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Abstract

Every character on a graded connected Hopf algebra decomposes uniquely as a
product of an even character and an odd character (Aguiar, Bergeron, and Sottile,
math.CO/0310016). We obtain explicit formulas for the even and odd parts of the
universal character on the Hopf algebra of quasi-symmetric functions. They can
be described in terms of Legendre’s beta function evaluated at half-integers, or in
terms of bivariate Catalan numbers:

C(m,n) =
(2m)!(2n)!

m!(m + n)!n!
.

Properties of characters and of quasi-symmetric functions are then used to derive
several interesting identities among bivariate Catalan numbers and in particular
among Catalan numbers and central binomial coefficients.

∗Work supported in part by NSF grant DMS-0302423 and by the NSF Postdoctoral Research Fellow-
ship. We benefited from discussions with Ira Gessel and from the expertise of François Jongmans, who
generously helped us search the 19th century literature in pursuit of a hard-to-find article by Catalan.
We also thank the referees for interesting remarks and suggestions.
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1 Introduction

The numbers

C(m,n) :=
(2m)!(2n)!

m!(m+ n)!n!
=

(
2m
m

)(
2n
n

)(
m+n
n

) (1)

appeared in work of Catalan, [4, pp. 14–15], [5, p. 207], [6, Sections CV and CCXIV], [7,
pp. 110–113], von Szily [25, pp. 89–91], Riordan [19, Chapter 3, Exercise 9, p. 120], and
recent work of Gessel [12]. We call them bivariate Catalan numbers. They are integers
(and except for C(0, 0) = 1, they are all even). Special cases include the central binomial
coefficients and the Catalan numbers:

C(0, n) =

(
2n

n

)
and

1

2
C(1, n) =

1

n + 1

(
2n

n

)
.

In turn, the bivariate Catalan numbers are special cases of the super ballot numbers of
Gessel [12].

The algebra QSym of quasi-symmetric functions was introduced in earlier work of
Gessel [11] as a source of generating functions for Stanley’s P -partitions [20]; since then,
the literature on the subject has become vast. The linear bases of QSym are indexed by
compositions α of n. Two important bases are given by the monomial and fundamental
quasi-symmetric functions Mα and Fα; for more details, see [11], [17, Chapter 4], or [21,
Section 7.19].

In [2], an important universal property of QSym was derived. Consider the functional
ζ : QSym → k obtained by specializing one variable of a quasi-symmetric function to
1 and all other variables to 0. On the monomial and fundamental bases of QSym, this
functional is given by

ζ(Mα) = ζ(Fα) =

{
1 if α = (n) or ( ),

0 otherwise.
(2)

A character on a Hopf algebra H is a morphism of algebras ϕ : H → k:

ϕ(ab) = ϕ(a)ϕ(b) , ϕ(1) = 1 .

QSym is a graded connected Hopf algebra and the functional ζ is a character on QSym .
The universal property states that given any graded connected Hopf algebra H and a
character ϕ : H → k, there exists a unique morphism of graded Hopf algebras Φ : H →
QSym making the following diagram commutative [2, Theorem 4.1]:

H Φ //

ϕ
  A

AA
AA

AA
A QSym

ζ
||xx

xx
xx

xx
x

k

For this reason, we refer to ζ as the universal character on QSym. There are other char-
acters on QSym canonically associated to ζ that are of interest to us. In spite of the
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simple definition of ζ , these characters encompass important combinatorial information.
Some of these were explicitly described and studied in [2], and shown to be closely re-
lated to a Hopf subalgebra of QSym introduced by Stembridge [23], to the generalized
Dehn-Sommerville relations, and to other combinatorial constructions. Other canonical
characters, less easy to describe but of a more fundamental nature, are the object of this
paper.

We review other relevant background and constructions from [2].
Let H be an arbitrary Hopf algebra. The convolution product of two linear functionals

ρ, ψ : H → k is

H ∆−→ H⊗H ρ⊗ψ−−→ k ⊗ k
m−→ k ,

where ∆ is the coproduct of H and m is the product of the base field. We denote the
convolution product by ρψ. The set of characters on any Hopf algebra is a group under
the convolution product. The unit element is ε : H → k, the counit map of H. The
inverse of a character ϕ is ϕ−1 := ϕ ◦ S, where S is the antipode of H.

Suppose that H is graded, i.e., H = ⊕n≥0Hn and the structure maps of H preserve this
decomposition. This means that Hi · Hj ⊆ Hi+j , ∆(Hn) ⊆

∑
i+j=nHi ⊗Hj , 1 ∈ H0, and

ε(Hn) = 0 for n > 0. Then H carries a canonical automorphism defined on homogeneous
elements h of degree n by h 7→ h̄ := (−1)nh. If ϕ is a functional on H, we define a
functional ϕ̄ by ϕ̄(h) = ϕ(h̄). The functional ϕ is said to be even if

ϕ̄ = ϕ

and it is said to be odd if it is invertible with respect to convolution and

ϕ̄ = ϕ−1 .

Suppose now that H is graded and connected, i.e., H0 = k · 1. One of the main results
of [2] states that any character ϕ on H decomposes uniquely as a product of characters

ϕ = ϕ+ϕ−

with ϕ+ even and ϕ− odd [2, Theorem 1.5].
The main purpose of this paper is to obtain explicit descriptions for the canonical

characters ζ+ and ζ− of QSym . We find that the values of both characters are given in
terms of bivariate Catalan numbers (up to signs and powers of 2). On the monomial
basis, the values are Catalan numbers and central binomial coefficients (Theorem 3.2).
On the fundamental basis, general bivariate Catalan numbers intervene (Theorem 5.1).
The connection with Legendre’s beta function is given in Remark 5.2. The proofs rely on
a number of identities for these numbers, of which some are known and others are new.
In turn, the general properties of even and odd characters imply further identities that
these numbers must satisfy. We obtain in this way a large supply of identities for Catalan
numbers and central binomial coefficients (Section 4) and for bivariate Catalan numbers
(Sections 6 and 7). As one should expect, some of these identities may also be obtained
by more standard combinatorial arguments, at least once one is confronted with them.
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Our methods, however, yield the identities without any previous knowledge of their form.
We mention here four of the most representative among the identities we derive:∑

α<β
a1 odd

(−1)ke(α)

4bko(α)/2c

(
2bko(α)/2c
bko(α)/2c

)
= 0 ; (14)

h∑
j=0

C3(j)C3(h− j) = 2
h−1∑
j=0

C2(j)C1(h− 1 − j) ; (40)

∑
σ∈Sn

(−1)p−(σ)C
(
p−(σ), bn/2c − p−(σ)

)
= 4bn/2c ; (51)

2C(r) =
1

4s
C(r, s+ 1) +

s∑
j=1

1

4j
C(r + 1, j) . (67)

In (14), ke(α) and ko(α) are the number of even parts and the number of odd parts
of a composition α, β = (b1, . . . , bk) is any fixed composition such that ke(β) ≡ 0 and
b1 ≡ bk mod 2, and the sum is over those compositions α = (a1, . . . , ah) whose first part
is odd and which are strictly refined by β. The numbers Ci(j) appearing in (40) are
central Catalan numbers; see (39). In (51), p−(σ) denotes the number of interior peaks of
the permutation σ; see Section 7. Equation (67) expresses a Catalan number in terms of
bivariate Catalan numbers.

In Section 8 we derive explicit formulas for the even and odd characters entering in
the decomposition of the inverse (with respect to convolution) of the universal character,
and deduce some more identities, including (67).

We work over a field k of characteristic different from 2.

2 Even and odd characters

Let H be a graded connected Hopf algebra and ϕ : H → k a linear functional such
that ϕ(1) = 1 (this holds if ϕ is a character). Let ϕn denote the restriction of ϕ to
the homogeneous component of H of degree n. By assumption, ϕ0 = ε0, where ε is the
counit of H. This guarantees that ϕ is invertible with respect to convolution: the inverse
functional ϕ−1 is determined by the recursion

(ϕ−1)n = −
n∑
i=1

ϕi(ϕ
−1)n−i

with initial condition (ϕ−1)0 = ε0. The right hand side denotes the convolution product
of ϕi and (ϕ−1)n−i, viewed as functionals on H which are zero on degrees different from i
and n− i, respectively.

Lemma 2.1. Let H be a graded connected Hopf algebra and ϕ : H → k a linear functional
such that ϕ(1) = 1. There are unique linear functionals ρ, ψ : H → k such that
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(a) ρ(1) = ψ(1) = 1,

(b) ρ is even and ψ is odd,

(c) ϕ = ρψ.

Moreover, if ϕ is a character then so are ρ and ψ.

Proof. Items (a), (b), and (c) can be derived as in the proof of [2, Theorem 1.5], while [2,
Proposition 1.4] guarantees that if ϕ is a character then so are ρ and ψ.

In this situation, we write ϕ+ := ρ and ϕ− := ψ and refer to them as the even part
and the odd part of ϕ. According to the results cited above, ϕ+ is uniquely determined
by the recursion

(−1)nϕn = 2(ϕ+)n + (ϕ−1)n +
∑

i+j+k=n
0≤i,j,k<n

(ϕ+)i(ϕ
−1)j(ϕ+)k ,

and ϕ− by

(ϕ−)n = ϕn −
n∑
i=1

(ϕ+)i(ϕ−)n−i

with initial conditions (ϕ+)0 = (ϕ−)0 = ε0.

Lemma 2.2. Suppose H and K are graded connected Hopf algebras, ϕ : H → k and
ψ : K → k are characters, and Φ : H → K is a morphism of graded Hopf algebras such
that

H Φ //

ϕ
��?

??
??

??
? K

ψ����
��

��
��

k

commutes. Then the diagrams

H Φ //

ϕ+ ��?
??

??
??

? K
ψ+����

��
��

��

k

H Φ //

ϕ− ��?
??

??
??

? K
ψ−����

��
��

��

k

commute as well.

Proof. Composition with Φ gives a morphism from the character group of K to the char-
acter group of H which preserves the canonical involution ϕ 7→ ϕ̄. Thus ψ = ψ+ψ−
implies ψ ◦ Φ = (ψ+ ◦ Φ)(ψ− ◦ Φ), ψ+ ◦ Φ is even, and ψ− ◦ Φ is odd. By uniqueness in
Lemma 2.1, ψ+ ◦ Φ = ϕ+ and ψ− ◦ Φ = ϕ−.
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When H = QSym and ϕ = ζ is the universal character (2), we refer to ζ+ and ζ− as
the canonical characters of QSym .

Let ρ and ψ be arbitrary characters on QSym. For later use, we describe the convo-
lution product ρψ explicitly. Given a composition α = (a1, . . . , ak) of a positive integer n
and 0 ≤ i ≤ n, let αi = (a1, . . . , ai) and αi = (ai+1, . . . , ak). We agree that α0 = αk = ( )
(the empty composition). The coproduct of QSym is

∆(Mα) =
k∑
i=0

Mαi
⊗Mαi ,

where M( ) denotes the unit element 1 ∈ QSym . It follows that

(ρψ)(Mα) =
k∑
i=0

ρ(Mαi
)ψ(Mαi) . (3)

The counit is

ε(Mα) =

{
1 if α = ( ),

0 otherwise.

3 The canonical characters of QSym on the monomial

basis

For any non-negative integer m, let

B(m) := C(0, m) =

(
2m

m

)
and C(m) :=

1

2
C(1, m) =

1

m+ 1

(
2m

m

)
;

these are the central binomial coefficients and the Catalan numbers.

Lemma 3.1. For any non-negative integer m,

B(m) = 2

m∑
i=1

C(i− 1)B(m− i) , (4)

22m =

m∑
i=0

B(i)B(m− i) . (5)

Proof. These are well-known identities. They appear in [14, Formulas (3.90) and (3.92)],
and [19, Chapter 3, Exercise 9, p. 120, and Section 4.2, Example 2, p. 130]. For bijective
proofs, see [9, Formulas (2) and (8)].

For a composition α, let |α| denote the sum of the parts of α, k(α) the number of
parts of α, ke(α) the number of even parts of α, and ko(α) the number of odd parts of α.
Note that

ko(α) ≡ |α| mod 2 . (6)

the electronic journal of combinatorics 11(2) (2005), #R15 6



Theorem 3.2. Let α = (a1, . . . , ak) be a composition of a positive integer n. Then

ζ−(Mα) =




(−1)ke(α)

22bko(α)/2cC (0, bko(α)/2c) if ak is odd,

0 if ak is even;

(7)

ζ+(Mα) =




(−1)ke(α)+1

2ko(α)
C (1, ko(α)/2 − 1) if a1 and ak are odd and n is even,

1 if α = (n) and n is even,
0 otherwise.

(8)

We also have ζ−(1) = ζ+(1) = 1.

Proof. Let ρ, ψ : QSym → k be the linear maps defined by the proposed formula for ζ+
and ζ−, respectively. According to Lemma 2.1, to conclude ρ = ζ+ and ψ = ζ−, it suffices
to show that ρψ = ζ , ρ̄ = ρ, and ψ̄ = ψ−1.

Since ρ vanishes on all compositions of n when n is odd, we have ρ̄ = ρ.
We show that ρψ = ζ . Let ke := ke(α) and ko := ko(α).

Case 1. Suppose that k = 1, so α = (n). We have ρ(M(n)) = 1 if n is even and 0 if n is odd;
also ψ(M(n)) = 0 if n is even and 1 if n is odd. Thus (ρψ)(M(n)) = ρ(M(n)) + ψ(M(n)) =
1 = ζ(M(n)).

In all remaining cases k > 1 and ζ(Mα) = 0 by (2).

Case 2. Suppose that k > 1 and ak is even. By (3) we have

(ρψ)(Mα) =

k−1∑
i=0

ρ(Mαi
)ψ(Mαi) + ρ(Mα) = 0

by the second alternative of (7) applied to αi and the third alternative of (8) applied to
α.

Case 3. Suppose that k > 1, ak is odd, and a1 is even. In this case ρ(Mαi
) = 0 for each

i > 1, so by (3)

(ρψ)(Mα) = ψ(Mα) + ρ(M(a1))ψ(M(a2,...,ak)) =

(−1)ke

22bko/2cC(0, bko/2c) +
(−1)ke−1

22bko/2c C(0, bko/2c) = 0.

Case 4. Suppose that k > 1 and ak, a1, and n are odd. By (8), we have ρ(Mαi
) = 0

unless i = 0 or ai is odd and |αi| is even. Hence

(−1)ke2ko−1(ρψ)(Mα) = (−1)ke2ko−1
(
ψ(Mα) +

∑
1≤i≤k−1
ai odd

|αi| even

ρ(Mαi
)ψ(Mαi)

)

= B

(
ko(α) − 1

2

)
− 2

∑
1≤i≤k−1
ai odd

|αi| even

C

(
ko(αi)

2
− 1

)
B

(
ko(α

i) − 1

2

)
.
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We used (6) and the fact that bh/2c = h−1
2

when h is odd.
Deleting the even parts of α and changing every odd part of α to 1 does not change

the right-hand side of this equation. Thus we may assume without loss of generality that
α = (1, 1, . . . , 1) � n = 2m+ 1. In this case,

(−1)ke2ko−1(ρψ)(Mα) = B(m) − 2

m∑
j=1

C(j − 1)B(m− j) = 0 ,

by Lemma 3.1.

Case 5. Suppose that k > 1, ak and a1 are odd, and n is even. Then

(−1)ke2ko(ρψ)(Mα) = (−1)ke2ko

(
ψ(Mα) +

∑
1≤i≤k−1
ai odd

|αi| even

ρ(Mαi
)ψ(Mαi) + ρ(Mα)

)

= B

(
ko(α)

2

)
− 2

∑
1≤i≤k−1
ai odd

|αi| even

C

(
ko(αi)

2
− 1

)
B

(
ko(α

i)

2

)
− 2C

(
ko(α)

2
− 1

)
.

As before, it suffices to consider the special case α = (1, 1, . . . , 1) � 2m. In this case,

(−1)ke2ko(ρψ)(Mα) = B(m) − 2

m−1∑
j=1

C(j − 1)B(m− j) − 2C(m− 1)

= B(m) − 2
m∑
j=1

C(j − 1)B(m− j) = 0 ,

again by Lemma 3.1.

It remains to show that ψ−1 = ψ̄. Since ψ is invertible (ψ(1) = 1), it suffices to show
that ψψ̄ = ε.

Case 1. If ak is even then ψ̄(Mαi) = 0 for every i < k and ψ(Mα) = 0 by (7), so
(ψψ̄)(Mα) = 0.

Case 2. Suppose ak and n are odd. In this case ψ̄(Mα) = −ψ(Mα), so (ψψ̄)(Mα) =∑k−1
i=1 ψ(Mαi

)ψ̄(Mαi). By (6), ko(αi) + ko(α
i) = ko(α) is odd. Hence

bko(αi)/2c + bko(αi)/2c =
ko(α) − 1

2
and ke(αi) + ke(α

i) + |αi| ≡ k(α) + |αi| mod 2 .

It follows that

(−1)k(α)2ko(α)−1(ψψ̄)(Mα) =
∑

1≤i≤k−1
ai odd

(−1)|αi|B(bko(αi)/2c)B(bko(αi)/2c) .
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As before, we may assume α = (1, 1, . . . , 1) � n = 2m + 1, in which case the above sum
becomes

2m∑
i=1

(−1)iB(bi/2c)B(b(2m+ 1 − i)/2c) .

As j runs from 1 to m, the terms in this sum corresponding to i = 2j and i = 2m−2j+1
are B(j)B(m− j) and −B(m− j)B(j), respectively. Since this covers all terms, this sum
is zero.

Case 3. Suppose ak is odd and n is even. Similar considerations lead to

(−1)k(α)2ko(α)(ψψ̄)(Mα) =

2B
(ko(α)

2

)
+

∑
1≤i≤k−1

ai odd
|αi| even

B
(ko(αi)

2

)
B

(ko(αi)
2

)
−22

∑
1≤i≤k−1

ai odd
|αi| odd

B
(ko(αi) − 1

2

)
B

(ko(αi) − 1

2

)
.

Once again, we may assume α = (1, 1, . . . , 1) � n = 2m. Then showing that (ψψ̄)(Mα) = 0
is equivalent to showing that

m∑
i=0

B(i)B(m− i) = 22
m−1∑
i=0

B(i)B(m− 1 − i) .

This equality follows from (5) in Lemma 3.1.

The proof is complete.

4 Application: Identities for Catalan numbers and

central binomial coefficients

In the proof of Theorem 3.2, we did not need to show that the functionals defined by (7),
(8) are characters (morphisms of algebras); indeed, this fact follows from our argument.
We may derive interesting identities involving Catalan numbers or central binomial co-
efficients from this property. To this end, we first describe the product of two mono-
mial quasi-symmetric functions. This result is known from [8, Lemma 3.3], [15], [16],
and [24, Section 5]. We present here an equivalent but more convenient description due
to Fares [10].

Given non-negative integers p and q, consider the set L(p, q) of lattice paths from
(0, 0) to (p, q) consisting of unit steps which are either horizontal, vertical, or diagonal
(usually called Delannoy paths). An element of L(p, q) is thus a sequence L = (`1, . . . , `s)
such that each `i is either (1, 0), (0, 1), or (1, 1), and

∑
`i = (p, q). Let h, v, and d be the

number of horizontal, vertical, and diagonal steps in L. Then h + d = p, v + d = q, and
s = h + v + d = p + q − d. The number of lattice paths in L(p, q) with d diagonal steps
is the multinomial coefficient(

s

h, v, d

)
=

(
p+ q − d

p− d, q − d, d

)
,
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since such a path is determined by the decomposition of the set of steps into the subsets
of horizontal, vertical, and diagonal steps.

Given compositions α = (a1, . . . , ap) and β = (b1, . . . , bq) and L ∈ L(p, q), we label
each step of L according to its horizontal and vertical projections, as indicated in the
example below (p = 5, q = 4):

(0, 0)

(p, q)

a1 a2 a3 a4 a5

b1

b2

b3

b4

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

t

t

�
�
�

�
�
�

L

a1
b1

a2 + b2

a3
a4 + b3

b4

a5

r

r

r r

r

r

t

t

��

��
��

��

Then we obtain a composition qL(α, β) by reading off the labels along the path L in
order. In the example above,

qL(α, β) = (a1, b1, a2 + b2, a3, a4 + b3, b4, a5) .

The composition qL(α, β) is the quasi-shuffle of α and β corresponding to L. If L does
not involve diagonal steps, then qL(α, β) is an ordinary shuffle.

The product of two monomial quasi-symmetric functions is given by

Mα ·Mβ =
∑

L∈L(p,q)

MqL(α,β) . (9)

For our first application we make use of the fact that ζ− is a character.

Corollary 4.1. Let n,m be non-negative integers not both equal to 0. Then

min(n,m)∑
d=0

(−1)d

4b(n+m−2d)/2c
n +m− 2d

n+m− d

(
n +m− d

n− d, m− d, d

)(
2b(n+m− 2d)/2c
b(n +m− 2d)/2c

)

=
1

4bn/2c+bm/2c

(
2bn/2c
bn/2c

)(
2bm/2c
bm/2c

)
. (10)

Proof. Let α = (1, 1, . . . , 1) � n and β = (1, 1, . . . , 1) � m. The set of lattice paths
L(n,m) splits as

L(n,m) = LH(n,m) t LV (n,m) t LD(n,m)

according to whether the last step of the path is horizontal, vertical, or diagonal.
Choose L ∈ L(n,m), let d be the number of diagonal steps of L, and γ := qL(α, β).
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If L ∈ LD(n,m), the last part of γ is 2, so ζ−(Mγ) = 0 by (7). On the other hand, if
L ∈ LH(n,m) t LV (n,m) the last part of γ is 1, ke(γ) = d (d parts are equal to 2), and
ko(γ) = n+m− 2d (all other parts are equal to 1). Hence, by (7),

ζ−(Mγ) =
(−1)d

22b(n+m−2d)/2cC(0, b(n+m− 2d)/2c)

Now, the number of paths in LH(n,m) t LV (n,m) with d diagonal steps is(
n− 1 +m− d

n− 1 − d, m− d, d

)
+

(
n+m− 1 − d

n− d, m− 1 − d, d

)
=
n+m− 2d

n +m− d

(
n +m− d

n− d, m− d, d

)
.

Therefore, by (9),

ζ−(Mα ·Mβ) =

min(n,m)∑
d=0

(−1)d

22b(n+m−2d)/2c
n+m− 2d

n+m− d

(
n +m− d

n− d, m− d, d

)
C(0, b(n+m−2d)/2c) .

On the other hand,

ζ−(Mα) · ζ−(Mβ) =
1

22bn/2cC(0, bn/2c) · 1

22bm/2cC(0, bm/2c) .

Since ζ− is a character, the last two quantities are equal. Equating them results in (10).

The special case of (10) when n ≥ m = 1 is

n + 1

4b(n+1)/2c

(
2b(n+ 1)/2c
b(n + 1)/2c

)
− n− 1

4b(n−1)/2c

(
2b(n− 1)/2c
b(n− 1)/2c

)
=

1

4bn/2c

(
2bn/2c
bn/2c

)
which may be easily verified. On the other hand, when n = m ≥ 1, (10) becomes

n−1∑
d=0

(−1)d

4n−d

(
2n− d− 1

d

)(
2(n− d)

n− d

)2

=
1

42bn/2c

(
2bn/2c
bn/2c

)2

.

We now make use of the fact that ζ+ is a character to derive an identity involving
Catalan numbers.

Corollary 4.2. Let n,m be positive integers not both equal to 1 and such that n ≡ m
mod 2. Then

min(n,m)∑
d=0

(−1)d+122d−1 (n+m− 2d)

(n +m− d)

(n +m− 2d− 1)

(n+m− d− 1)

(
n+m− d

n− d, m− d, d

)
C

(
(n+m)/2−d−1

)

=

{
C(n/2 − 1)C(m/2 − 1) if n and m are even,

0 if n and m are odd.
(11)
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Proof. Let α = (1, 1, . . . , 1) � n and β = (1, 1, . . . , 1) � m. As in the proof of Corollary 4.1,
we analyze which lattice paths L ∈ L(n,m) contribute to ζ+(Mα ·Mβ). Note that since
(n,m) 6= (1, 1), the second alternative in (8) never occurs. A path which starts or ends
with a diagonal step does not contribute, by the third alternative in (8). For all remaining
paths L, if d is the number of diagonal steps, then

ζ+(MqL(α,β)) =
(−1)d+1

2n+m−2d−1
C

(
(n+m− 2d)/2 − 1

)
by the first alternative in (8). These paths start and end with a horizontal or vertical
step, so their number is

2

(
n− 1 +m− 1 − d

n− 1 − d, m− 1 − d, d

)
+

(
n− 2 +m− d

n− 2 − d, m− d, d

)
+

(
n+m− 2 − d

n− d, m− 2 − d, d

)

=
(n+m− 2d)

(n+m− d)

(n+m− 2d− 1)

(n +m− d− 1)

(
n+m− d

n− d, m− d, d

)
.

Applying ζ+ to both sides of (9) leads to (11).

Suppose m = 1, n = 2k+ 1, k ≥ 1. In this case (11) boils down to the simple identity

C(k) =
2(2k − 1)

k + 1
C(k − 1) .

If n = m, the last term in the sum (11) is 0, because of the factor n+m− 2d (so there is
no need to evaluate the Catalan number in this case). The formula becomes

n−1∑
d=0

(−1)d+14d(2n−2d−1)

(
2n− d− 2

d

)
C(n−d−1)2 =

{
C(n/2 − 1)2 if n is even,

0 if n is odd, n > 1.

In the proof of Theorem 3.2 we established that formula (7) defines an odd character
by showing that ζ−ζ̄− = ε. Rewriting this property in terms of the antipode S of QSym
leads to new combinatorial identities that we analyze next. First, recall that S is given
by

S(Mβ) = (−1)k(β)
∑
α≤β̃

Mα , (12)

where β̃ = (bk, . . . , b2, b1) is the reversal of β = (b1, b2, . . . , bk) and α ≤ γ indicates that γ
is a refinement of α [8, Proposition 3.4]; [17, Corollaire 4.20].

Corollary 4.3. For any composition β = (b1, . . . , bk),

∑
α≤β
a1 odd

(−1)ke(α)

4bko(α)/2c

(
2bko(α)/2c
bko(α)/2c

)
=




1

4bko(β)/2c

(
2bko(β)/2c
bko(β)/2c

)
if bk is odd,

0 if bk is even;
(13)

the sum being over those compositions α = (a1, . . . , ah) whose first part is odd and which
are refined by β.
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Proof. Since ζ− is an odd character, we have

ζ− ◦ S = (ζ−)−1 = ζ̄− .

Therefore, for any composition β of n we have, by (12),

(−1)k(β)
∑
α≤β̃

ζ−(Mα) = (−1)nζ−(Mβ) .

Hence, by (7),

(−1)k(β)
∑
α≤β̃
ah odd

(−1)ke(α)

22bko(α)/2cC(0, bko(α)/2c) =




(−1)n+ke(β)

22bko(β)/2c C(0, bko(β)/2c) if bk is odd,

0 if bk is even.

By (6), k(β) = ko(β) + ke(β) ≡ n+ ke(β). This is equivalent to (13).

Suppose that ke(β) ≡ 0 mod 2 and b1 ≡ bk mod 2. In this case, the summand in (13)
corresponding to α = β cancels with the right-hand side. We deduce that for any such
composition β, ∑

α<β
a1 odd

(−1)ke(α)

4bko(α)/2c

(
2bko(α)/2c
bko(α)/2c

)
= 0 . (14)

5 The canonical characters of QSym on the funda-

mental basis

For a composition α = (a1, . . . , ak) of a non-negative integer n, define

p−(α) = #{i 6= k : ai > 1}, (15)

p+(α) =

{
1 + #{i 6= 1, k : ai > 1} if k > 1,
0 if k ≤ 1.

(16)

A combinatorial interpretation for these two statistics in terms of peaks of permutations
is given in Section 7.

A composition α = (a1, . . . , ak) may be conveniently represented by a ribbon diagram:
a sequence of rows of squares, each row consisting of ai squares, and with the first square
in row i+ 1 directly below the last square in row i. For instance the diagram

represents the composition (1, 3, 1, 2, 2). Note that p−(α) is the number of upper corners
in the ribbon diagram of α. To get a similar interpretation for p+(α) one may augment the
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ribbon diagram of α by drawing an extra square to the left of the first row. Then p+(α) is
the number of upper corners in the augmented diagram. For instance, p−(1, 3, 1, 2, 2) = 2
and p+(1, 3, 1, 2, 2) = 3, as illustrated below.

�@

�@

�@
�@

�@

The fundamental and monomial bases of QSym are related by

Mα =
∑
β≥α

(−1)k(β)−k(α)Fβ , (17)

where, as before, for compositions α and β of n, β ≥ α indicates that β is refinement of
α.

Theorem 5.1. Let α be a composition of a non-negative integer n. Then

ζ−(Fα) =
(−1)p−(α)

22bn/2c C (p−(α), bn/2c − p−(α)) ; (18)

ζ+(Fα) =




(−1)p+(α)

2n
C (p+(α), n/2 − p+(α)) if n is even,

0 if n is odd.
(19)

Remark 5.2. Up to a sign and a factor of π, the above are values of Legendre’s beta
function at half-integers. Indeed, as already remarked by Catalan [4, p. 15], [6, Section
CV],

1

22(p+q)
C(p, q) =

1

π
B

(
p+

1

2
, q+

1

2

)
=

1

π

∫ π

0

sin2p θ cos2q θ dθ =
1

π

∫ 1

0

(1 − u)puq√
(1 − u)u

du . (20)

This specializes to an integral representation for the Catalan numbers, equivalent to the
one given in [18] and [22, Problem 6.C13].

Remark 5.3. Catalan shows [6, Section CCXIV], [7, pp. 110-113] that C(p, q) is an
integer, and that the highest power of 2 that divides it equals the number of 1’s in the
binary decomposition of p+ q. Equivalently, the above fraction may be reduced as follows

1

22(p+q)
C(p, q) =

N

2k
with N odd and k =

∑
i≥0

bp+ q

2i
c . (21)

The proof of Theorem 5.1 is given below. We need two more statistics. For α as above,
let

u(α) = #{i 6= 1 : ai > 1} and v(α) = #{i : ai > 1} .

the electronic journal of combinatorics 11(2) (2005), #R15 14



Lemma 5.4. Let m, j be non-negative integers. Then

(a)
∑
γ�m

v(γ)=j

(−1)k(γ) = (−1)m+j

(bm/2c
j

)
;

(b)
∑
γ�m

u(γ)=j

(−1)k(γ) =




0 if m is even,

(−1)m+j

(bm/2c
j

)
if m is odd.

We thank Ira Gessel for supplying this proof.

Proof. The generating function for the left-hand side of (a) multiplied by yjxm is just the
sum of weights of all compositions, where a part a > 1 is weighted by −yxa and a part
equal to 1 is weighted by −x. This sum is

1

1 − (−x− yx2 − yx3 + · · · ) =
1

1 + x+ yx2

1−x
=

1 − x

1 − (1 − y)x2
.

By expanding in powers of x and y we obtain the identity (a). In the generating function
for (b), the first part a is weighted −xa no matter what a is, so this function is −x/(1−x)
times the generating function for (a). This is −x/(1− (1−y)x2), which is the odd powers
of x in (a).

Lemma 5.5. Let i, j,m be non-negative integers. Then

22mC(i, j) =
m∑
b=0

(
m

b

)
C(i+ b,m+ j − b).

Proof. In view of (20), the proposed equality is equivalent to∫ π

0

sin2i θ cos2j θ dθ =

m∑
b=0

(
m

b

) ∫ π

0

sin2(i+b) θ cos2(m+j−b) θ dθ .

This holds since

m∑
b=0

(
m

b

)
sin2b θ cos2(m−b) θ = (sin2 θ + cos2 θ)m = 1 .

To facilitate the proof of Theorem 5.1, we define

H−(α) =
∑
β≥α

(−1)k(β)+p−(β)+1C (p−(β), bn/2c − p−(β)) for α � n;

H+(α) =
∑
β≥α

(−1)k(β)+p+(β)+1C (p+(β), n/2 − p+(β)) for α � n, n even.
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Lemma 5.6. Suppose that α = (a1, . . . , ak) � n. Then

H−(α) =

{
(−1)n−12n−ko(α)C(0, bko(α)/2c) if ak is odd,
0 if ak is even.

Proof. We will consider the cases α = (n) and α 6= (n) separately.

Case 1. Suppose that α = (n). We need to show that H−((n)) = 2n−1 if n is odd and
H−((n)) = 0 if n is even. For a composition γ and a positive integer i, let γi denote the
concatenation of γ with (i). Using the fact that p−(γi) = v(γ), we have

H−((n)) =
∑
β�n

(−1)k(β)+p−(β)+1C(p−(β), bn/2c − p−(β))

= C(0, bn/2c) +
n−1∑
i=1

∑
γ�n−i

(−1)k(γi)+p−(γi)+1C(p−(γi), bn/2c − p−(γi))

= C(0, bn/2c) +

n−1∑
i=1

∑
γ�n−i

(−1)k(γ)+v(γ)C(v(γ), bn/2c − v(γ))

= C(0, bn/2c) +

n−1∑
i=1

b(n−i)/2c∑
b=0

∑
γ�n−i
v(γ)=b

(−1)k(γ)+bC(b, bn/2c − b)

= C(0, bn/2c) +

n−1∑
i=1

b(n−i)/2c∑
b=0

(−1)bC(b, bn/2c − b)
∑

γ�n−i
v(γ)=b

(−1)k(γ).

Make the substitution m = n− i and apply Lemma 5.4(a) to get

H−((n)) = C(0, bn/2c) +
n−1∑
m=1

bm/2c∑
b=0

(−1)m
(bm/2c

b

)
C(b, bn/2c − b)

= C(0, bn/2c) +

bn−1/2c∑
b=0

C(b, bn/2c − b)

n−1∑
m=1

(−1)m
(bm/2c

b

)
.

Let Sb =
∑n−1

m=1(−1)m
(bm/2c

b

)
. If m is even, (−1)m

(bm/2c
b

)
+(−1)m+1

(b(m+1)/2c
b

)
= 0. Hence

all terms in the sum Sb cancel, except possibly for the first and the last.
If n is even, then Sb = 0 when b ≥ 1 and S0 = −1; hence H−((n)) = C(0, bn/2c) +

[−C(0, bn/2c)] = 0. If n is odd, then Sb =
(bn/2c

b

)
when b ≥ 1 and S0 = 0; hence by

Lemma 5.5 (with i = j = 0),

H−((n)) = C(0, bn/2c) +

bn/2c∑
b=1

C(b, bn/2c − b)

(bn/2c
b

)

=

bn/2c∑
b=0

(bn/2c
b

)
C(b, bn/2c − b)

= 22bn/2c.
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Moreover, we have 2bn/2c = n− 1 since n is odd.

Case 2. Suppose that α 6= (n). If β and γ are non-empty compositions and βγ denotes
their concatenation, then p−(βγ) = v(β) + u(γ̃), where γ̃ is the reversal of γ. Using this
observation we may write

H−(α) =
∑

β≥αk−1
γ�ak

(−1)k(βγ)+p−(βγ)C(p−(βγ), bn/2c − p−(βγ))

=
∑

β≥αk−1

(−1)k(β)+v(β)
∑
γ�ak

(−1)k(γ)+u(γ̃)C(v(β) + u(γ̃), bn/2c − v(β) − u(γ̃))

=
∑

β≥αk−1

(−1)k(β)+v(β)

bak/2c∑
b=0

(−1)bC(v(β) + b, bn/2c − v(β) − b)
∑
γ�ak

u(γ̃)=b

(−1)k(γ) . (22)

By Lemma 5.4(b), the second sum in (22) equals
 (−1)ak

bak/2c∑
b=0

(bak/2c
b

)
C (v(β) + b, bn/2c − v(β) − b) if ak is odd,

0 if ak is even

=

{
(−1)ak22bak/2cC(v(β), bn/2c − v(β) − bak/2c) if ak is odd,
0 if ak is even.

(23)

The last step uses Lemma 5.5. It follows that H−(α) = 0 if ak is even.
Assume from now on that ak is odd. For any composition β = (b1, . . . , b`), let bβ/2c =

bb1/2c + · · · + bb`/2c. We will show that for 0 ≤ i < k,

H−(α) = (−1)|α
i| 22bαi/2c ∑

β≥αi

(−1)k(β)+v(β)C(v(β), bn/2c − bαi/2c − v(β)). (24)

This holds for i = k − 1, as can be seen by substituting the first alternative of (23) into
the second sum in (22). Suppose by induction that (24) is true for some i such that
k − 1 ≥ i ≥ 1. Since k(βγ) = k(β) + k(γ) and v(βγ) = v(β) + v(γ), we may rewrite (24)
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as

H−(α) = (−1)|α
i|22bαi/2c ∑

δ≥αi−1
γ�ai

(−1)k(δγ)+v(δγ)C(v(δγ), bn/2c − bαi/2c − v(δγ))

= (−1)|α
i|22bαi/2c ∑

δ≥αi−1

(−1)k(δ)+v(δ)
∑
γ�ai

(−1)k(γ)+v(γ)

C(v(δ) + v(γ), bn/2c − bαi/2c − v(δ) − v(γ))

= (−1)|α
i| 22bαi/2c ∑

δ≥αi−1

(−1)k(δ)+v(δ)
bai/2c∑
b=0

(−1)b

C(v(δ) + b, bn/2c − bαi/2c − v(δ) − b)
∑
γ�ai

v(γ)=b

(−1)k(γ)

= (−1)|α
i−1| 22bαi/2c ∑

δ≥αi−1

(−1)k(δ)+v(δ) (25)

bai/2c∑
b=0

C(v(δ) + b, n/2 − bαi/2c − v(δ) − b)

(bai/2c
b

)
.

The last step uses Lemma 5.4(a). Now apply Lemma 5.5, with i = v(δ) and j = bn/2c −
bαi−1/2c − v(δ), to simplify the second sum in (25). The resulting formula is

H−(α) = (−1)|α
i−1| 22bαi−1/2c ∑

δ≥αi−1

(−1)k(δ)+v(δ)C(v(δ), bn/2c − bαi−1/2c − v(δ)).

This completes the proof of (24). Setting i = 0 in (24) gives the formula stated in the
lemma.

Lemma 5.7. Suppose that n is even and α = (a1, . . . , ak) � n. Then

H+(α) =




2n−ko(α)C(1, ko(α)/2 − 1) if a1 and ak are odd,
2n if α = (n),
0 if a1 or ak is even and α 6= (n).

Proof. We will consider the cases α = (n) and α 6= (n) separately. In this proof, the
notation γi, γ̃, and bβ/2c will have the same meaning as in the proof of Lemma 5.6.

Case 1. Suppose that α = (n). Using the fact that p+(γi) = 1 + u(γ), a calculation
similar to the first part of the proof of Case 1 in Lemma 5.6 yields

H+((n)) = C(0, n/2) −
n−1∑
i=1

b(n−i)/2c∑
b=0

(−1)bC(b+ 1, n/2 − b− 1)
∑

γ�n−i
u(γ)=b

(−1)k(γ).
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Make the substitution j = b(n− i)/2c and apply Lemma 5.4(b) to get

H+((n)) = C(0, n/2) +

n/2−1∑
j=0

j∑
b=0

(
j

b

)
C(b+ 1, n/2 − b− 1)

= C(0, n/2) +

n/2−1∑
b=0

C(b+ 1, n/2 − b− 1)

n/2−1∑
j=b

(
j

b

)

= C(0, n/2) +

n/2−1∑
b=0

C(b+ 1, n/2 − b− 1)

(
n/2

b+ 1

)
.

The last step uses the basic identity
∑n/2−1

j=b

(
j
b

)
=

(
n/2
b+1

)
. We have shown that H+((n)) =∑n/2

b=0

(
n/2
b

)
C(b, n/2 − b), which equals 2n by Lemma 5.5.

Case 2. Suppose that α 6= (n). Using the fact that p+(βγ) = 1 + u(β) + u(γ̃) for
non-empty compositions β and γ, by calculations similar to (22) and (23), we have

H+(α) = (−1)ak22bak/2c
∑

β≥αk−1

(−1)k(β)+u(β)+1C(u(β) + 1, n/2 − bak/2c − u(β) − 1) (26)

if ak is odd, and H+(α) = 0 if ak is even.
Assume from now on that ak is odd. Note that u(δγ) = u(δ) + v(γ) for non-empty

compositions, δ and γ. Using (26) as the base case, an inductive calculation similar to
the proof of (24) shows that for 0 ≤ i ≤ k − 1,

H+(α) = (−1)|α
i| 22bαi/2c ∑

β≥αi

(−1)k(β)+u(β)+1C(u(β) + 1, n/2 − bαi/2c − u(β) − 1). (27)

The formula in the lemma follows by setting i = 0 in (27).

Proof of Theorem 5.1. Let ρ, ψ : QSym → k be the linear maps defined by the proposed
formula for ζ+ and ζ−, respectively. In view of (17), to conclude ρ = ζ+ and ψ = ζ−, it
suffices to show that ∑

β≥α
(−1)k(β)−k(α)ψ(Fβ) = ζ−(Mα) for α � n; (28)

∑
β≥α

(−1)k(β)−k(α)ρ(Fβ) = ζ+(Mα) for α � n, n even. (29)

According to (7), we can rewrite (28) as

(−1)k(α)

22bn/2c
∑
β≥α

(−1)k(β)+p−(β)C(p−(β), bn/2c − p−(β)) (30)

=




(−1)ke(α)

22bko(α)/2cC(0, bko(α)/2c) if ak is odd,

0 if ak is even.
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Note that the left-hand side of (30) equals (−1)k(α)+1H−(α)/22bn/2c. Furthermore, using
the facts k(α) + ke(α) ≡ ko(α) ≡ n (mod 2) and bn/2c − bko(α)/2c = (n− ko(α))/2, the
first alternative in (30) reduces to the equation H−(α) = (−1)n−12n−ko(α)C(0, bko(α)/2c);
the second alternative is equivalent to H−(α) = 0. These formulas for H−(α) agree with
the ones from Lemma 5.6. This proves (30) and hence (28).

By similar considerations, (29) reduces to the formulas for H+(α) given in Lemma 5.7.

Remark 5.8. The fact that formulas (18) and (19) define characters is not obvious, and
consequences are derived in Section 7. Assuming this, however, the fact that ζ− is odd
(which we know from Theorem 3.2) can be seen in the light of (18) as follows. First, since
ζ− is a character, (ζ−)−1 = ζ− ◦ S. For any composition α � n, the antipode of QSym is
given by [17, Corollaire 4.20]

S(Fα) = (−1)nFα′ , (31)

where the ribbon diagram of the conjugate composition α′ is obtained by reflecting the
ribbon diagram of α across the line y = x. For instance, if α = (2, 3, 1, 2, 2) then α′ =
(1, 2, 3, 1, 2, 1), as illustrated below:

α =

�
�
�
�
�
�

α′ =

�
�
�
�
�
�

It is clear that the number of upper corners in the ribbon diagrams of α and α′ are the
same, so p−(α) = p−(α′). Therefore, by (18),

(ζ−)−1(Fα) = (ζ− ◦ S)(Fα) = (−1)nζ−(Fα′) = (−1)nζ−(Fα) = ζ̄−(Fα) ,

which shows that ζ− is odd. On the other hand, expressing this condition in the form
ζ̄−ζ− = ε leads to interesting identities involving bivariate Catalan numbers; see Section 6.

Remark 5.9. Formula (19) reveals an analogous property of the character ζ+, which
is not obvious from its definition. Recall that if α = (a1, . . . , ak) then α̃ = (ak, . . . , a1)
denotes its reversal. The ribbon diagram of α̃ is obtained by reflecting the ribbon diagram
of α across the line y = −x. Consider the linear map T : QSym → QSym defined by

T (Fα) = Fα̃ . (32)

Since α 7→ α̃ preserves refinements, the map T is also given by

T (Mα) = Mα̃ . (33)

From either formula it follows easily that T is an antimorphism of coalgebras, a morphism
of algebras, and an involution (properties which are shared by the antipode S of QSym).
Moreover, we have

ζ+ ◦ T = ζ+ .
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This property follows from (19) and the fact that p+(α) = p+(α̃), which is obvious
from (16). Another proof of this fact is given in Proposition 8.2.

Remark 5.10. Let α = (a1, . . . , ak). As mentioned in the preceding remarks,

p−(α′) = p−(α) and p+(α̃) = p+(α) .

We also have the following formulas:

p−(α̃) =



p−(α) if a1 = ak = 1 or a1, ak 6= 1,

p−(α) − 1 if a1 6= 1 and ak = 1,

p−(α) + 1 if a1 = 1 and ak 6= 1;

(34)

p+(α′) =



p+(α) if exactly one of a1 and ak is 1,

p+(α) − 1 if both a1 and ak are 1,

p+(α) + 1 if neither a1 nor ak is 1.

(35)

These formulas follow easily from (15) and (16), but they can also be visualized in terms of
ribbon diagrams. We illustrate the second alternative of (35) below, for α = (1, 3, 1, 2, 1).
Recall that p+(α) is the number of upper corners in the augmented ribbon diagram of α.

p+(α) = 3

@�
@�

@�

p+(α′) = 2

@�
@�

The statistics p−(α̃) and p+(α′) enter in some of the formulas in Section 8.

6 Application: Identities for bivariate Catalan num-

bers

The first applications we propose stem from evaluating products of characters on the basis
Fα of QSym . This requires knowledge of the coproduct of QSym on this basis. Consider
all ways of cutting the ribbon diagram of α into two pieces along the common boundary
of two squares. We include the two trivial cuts along the first and last edges. Thus, if α
is a composition of n, there are n + 1 ways of cutting its diagram. For α = (2, 3, 1, 2, 2),
two non-trivial cuts are shown below.

α = ⇒
L4(α) =

R4(α) =
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α = ⇒
L5(α) =

R5(α) =

Label the edges between adjacent squares from 0 to n from left to right and top to bottom,
including the first and last edges. Let Li(α) and Ri(α) be the compositions whose ribbon
diagrams are the resulting pieces after cutting the ribbon diagram of α along edge i, with
Li(α) corresponding to the left piece and Ri(α) to the right one. The two trivial cuts
result in L0(α) = ( ), R0(α) = α, and Ln(α) = α, Rn(α) = ( ). The coproduct of QSym
is [17, Corollaire 4.17]

∆(Fα) =
n∑
i=0

FLi(α) ⊗ FRi(α) . (36)

The counit is

ε(Fα) =

{
1 if α = ( ),

0 otherwise.

We abbreviate

`i+(α) := p+

(
Li(α)

)
, ri+(α) := p+

(
Ri(α)

)
,

`i−(α) := p−
(
Li(α)

)
, ri−(α) := p−

(
Ri(α)

)
.

Proposition 6.1. For any composition α of a positive integer n,

bn/2c∑
j=0

(−1)`
2j
+ (α)+r2j

− (α)C
(
`2j+ (α), j − `2j+ (α)

)
C

(
r2j
− (α), bn/2c − j − r2j

− (α)
)

=

{
4bn/2c if α = (n),

0 otherwise.
(37)

n∑
i=0

(−1)`
i
−(α)+ri

−(α)+i

4b
i
2
c+bn−i

2
c C

(
`i−(α), bi/2c − `i−(α)

)
C

(
ri−(α), b(n− i)/2c − ri−(α)

)
= 0 . (38)

Proof. Since ζ+ and ζ− are the even and odd parts of ζ , we have

ζ(Fα) = (ζ+ζ−)(Fα) =

n∑
i=0

ζ+
(
FLi(α)

)
ζ−

(
FRi(α)

)
.

Note that |Li(α)| = i. Hence, by (19), only the terms corresponding to even i contribute
to this sum. We evaluate these terms using (18), (19), and (2). The power of 2 that
results in the denominator is constant and equal to 2bn/2c. Identity (37) follows.

Identity (38) follows similarly from (ζ̄−ζ−)(Fα) = ε(Fα) = 0.
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Various identities for bivariate Catalan numbers may be obtained through special
choices of α in Proposition 6.1. We discuss two particularly nice cases.

The first case involves central Catalan numbers, by which we mean the numbers

C1(h) :=
1

2
C(2h+ 1, h+ 1) , C2(h) :=

1

2
C(2h, h+ 1) , (39)

C3(h) :=
1

2
C(2h, h) , C4(h) :=

1

2
C(2h+ 1, h) .

It follows from (1) that

C1(h) =

(
4h+ 2

h

)
, C2(h) =

2h+ 1

4h+ 1

(
4h+ 1

h

)
,

C3(h) =
1

2

(
4h

h

)
, C4(h) =

(
4h+ 1

h

)
.

We have the following wonderful convolution formulas for central Catalan numbers. Note
that on each side of each equation, the total sum of the subindices r in Cr is constant
(equal to 6, 7, and 8 in each case). Ira Gessel has shown us how one may derive these
identities via generating functions [13].

Corollary 6.2. For any positive integer h,

h∑
j=0

C3(j)C3(h− j) = 2
h−1∑
j=0

C2(j)C1(h− 1 − j) , (40)

h∑
j=0

C3(j)C4(h− j) =
h∑
j=0

C2(j)C3(h− j) +
h−1∑
j=0

C1(j)C1(h− 1 − j) , (41)

h∑
j=0

C4(j)C4(h− j) = 2
h∑
j=0

C3(j)C1(h− j) . (42)

Proof. Let k be a positive integer and α := (2, 1)k = (2, 1, 2, 1, . . . , 2, 1). Formula (36)
gives

∆(Fα) =
k∑
i=0

F(2,1)i ⊗ F(2,1)k−i +
k−1∑
i=0

F(2,1)i,2 ⊗ F1,(2,1)k−1−i +
k−1∑
i=0

F(2,1)i,1 ⊗ F1,1,(2,1)k−1−i .

Equation (37) then leads to

k∑
i=0
i even

C(i, i/2)C(k − i, b(k − i)/2c) =
k−1∑
i=0

C(i, bi/2c + 1)C(k − 1 − i, bk/2c − bi/2c) .

When k = 2h this is (40); when k = 2h+ 1 this is (41).
Similarly, equation (38) for α = (2, 1)k leads to (42) when k = 2h (and to a trivial

identity when k = 2h+ 1).
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The second application was suggested by one of the referees. In (44), we adopt the
convention that C(1,−1) = −1. This is in agreement with (69).

Corollary 6.3. For any positive integers m and n,

m−1∑
j=0

C(0, j)C(n,m− 1 − j) =
n−1∑
j=0

C(0, j)C(m,n− 1 − j) , (43)

m−1∑
j=0

C(0, j)C(n,m− j) =

n∑
j=0

C(1, j − 1)C(m,n− j) . (44)

Proof. Equations (43) and (44) follow from (37) applied to α = (2m, 2n, 1) and α =
(2m, 2n), respectively.

More identities may be derived from (18) and (19) by imposing the fact that ζ− and
ζ+ are morphisms of algebras. The multiplication of two basis elements Fα and Fβ is most
easily described in terms of permutations. It is thus convenient to work on a larger Hopf
algebra SSym , of which QSym is a quotient. This is the object of the next section.

7 Identities for bivariate Catalan numbers via the

Hopf algebra of permutations

The Hopf algebra of permutations SSym has a linear basis {Fσ} indexed by permutations
σ ∈ Sn, n ≥ 0. The multiplication of two basis elements is as follows. Given σ ∈
Sn and τ ∈ Sm, let S(σ, τ) be the set of all shuffles of the words σ(1), . . . , σ(n) and
n+ τ(1), . . . , n+ τ(m). Then

Fσ · Fτ =
∑

ρ∈S(σ,τ)

Fρ . (45)

For example,

F12 · F312 = F12534 + F15234 + F15324 + F15342 + F51234

+F51324 + F51342 + F53124 + F53142 + F53412 .

For more information on the Hopf algebra structure of SSym see [3].
The descent set of a permutation σ ∈ Sn is

Des(σ) := {i ∈ [n− 1] | σ(i) > σ(i+ 1)} .
LetD(σ) = (a1, . . . , ak) be the composition of n such that {a1, a1+a2, . . . , a1+· · ·+ak−1} =
Des(σ). The map

D : SSym −→ QSym

Fσ 7−→ FD(σ)

(46)
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is a surjective morphism of graded Hopf algebras [17, Théorèmes 5.12, 5.13, and 5.18].
Let ζS denote the pull-back of the universal character ζ of QSym via the morphism

D:
ζS := ζ ◦ D .

According to Lemma 2.2, the even and odd parts of ζS are

(ζS)+ = ζ+ ◦ D and (ζS)− = ζ− ◦ D . (47)

We describe these characters directly in terms of permutations.
As in [1], consider the following two slightly differing notions of a peak set of a permu-

tation σ ∈ Sn:

Peak0(σ) := {i ∈ [n− 1] | i 6= 1, σ(i− 1) < σ(i) > σ(i+ 1)} ,
Peak(σ) := {i ∈ [n− 1] | σ(i− 1) < σ(i) > σ(i+ 1)} ,

where we agree that σ(0) = 0. For instance, if σ = 312546 then Peak0(σ) = {4} and
Peak(σ) = {1, 4}. The study of peak enumeration has a long history, but the connections
between peaks and quasi-symmetric functions originate in work of Stembridge [23].

�
�
�
�

�
�

@
@

@
@r

r

r

r

r

r

3

1

2

5

4

6

r�
�0

0 1 2 3 4 5 6
r r r r r r r

Note that Peak0(σ) and Peak(σ) depend only on Des(σ). In fact,

i ∈ Peak(σ) ⇐⇒ i ∈ Des(σ) and i− 1 /∈ Des(σ) ,

i ∈ Peak0(σ) ⇐⇒ i ∈ Peak(σ) and i 6= 1 .

We write p−(σ) := #Peak0(σ) and p+(σ) := #Peak(σ). Let α := D(σ). It follows
from (15), (16), and the above that

p−(σ) = p−(α) and p+(σ) = p+(α) . (48)

Proposition 7.1. Let σ ∈ Sn be a permutation. Then

(ζS)−(Fσ) =
(−1)p−(σ)

22bn/2c C (p−(σ), bn/2c − p−(σ)) . (49)

(ζS)+(Fσ) =




(−1)p+(σ)

2n
C (p+(σ), n/2 − p+(σ)) if n is even,

0 if n is odd.
(50)

Proof. This follows at once from Theorem 5.1 together with (46), (47) and (48).
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We may now deduce the identities for bivariate Catalan numbers announced at the
end of Section 6.

Corollary 7.2. For any non-negative integer n,∑
σ∈Sn

(−1)p−(σ)C
(
p−(σ), bn/2c − p−(σ)

)
= 22bn/2c , (51)

and for any even positive integer n,∑
σ∈Sn

(−1)p+(σ)C
(
p+(σ), n/2 − p+(σ)

)
= 0 . (52)

Proof. Consider the n-th power of the basis element indexed by the permutation 1 ∈ S1

in the algebra SSym . Since S(1, 1, . . . , 1) = Sn, (45) gives

(F1)
n =

∑
σ∈Sn

Fσ .

Applying (ζS)− to both sides, using that it is a morphism of algebras and (49), we de-
duce (51). Similarly, applying (ζS)+ we obtain (52).

Let 1n denote the identity permutation in Sn. Note that S(1n, 1m) is the set of those
permutations σ ∈ Sn+m such that

σ−1(1) < · · · < σ−1(n), σ−1(n+ 1) < · · · < σ−1(n+m) .

Corollary 7.3. Let n,m be non-negative integers. Then∑
σ∈S(1n,1m)

(−1)p−(σ)C
(
p−(σ), b(n+m)/2c − p−(σ)

)

=

{
C(0, bn/2c)C(0, bm/2c) if n or m is even,

4C(0, bn/2c)C(0, bm/2c) if n and m are odd.
(53)

∑
σ∈S(1n,1m)

(−1)p+(σ)C
(
p+(σ), (n+m)/2 − p+(σ)

)

=

{
C(0, n/2)C(0, m/2) if n and m are even,

0 if n and m are odd.
(54)

Proof. By (45),

F1n · F1m =
∑

σ∈S(1n,1m)

Fσ .

Applying (ζS)− we deduce (53) and applying (ζS)+ we deduce (54).
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8 Inverses of canonical characters and more applica-

tions

The set of characters of a Hopf algebra H is a group under the convolution product
(Section 1). The inverse of a character ϕ is ϕ ◦ S, where S is the antipode of H.

Proposition 8.1. The inverse of the universal character ζ of QSym is explicitly given
by

ζ−1(Mα) = (−1)k(α) , ζ−1(Fα) =

{
(−1)|α| if α = (1, 1, . . . , 1),

0 if not.
(55)

Proof. This follows at once from the explicit formulas for the antipode of QSym (12)
and (31).

Inverting the canonical decomposition ζ = ζ+ζ− we obtain

ζ−1 = (ζ−)−1(ζ+)−1 = (ζ+)−1
(
ζ+(ζ−)−1(ζ+)−1

)
= (ζ+)−1

(
ζ+ζ̄−(ζ+)−1

)
.

The set of even characters is a subgroup of the group of characters, and the set of
odd characters is closed under conjugation by even characters [2, Proposition 1.7]. In
particular, (ζ+)−1 is even and ζ+ζ̄−(ζ+)−1 is odd. According to Lemma 2.1, these are the
even and odd parts of ζ−1:

(ζ−1)+ = (ζ+)−1 and (ζ−1)− = ζ+ζ̄−(ζ+)−1 . (56)

We provide explicit descriptions for these characters below. First, we analyze the behavior
of the map T : QSym → QSym (Remark 5.9) with respect to the canonical decomposition
of ζ .

Proposition 8.2. We have

ζ+ ◦ T = ζ+ and ζ− ◦ T =
(
(ζ−1)−

)−1
. (57)

Proof. Both S and T are antimorphism of coalgebras and morphisms of algebras QSym →
QSym . In addition, ζ ◦S = ζ−1 and ζ ◦T = ζ ; the latter being an immediate consequence
of (2) and (32). Therefore, T ◦ S : QSym → QSym is a morphism of Hopf algebras such
that ζ ◦ T ◦ S = ζ−1. According to Lemma 2.2 we have

(ζ−1)+ = ζ+ ◦ T ◦ S and (ζ−1)− = ζ− ◦ T ◦ S .

Composing with S we find ζ+ ◦ T = (ζ−1)+ ◦ S =
(
(ζ−1)+

)−1
= ζ+, by (56), and ζ− ◦ T =

(ζ−1)− ◦ S =
(
(ζ−1)−

)−1
.
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Remark 8.3. The fact that ζ+ ◦ T = ζ+ was observed in Remark 5.9. The fact that

ζ− ◦ T =
(
(ζ−1)−

)−1
may be rewritten as follows:

(ζ−1)− = ζ̄− ◦ T . (58)

Indeed, any morphism (or antimorphism) preserves inverses, so

(ζ−1)− =
(
ζ− ◦ T )−1

= (ζ−)−1 ◦ T = ζ̄− ◦ T ,

since ζ− is odd. We use this formula to calculate (ζ−1)− below.

Theorem 8.4. Let α = (a1, . . . , ak) be a composition of a non-negative integer n. Then

(ζ−1)−(Mα) =




(−1)k(α)

22bko(α)/2cC
(
0, bko(α)/2c) if a1 is odd,

0 if a1 is even.

(59)

(ζ−1)+(Mα) =




(−1)k(α)

2ko(α)
C

(
0, ko(α)/2

)
if n is even,

0 if n is odd;

(60)

Proof. According to (58) and (33),

(ζ−1)−(Mα) = ζ̄−
(
T (Mα)

)
= (−1)nζ−(Mα̃) ,

which we can evaluate with (7). To see that this results in (59), note that since α̃ is the
reversal of α, the last part of α̃ is a1, ko(α̃) = ko(α), and by (6)

n+ ke(α̃) = n + ke(α) ≡ ko(α) + ke(α) = k(α) .

To settle the remaining identity we give a direct argument. Let ϕ : QSym → k be the
linear functional defined by (60). We show that ζ+ϕ = ε, which implies ϕ = (ζ+)−1 =
(ζ−1)+.

Since ϕ(M( )) = 1, we have (ζ+ϕ)(M( )) = 1 = ε(M( )).
Assume from now on that n > 0. We need to show (ζ+ϕ)(Mα) = 0. Write α =

(a1, . . . , ak) and recall the notations αi and αi from (3).
If n is odd then for each i one of |αi| and |αi| is odd, so every term in the expansion (3)

of (ζ+ϕ)(Mα) is 0, by (8) and (60). Assume from now on that n is even.
If k = 1 (i.e., α = (n)), then (ζ+ϕ)(M(n)) = ϕ(M(n)) + ζ+(M(n)) = −1 + 1 = 0.
If k > 1 and a1 is even, then ϕ(Mα) = −ϕ(Mα1) (since α1 has one less part than α

and the same number of odd parts), and ζ+(Mαi
) = 0 when i > 1 by (8). Thus,

(ζ+ϕ)(Mα) = ϕ(Mα) + ζ+(M(a1))ϕ(Mα1) = ϕ(Mα) + ϕ(Mα1) = 0.
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Suppose finally that k > 1 and a1 is odd. Using (3) and (8) we compute

(ζ+ϕ)(Mα) =
(−1)k(α)

2ko(α)
B

(ko(α)

2

)
+

∑
1≤i≤k
ai odd

|αi| even

(−1)ke(αi)+1

2ko(αi)−1
C

(ko(αi)
2

− 1
)(−1)k(α

i)

2ko(αi)
B

(ko(αi)
2

)

=
(−1)k

2ko(α)
B

(ko(α)

2

)
+

(−1)k+1

2ko(α)−1

∑
1≤i≤k
ai odd

|αi| even

C
(ko(αi)

2
− 1

)
B

(ko(αi)
2

)
.

To combine the signs in the last step we used k = k(α) ≡ ke(αi) + k(αi) mod 2, which
holds by (6) and since |αi|, |αi|, and |α| are all even. The argument may now be completed
as in the proof of Theorem 3.2, Case 5.

We present some applications. The first one is an identity which appears in [19, Section
4.2, Example 2] (near the bottom of page 130).

Corollary 8.5. For any positive integer m,

m−1∑
j=0

22m−2j−1C(j) = 22m −
(

2m

m

)
. (61)

Proof. We have ζ−1 = (ζ−1)+(ζ−1)− = (ζ+)−1(ζ−1)−, so (ζ−1)− = ζ+ζ
−1. We evaluate

both sides on Mα with α = (1, 1, . . . , 1) � 2m. Equations (8), (55), and (59) lead to

1

22m
C(0, m) = 1 +

2m∑
i=2
i even

−1

2i
C(1, i/2 − 1) .

Letting j = 2i+ 2 we obtain (61).

The following identity is analogous to (13).

Corollary 8.6. For any composition β of an even integer,∑
α≤β

a1,ak odd

(−1)ke(α)2ko(β)−ko(α)+1C
(
ko(α)/2 − 1

)
= 2ko(β) −

(
ko(β)

ko(β)/2

)
; (62)

the sum being over those compositions α = (a1, . . . , ak) whose first and last part are odd
and which are refined by β.

Proof. By (56),
ζ+ ◦ S = (ζ+)−1 = (ζ−1)+ .

Therefore, for any composition β of n we have, by (12),

(−1)k(β)
∑
α≤β̃

ζ+(Mα) = (ζ−1)+(Mβ) .
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Hence, by (8) and (60), and since n is even,

(−1)k(β) + (−1)k(β)
∑
α≤β̃

a1,ah odd

(−1)ke(α)+1

2ko(α)
C(1, ko(α)/2 − 1) =

(−1)k(β)

2ko(β)
C(0, ko(β)/2) .

The above sum remains unchanged if we replace β̃ by β. Multiplying by 2ko(β) gives (62).

On the fundamental basis, the even and odd parts of ζ−1 are most easily described in
terms of the statistics p+(α′) and p−(α̃) (Remark 5.10). They may be described directly
in terms of p+(α) and p−(α) by means of formulas (34) and (35).

Theorem 8.7. Let α = (a1, . . . , ak) be a composition of a non-negative integer n. Then

(ζ−1)−(Fα) =
(−1)n+p−(α̃)

22bn/2c C
(
p−(α̃), bn/2c − p−(α̃)

)
(63)

(ζ−1)+(Fα) =




(−1)p+(α′)

2n
C

(
p+(α′), n/2 − p+(α′)

)
if n is even,

0 if n is odd.

(64)

Proof. Assume that n is even, n 6= 0. We have, by (31) and (56),

(ζ−1)+(Fα) = (ζ+)−1(Fα) = (ζ+ ◦ S)(Fα) = ζ+(Fα′) .

Formula (64) now follows from (19). Formula (63) follows similarly from (18) and (58).

As an application we derive a recursive formula for the bivariate Catalan numbers.

Corollary 8.8. For any non-negative integers a, b, and c,

C(b, a+ c) = 4cC(b, a) −
c∑
j=1

4c−jC(b+ 1, a+ j − 1) . (65)

Proof. We evaluate both sides of (ζ−1)− = ζ+ζ
−1 on Fα with

α = (1, . . . , 1︸ ︷︷ ︸
2a+1

, 2, . . . , 2︸ ︷︷ ︸
b

, 1, . . . , 1︸ ︷︷ ︸
2c

) .

According to (36),

(ζ+ζ
−1)(Fα) =

n∑
i=0

ζ+(FLi(α))ζ
−1(FRi(α)) .
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Several terms in this expansion vanish, in view of (19) and (55): all those for which the
size of Li(α) is odd and all those for which Ri(α) 6= (1, . . . , 1). We are left with

(ζ+ζ
−1)(Fα) = ζ+(F(1, . . . , 1︸ ︷︷ ︸

2a+1

,2, . . . , 2︸ ︷︷ ︸
b−1

,1))ζ
−1(F(1, . . . , 1︸ ︷︷ ︸

2c+1

))

+
2c−1∑
i=1
i odd

ζ+(F(1, . . . , 1︸ ︷︷ ︸
2a+1

,2, . . . , 2︸ ︷︷ ︸
b

,1, . . . , 1︸ ︷︷ ︸
i

))ζ
−1(F(1, . . . , 1︸ ︷︷ ︸

2c−i

))

=
(−1)b

22(a+b)
C(b, a)(−1)2c+1 +

2c−1∑
i=1
i odd

(−1)b+1

22(a+b)+i+1
C(b+ 1, a+ (i+ 1)/2 − 1)(−1)2c−i

=
(−1)b+1

22(a+b)
C(b, a) +

c∑
j=1

(−1)b

22(a+b+j)
C(b+ 1, a+ j − 1) .

We used p+(1, . . . , 1︸ ︷︷ ︸
2a+1

, 2, . . . , 2︸ ︷︷ ︸
b−1

, 1) = b and p+(1, . . . , 1︸ ︷︷ ︸
2a+1

, 2, . . . , 2︸ ︷︷ ︸
b

, 1, . . . , 1︸ ︷︷ ︸
i

) = b+ 1 for i ≥ 1.

On the other hand, p−(α) = b, so by (63),

(ζ−1)−(Fα) =
(−1)2(a+b+c)+1+b

22(a+b+c)
C(b, a+ c) .

Equating (ζ−1)−(Fα) to (ζ+ζ
−1)(Fα) gives (65).

A few special cases of Corollary 8.8 are worth stating. We obtain formulas expressing
a central binomial coefficient or a Catalan number in terms of bivariate Catalan numbers.

Corollary 8.9. For any non-negative integers b and c,(
2b

b

)
=

1

4c
C(b, c) +

c∑
j=1

1

4j
C(b+ 1, j − 1) , (66)

2C(b) =
1

4c
C(b, c + 1) +

c∑
j=1

1

4j
C(b+ 1, j) . (67)

Proof. These follow by choosing a = 0 and a = 1 in (65).

Corollary 8.10. Let H(a, b, c) := C(a, b+ c) − C(b, a + c). Then

1

4c
H(a, b, c) =

c∑
j=1

1

4j
H(b+ 1, a+ 1, j − 2) . (68)

Proof. This follows from (65) since C(a, b) = C(b, a).
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Appendix. Bivariate Catalan numbers as binomial co-

efficients

Using the easily verified formula

C(m,n) = (−1)n4m+n

(
m− 1/2

m+ n

)
, (69)

one may restate all results in this paper in terms of binomial coefficients. This allows for
simplifications in some of the formulas. We list here our main results in this notation.
Let α = (a1, . . . , ak) be a composition of n.

ζ−(Mα) =


 (−1)ke(α)+bko(α)

2
c
( −1/2

bko(α)/2c
)

if ak is odd,

0 if ak is even;
(70)

ζ+(Mα) =




(−1)ke(α)+
ko(α)

2

(
1/2

ko(α)/2

)
if a1 and ak are odd and n is even,

1 if α = (n) and n is even,
0 otherwise;

(71)

ζ−(Fα) = (−1)b
n
2
c
(
p−(α) − 1/2

bn/2c
)

; (72)

ζ+(Fα) =




(−1)
n
2

(
p+(α) − 1/2

n/2

)
if n is even,

0 if n is odd;

(73)

(ζ−1)−(Mα) =




(−1)k(α)+bko(α)
2

c
( −1/2

bko(α)/2c
)

if a1 is odd,

0 if a1 is even;

(74)

(ζ−1)+(Mα) =




(−1)k(α)+
ko(α)

2

( −1/2

ko(α)/2

)
if n is even,

0 if n is odd;

(75)

(ζ−1)−(Fα) = (−1)b
n+1

2
c
(
p−(α̃) − 1/2

bn/2c
)

; (76)

(ζ−1)+(Fα) =




(−1)
n
2

(
p+(α′) − 1/2

n/2

)
if n is even,

0 if n is odd.

(77)
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We mention that the convolution powers of the universal character are

ζm(Mα) =

(
m

k(α)

)
, (78)

ζm(Fα) =

(
m+ n− k(α)

n

)
, (79)

for any integer m [2, Formula (4.4)].
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[9] Ömer Eğecioğlu and Alastair King, Random walks and Catalan factorization, Pro-
ceedings of the Thirtieth Southeastern International Conference on Combinatorics,
Graph Theory, and Computing (Boca Raton, FL, 1999). Congr. Numer. 138 (1999),
129–140.

[10] F. Fares, Quelques constructions d’algèbres et de coalgèbres, Université du Québec à
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[25] Koloman von Szily, Über die quadratsummen der binomialcoefficienten, Mathematis-
che und naturwissenschaftliche Berichte aus Ungarn (Ungar. Ber.) 12 (1893), 84–91.

the electronic journal of combinatorics 11(2) (2005), #R15 34

http://www.cs.uwaterloo.ca/journals/JIS/VOL4/SIXDENIERS/Catalan.html
 http://www-math.mit.edu/~rstan/ec/catadd.pdf

	Introduction
	Even and odd characters
	The canonical characters of QSym on the monomial basis
	Application: Identities for Catalan numbers and central binomial coefficients
	The canonical characters of QSym on the fundamental basis
	Application: Identities for bivariate Catalan numbers
	Identities for bivariate Catalan numbers via the Hopf algebra of permutations
	Inverses of canonical characters and more applications

