repeat the argument to show that
πn−{Xn,1, Xn2} is a distributional copy of πn−m given Xn,1 and Xn,2 with Xn,1+Xn,2 = m.
Iterating further we see that Xn satisfies condition (ii) of Corollary 13. Hence Xn is
regenerative. Thus (Xn) defines a regenerative composition structure, and it follows the
main result of [4] that the set R is regenerative. �

6 Uniqueness and positivity

For each n equation (5) is the basic algebraic relation between the functions p(λ), d(λ)
for λ ` n and q(n, ·). According to Corollary 4 q(n, ·) uniquely determines p, for each n,
but d satisfying (5) need not be unique because p(λ) may assume zero value for some λ,
as illustrated by the following example.

Example (Regenerative hook partition structures.) A partition λ of n is called a hook if
it has at most one part larger than 1. The only regenerative partition structures p such
that πn is a hook with probability one for every n are those which can be generated by
ν̃ = δ1, the Dirac mass at 1 and d ≥ 0, including the trivial boundary case with d = ∞.
Then for n > 1

q(n, n) =
1

1 + nd
, q(n, 1) =

nd

1 + nd
.

This implies that the associated hook composition structure gives positive probability only
to compositions of the type (n) or (1m, n − m), 1 ≤ m ≤ n, for every n. For these hook
composition structures the deletion kernel is an arbitrary kernel with the property

d(λ, 1) = 1 if 1 ∈ λ . (23)

This property is characteristic, that is each partition structure regenerative according
to such deletion kernel d is derived from a hook composition structure. Indeed, if a

the electronic journal of combinatorics 11(2) (2005), #R12 16



composition structure compatible with such d gave positive probability to a composition
(x, y, . . .) with x > 1 then, by sampling consistency, the composition (2, 1) would also
have positive probability, contradicting q(3, 2) = 0.

The next lemma shows that only in the hook case can there be any ambiguity about
the deletion kernel generating some partition structure.

Lemma 15 Let (πn) be a regenerative partition structure. Then

(i) either (πn) is a hook partition structure,

(ii) or p > 0, d > 0 and q > 0 for all admissible values of arguments.

Moreover, (i) holds iff p(2, 2) = 0, while (ii) holds iff p(2, 2) > 0.

Proof. If V2 in Kingman’s representation is strictly positive with nonzero probability, then
p(n, n) > 0 for all n. By virtue of p(n, n) = q(2n, n)p(n) follows q(2n, n) > 0, but then
by Corollary 4(i) q(n, ·) > 0 and this implies p > 0 and d > 0. In this case p(2, 2) > 0.
Alternatively, if P(V2 = 0) = 1 then p(2, 2) = 0 and we are in the hook case. �

Thus, if d is not a kernel satisfying (23), then d(λ, x) = 0 for some partition λ and some
part x ∈ λ implies that a partition structure regenerative according to d is trivial, (i.e.
is either the pure-singleton partition with p(1n) ≡ 1, or the one-block partition with
p(n) ≡ 1).

The positivity condition in lemma rules out nontrivial partition structures, which have
an absolute bound on the number of parts for all n. For example, none of the members
of the two-parameter family of partition structures (10) is regenerative for α < 0 and
−θ/α = k ∈ {2, 3, . . .} because each πn has at most k parts.

Corollary 16 If a partition structure is regenerative and satisfies p(2, 2) > 0 then q
uniquely determines p and d, and p uniquely determines q and d. Thus if a regenerative
partition structure is not hook the corresponding deletion kernel is unique.

Checking if a given partition structure is regenerative according to an unknown dele-
tion kernel can be done by first computing q, by some algebraic manipulations, from
a given partition probability function p, then computing a partition probability func-
tion p∗ for the regenerative partition structure related to this q, and finally checking if
p = p∗. When this method is applied to a partition from the two-parameter family with
0 < α < 1, −α < θ < 0, the resulting q recorded in [4, Equation (39)] is not everywhere
positive, hence the partition structures with such parameters are not regenerative.

7 Generalisations and related work

Given some deletion kernel d, it is of interest to consider pairs of partition structures
(p0, p1) such that d reduces p0 to p1, meaning that the following extension of formula (5)
holds:

p0(λ)d(λ, x) = q(n, x)p1(λ − {x}) , x ∈ λ (λ ` n) (24)
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where
q(n, x) :=

∑
{λ`n : x∈λ}

d(λ, x)p0(λ) (1 ≤ x ≤ n) (25)

is the unconditional probability that the deletion rule removes a part of size x from πn

distributed according to p0.
Pitman [13] showed that if p0, p1, p2, . . . is a sequence of partition structures such that

size-biased deletion reduces pi to pi+1 for each i ≥ 0, and p0 can be represented in terms
of random sampling from (V1, V2, . . .) with Vi > 0 for each i, then p0 is an (α, θ) partition
as in (10) for some 0 ≤ α < 1 and θ > −α, in which case pj is the (α, θ + jα) partition
structure. This result and Theorem 2 are two different two-parameter generalisations
of Kingman’s characterisation of (0, θ) partition structures. In the result of [13], the
deletion kernel is still defined by size-biased sampling, and repeated deletions generate a
succession of partition structures. Whereas in Theorem 2 the deletion kernel is modified,
and repeated deletions generate the same partition structure.

A class of partition structures satisfying (24) is associated with Markovian composi-
tions introduced in [5]. A composition structure of this type is derived from a set R which
has a special leftmost interval [0, X], and otherwise R ∩ [X, 1] is a scaled copy of some
other multiplicatively regenerative set R′, which is independent of X and has the property
(21). For example, the members of the two-parameter family with 0 < α < 1, −α < θ < 0
can be associated with such Markovian composition structures. In general, such R can
be represented as a transformed range of a finite-mean subordinator with arbitrary initial
distribution.

This discussion leaves open a number of interesting questions. One posed in [11, 15],
and apparently still open, is the problem of describing all pairs of partition structures
(p0, p1) such that p0 reduces to p1 by size-biased deletion. One could ask the same question
for other deletion kernels too. But size-biased deletion is of special interest because of its
natural interpretation in terms of Kingman’s paintbox construction from ranked random
frequencies (V1, V2, . . .): if Xn is a size-biased pick from πn derived by sampling from such
(Vi) associated with the partition structure p0, then Xn/n converges in distribution to Ṽ1

which is a size-biased pick from the limiting frequencies, meaning that

P(Ṽ = Vi | V1, V2, . . .) = Vi ,

P(Ṽ = 0 | V1, V2, . . .) = 1 − ΣiVi ,

where it is assumed for simplicity that the Vi are almost surely distinct. The probability
distribution of Ṽ on [0, 1], known as the structural distribution encodes many important
features of the partition structure p0. In particular, p0(n) = E(P̃ n−1) for n = 1, 2, . . . (see
[13, 15, 5]). See also [16, 5] for related work.

Central measures We comment briefly on how our results link to the potential theory
on graded graphs, as developed by the Russian school in connection with the asymptotic
representation theory of the symmetric group, see [8] for a survey.
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For λ ` n, µ ` n + 1 the number of ways to extend a given partition of [n] with shape
λ to some partition of [n + 1] with shape µ does not depend on the choice of partition of
[n]. Denote this number κ(λ, µ). Letting Pn denote the set of partitions of n, consider
the graded graph with the vertex set P =

⋃
n Pn and multiplicity κ(λ, µ) for the edge

connecting λ and µ. A partition structure is a nonnegative solution of the recursion

p(λ) =
∑

µ`n+1

κ(λ, µ)p(µ) , λ ` n , n = 1, 2, . . . ,

which is another form of (17), with p(1) = 1.
For every λ ` n a directed path in P connecting the root (1) and λ encodes a partition

of [n] with shape λ. Thus p defines a a central measure on the space of infinite paths of
P, with the property that all paths of length n, connecting (1) and λ ` n, have the same
probability depending only on λ, for every n and λ ∈ Pn. Each infinite path corresponds
to a partition of the set N and the ‘centrality’ of a measure just means that the random
partition of N is exchangeable.

Originally, the concept of central measure emerged in connection with the Young lat-
tice Y , which has the same vertex set as P, but a different multiplicity function (dictated
by the branching rule for characters of the symmetric group). According to a classical
result of Thoma, central measures on Y can be described in terms of two random de-
creasing sequences (Vj), (Wj) (as to be compared with a single decreasing sequence (Vj)
in Kingman’s representation). See [9] for particular examples of central measures on Y ,
and [2] for a general construction of central measures on graphs which generalise both Y
and P.

Although the graphs Y and P are different, there is a way to push a partition structure
on P to a central measure on Y , analogous to the transition from monomial symmetric
functions to Schur symmetric functions. It would be interesting to study the image of
regenerative partition structures under this mapping in some detail.

General deletion kernels For partitions µ and λ, interpreted as distributions of un-
labeled balls in unlabeled boxes, write µ ⊂ λ if µ can be obtained from λ by deletion of
one or more boxes. Call a function d on pairs of partitions (λ, µ) with µ ⊂ λ, a deletion
kernel if it satisfies

0 ≤ d ≤ 1 ,
∑

λ−: λ−⊂λ

d(λ , λ−) = 1 .

For each λ the deletion kernel defines a random split in two subpartitions λ+ ⊂ λ (which
remains) and λ− ⊂ λ (which is removed). We can also regard d as transition probability
function for a Markov chain which jumps from larger partition λ to a smaller λ+.

Given d, for a sequence of random partitions (πn ` n, n = 1, 2, . . .) – which in general
need not satisfy any consistency condition besides that the πn’s are defined on the same
probability space – with each πn we associate a split into π+

n and π−
n (with π−

n removed).
This suggests various concepts of invariance, depending on how much conditioning is
allowed. Thus we could distinguish a weak deletion property

P(π+
n = λ+ | π−

n = λ−) = P(πn−r = λ+) , r = |λ−| , (26)
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and a strong deletion property

P(π+
n = λ+ | |π−

n | = r) = P(πn−r = λ+) ,

where we write |λ| for Σλj . It would be interesting to extend results of this paper to such
general deletion operations.
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