
Monomial nonnegativity and the Bruhat order

Brian Drake, Sean Gerrish, Mark Skandera
Dept. of Mathematics, Brandeis University

MS 050, P.O. Box 9110, Waltham, MA 02454
bdrake@math.brandeis.edu

Dept. of Mathematics, University of Michigan
2074 East Hall, Ann Arbor, MI 48109-1109

sgerrish@umich.edu

Dept. of Mathematics, Dartmouth College
6188 Bradley Hall, Hanover, NH 03755-3551

mark.skandera@dartmouth.edu

Submitted: Mar 11, 2005; Accepted: May 6, 2005; Published: Jun 3, 2005
MR Subject Classifications: 15A15, 05E05

Abstract

We show that five nonnegativity properties of polynomials coincide when re-
stricted to polynomials of the form x1,π(1) · · · xn,π(n) − x1,σ(1) · · · xn,σ(n), where π
and σ are permutations in Sn. In particular, we show that each of these properties
may be used to characterize the Bruhat order on Sn.

1 Introduction

Let x = (xij) be a generic square matrix and define ∆I,I′(x) to be the (I, I ′) minor of x,
i.e., the determinant of the submatrix of x corresponding to rows I and columns I ′. A
real matrix is called totally nonnegative (TNN) if each of its minors is nonnegative. (See
e.g. [9].) A polynomial p(x11, . . . , xnn) in n2 variables is called totally nonnegative if it
satisfies

p(A) =
def

p(a1,1, . . . , an,n) ≥ 0 (1)

for each n × n totally nonnegative matrix A = (ai,j). Some recent interest in total
nonnegativity concerns a set of polynomials known in quantum Lie theory as the dual
canonical basis of O(SL(n, C)). (See e.g. [25].) In particular, Lusztig [17] has proved that
these polynomials are TNN.

A polynomial p(x) which is equal to a subtraction-free rational expression in matrix
minors must be TNN. (By a result of Whitney [24], we need not be concerned that the
denominator vanishes for some TNN matrices.) We shall say that such a polynomial p(x)
has the subtraction-free rational function (SFR) property. If this subtraction-free rational
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expression may be chosen so that the denominator is a monomial in matrix minors, we
shall say that p(x) has the subtraction-free Laurent (SFL) property. One example of a
polynomial having the SFL property is

x1,2x2,1x3,3 − x1,2x2,3x3,1 − x1,3x2,1x3,2 + x1,3x2,2x3,1

=
∆13,23(x)∆23,13(x) + ∆1,3(x)∆3,1(x)∆23,23(x)

∆3,3(x)
.

Analogous classes of polynomials may be defined in terms of symmetric functions.
(See [21, Ch. 7] for basic definitions concerning symmetric functions.) In particular, any
finite submatrix of the infinite matrix H = (hj−i)i,j≥0, where hk is the kth complete ho-
mogeneous symmetric function and hk = 0 for k < 0, is called a Jacobi-Trudi matrix.
We define a polynomial p(x1,1, . . . , xn,n) to be monomial nonnegative (MNN) if for each
Jacobi-Trudi matrix A = (ai,j) the symmetric function p(A) is equal to a nonnegative
linear combination of monomial symmetric functions. Defining Schur nonnegative (SNN)
polynomials analogously, we have that every SNN polynomial is MNN. Some recent in-
terest in SNN polynomials is motivated by problems in algebraic geometry [8, Conj. 2.8,
Conj. 5.1], [1].

2 Main result

The five nonnegativity properties defined in Section 1 have been applied most often to
immanants, polynomials which belong to span

C {x1,σ(1) · · ·xn,σ(n) | σ ∈ Sn}. (See [11], [12],
[13], [20], [19], [22], [23]. The results of [7] may also be stated in these terms.) Curiously,
the TNN, MNN, and SNN properties coincide when applied to immanants in the main
theorems of the above papers. It is also curious that none of these immanants is known
not to have the SFL property. It would be interesting to identify immanants which have
some of these nonnegativity properties and fail to have others. Nevertheless, our main
result shows that the five properties coincide when applied to immanants of the form

x1,π(1) · · ·xn,π(n) − x1,σ(1) · · ·xn,σ(n).

We shall use the following well-known characterizations of the Bruhat order on Sn.
The Bruhat order on Sn is often defined by comparing two permutations π = π(1) · · ·π(n)
and σ = σ(1) · · ·σ(n) according to the following criterion: π ≤ σ if σ is obtainable from π
by a sequence of transpositions (i, j) where i < j and i appears to the left of j in π. (See
e.g. [14, p. 119].) A second well-known criterion compares permutations in terms of their
defining matrices. Let M(π) be the matrix whose (i, j) entry is 1 if j = π(i) and zero
otherwise. Defining [i] = {1, . . . , i}, and denoting the submatrix of M(π) corresponding
to rows I and columns J by M(π)I,J , we have the following.

Theorem 1 Let π and σ be two permutations in Sn. Then π is less than or equal to σ in
the Bruhat order if and only if for all 1 ≤ i, j ≤ n − 1, the number of ones in M(π)[i],[j]

is greater than or equal to the number of ones in M(σ)[i],[j].
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(See [2], [3], [4], [6], [10, pp. 173-177], [16], [15], [18]. for more characterizations.)
Our result, combined with those of our previous paper [5], is the following list of

nonnegativity criteria with which one may define the Bruhat order.

Theorem 2 Let π and σ be permutations in Sn. The following conditions on π and σ
are equivalent.

1. π ≤ σ in the Bruhat order.

2. x1,π(1) · · ·xn,π(n) − x1,σ(1) · · ·xn,σ(n) is totally nonnegative.

3. x1,π(1) · · ·xn,π(n) − x1,σ(1) · · ·xn,σ(n) is Schur nonnegative.

4. x1,π(1) · · ·xn,π(n) − x1,σ(1) · · ·xn,σ(n) is monomial nonnegative.

5. x1,π(1) · · ·xn,π(n)−x1,σ(1) · · ·xn,σ(n) has the subtraction-free rational function property.

6. x1,π(1) · · ·xn,π(n) − x1,σ(1) · · ·xn,σ(n) has the subtraction-free Laurent property.

Proof: The implications (3 ⇒ 4) and (6 ⇒ 5 ⇒ 2) are immediate. The implication
(2 ⇒ 1) was estblished in [5, Thm. 2], and the implication (1 ⇒ 6) follows trivially from
that proof. The implication (1 ⇒ 3) was established in [5, Thm. 3]. It will suffice therefore
to prove the implication (4 ⇒ 1).

Suppose that π is not less than or equal to σ in the Bruhat order. By Theorem 1 we
may choose indices 1 ≤ k, ` ≤ n−1 such that M(σ)[k],[`] contains q+1 ones and M(π)[k],[`]

contains q ones. Keeping n fixed, let b be a large nonnegative integer which satisfies

(
2b

b

)
> (2b + 2n)2n2

,

(which is possible because
(
2b
b

)
grows exponentially) and consider the n× n Jacobi-Trudi

matrix

B =




hb+k−1 · · · hb+k+`−2 h2b+k−1 · · · h2b+n+k−`−2
...

...
...

...
hb · · · hb+`−1 h2b · · · h2b+n−1−`

hn−k−1 · · · hn−k+`−2 hb+n−k−1 · · · hb+2n−k−`−1
...

...
...

...
h0 · · · h`−1 hb · · · hb+n−`−1




,

defined by the skew shape (2b + k − ` − 1)k(b + n − ` − 1)n−k/(b − `)`. Let

s = k(2b + k − ` − 1) + (n − k)(b + n − ` − 1) − `(b − `)

be the number of boxes in this skew shape.
The polynomial x1,π(1) · · ·xn,π(n) − x1,σ(1) · · ·xn,σ(n) applied to B may be expressed as

hλ − hµ for some appropriate partitions λ, µ of s, which depend on π, σ, respectively. We
claim that the coefficient of m1s in the monomial expansion of hλ − hµ is negative.
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Note that the ratio of the coefficients of m1s in the monomial expansions of hλ and hµ

is (
s

λ1,...,λn

)
(

s
µ1,...,µn

) =
µ1! · · ·µn!

λ1! · · ·λn!
.

By the locations of ones in the matrices M(π) and M(σ), this ratio is less than or equal
to

(2b + 2n)!k−q−1

(2b)!k−q

(b + 2n)!n−k−`+2q+2

b!n−k−`+2q

(2n)!`−q−1

0!`−q
,

which in turn is less than or equal to

(2b + 2n)2n(k−q−1)

(2b)!
(b + 2n)!2(2b + 2n)2n(n−k+q−1) =

(b + 2n)!2

(2b)!
(2b + 2n)2n(n−2)

≤ (2b + 2n)2n2

(
2b
b

) ,

which is less than 1 by our choice of b. It follows that the coefficient of m1s in the monomial
expansion of hλ − hµ is negative and the polynomial x1,π(1) · · ·xn,π(n) − x1,σ(1) · · ·xn,σ(n) is
not MNN. �
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