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Abstract

Characteristic polynomials of random unitary matrices have been intensively
studied in recent years: by number theorists in connection with Riemann zeta-
function, and by theoretical physicists in connection with Quantum Chaos. In
particular, Haake and collaborators have computed the variance of the coefficients
of these polynomials and raised the question of computing the higher moments. The
answer turns out to be intimately related to counting integer stochastic matrices
(magic squares). Similar results are obtained for the moments of secular coefficients
of random matrices from orthogonal and symplectic groups. Combinatorial meaning
of the moments of the secular coefficients of GUE matrices is also investigated and
the connection with matching polynomials is discussed.

1 Introduction

Two noteworthy developments took place recently in Random Matrix Theory. One is the
discovery and exploitation of the connections between eigenvalue statistics and the longest-
increasing subsequence problem in enumerative combinatorics [1, 4, 5, 47, 59]; another is
the outburst of interest in characteristic polynomials of Random Matrices and associated
global statistics, particularly in connection with the moments of the Riemann zeta function
and other L-functions [41, 14, 35, 36, 15, 16]. The purpose of this paper is to point out
some connections between the distribution of the coefficients of characteristic polynomials
of random matrices and some classical problems in enumerative combinatorics.

∗The second author was supported in part by the NSF postdoctoral fellowship.
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2 Secular coefficients of CUE matrices and magic

squares

2.1 Secular coefficients of the characteristic polynomial

Let M be a matrix in U(N) chosen uniformly with respect to Haar measure. Denote by
eiθ1 , . . . , eiθN its eigenvalues and consider the characteristic polynomial of M :

PM(z) = det(M − zI) =
N∏

j=1

(eiθj − z) = (−1)N
N∑

j=0

Scj(M)zN−j(−1)j , (1)

where Scj(M) is the j-th secular coefficient of the characteristic polynomial. Note that

Sc1(M) = Tr(M), (2)

and
ScN(M) = det(M). (3)

The moments of traces were studied by Diaconis and Shahshahani [23] and Diaconis
and Evans [21] who proved the following result:

Theorem 1. (a) Consider a = (a1, . . . , al) and b = (b1, . . . , bl) with aj, bj nonnegative
natural numbers. Let Z1, . . . , Zn be independent standard complex normal variables. Then

for N ≥ max
(∑l

1 jaj ,
∑l

1 jbj

)
we have

EUN

l∏
j=1

(TrM j)aj (TrM j)
bj

=

∫
UN

l∏
j=1

(TrM j)aj (TrM j)
bj

dM

= δab

l∏
j=1

jajaj ! = E

(
l∏

j=1

(
√

jZj)
aj (
√

jZ̄j)
bj

)
. (4)

(b) For any j, k, EUN
Tr(M j) Tr(Mk) = δjk min (j, k).

Moments of the higher secular coefficients were studied by Haake and collaborators
[30, 31] who obtained:

EU(N)Scj(M) = 0, EU(N)|Scj(M)|2 = 1; (5)

and posed the question of computing the higher moments. The answer is given by Theorem
2, which we state below after pausing to give the following definition.

Definition 1. If A is an m by n matrix with nonnegative integer entries and with row
and column sums

ri =

n∑
j=1

aij,
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cj =
m∑

i=1

aij;

then the the row-sum vector row(A) and column-sum vector col(A) are defined by

row(A) = (r1, . . . , rm),

col(A) = (c1, . . . , cn).

Given two partitions µ = (µ1, . . . , µm) and µ̃ = (µ̃1, . . . , µ̃n) (see section 2.3 for the
partition notations) we denote by Nµµ̃ the number of nonnegative integer matrices A with
row(A) = µ and col(A) = µ̃.

For example, for µ = (2, 1, 1) and µ̃ = (3, 1) we have Nµµ̃ = 3; and the matrices in
question are 

2 0
1 0
0 1


 ,


2 0

0 1
1 0


 ,


1 1

1 0
1 0


 .

For µ = (2, 2, 1) and µ̃ = (3, 1, 1) we have Nµµ̃ = 8; and the matrices in question are
0 1 1

2 0 0
1 0 0


 ,


1 1 0

1 0 1
1 0 0


 ,


1 0 1

1 1 0
1 0 0


 ,


2 0 0

0 1 1
1 0 0


 ,


2 0 0

1 1 0
0 0 1


 ,


2 0 0

1 0 1
0 1 0


 ,


1 1 0

2 0 0
0 0 1


 ,


1 0 1

2 0 0
0 1 0


 .

We are ready to state the following Theorem, proved in section 2.3.

Theorem 2. (a) Consider a = (a1, . . . , al) and b = (b1, . . . , bl) with aj, bj nonnegative

natural numbers. Then for N ≥ max
(∑l

1 jaj ,
∑l

1 jbj

)
we have

EUN

l∏
j=1

(Scj(M))aj (Scj(M))
bj

= Nµµ̃. (6)

Here µ and µ̃ are partitions µ = 〈1a1 . . . lal〉, µ̃ = 〈1b1 . . . lbl〉 (see section 2.3 for the parti-
tion notations) and Nµµ̃ is the number of nonnegative integer matrices A with row(A) = µ
and col(A) = µ̃.

(b) In particular, for N ≥ jk we have

EU(N)|Scj(M)|2k = Hk(j), (7)

where Hk(j) is the number of k×k nonnegative integer matrices with each row and column
summing up to j – “magic squares”.
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2.2 Magic Squares

The reader is likely to have encountered objects, which following Ehrhart [26] are refereed
to as “historical magic squares”. These are square matrices of order k, whose entries are
nonnegative integers (1, . . . , k2) and whose rows and columns sum up to the same number.
The oldest such object, 

4 9 2
3 5 7
8 1 6


 (8)

first appeared in ancient Chinese literature under the name Lo Shu in the third millennium
BC and repeatedly reappeared in the cabbalistic and occult literature in the middle ages.
Not knowing ancient Chinese, Latin, or Hebrew it is difficult to understand what is
“magic” about Lo Shu; it is quite easy to understand however why it keeps reappearing:
there is (modulo reflections) only one historic magic square of order 3.

Following MacMahon [45] and Stanley [52], what is referred to as magic squares in
modern combinatorics are square matrices of order k, whose entries are nonnegative in-
tegers and whose rows and columns sum up to the same number j. The number of magic
squares of order k with row and column sum j, denoted by Hk(j), is of great interest; see
[22] and references therein. The first few values are easily obtained:

Hk(1) = k!, (9)

corresponding to all k by k permutation matrices (this is the k-th moment of the traces
leading in the work of Diaconis and Shahshahani to the result on the asymptotic normality,
see section 2.4 below);

H1(j) = 1, (10)

corresponding to 1 × 1 matrix [j].

We also easily obtain H2(j) = j + 1, corresponding to

[
i j − i

j − i i

]
, but the value of

H3(j) is considerably more involved:

H3(j) =

(
j + 2

4

)
+

(
j + 3

4

)
+

(
j + 4

4

)
. (11)

This expression was first obtained by Mac Mahon in 1915 [45] and a simple proof was
found only a few years ago by M. Bona [7]. The main result on Hk(j) is given by the
following theorem, proved by Stanley and Ehrhart (see [25, 26, 52, 53, 54]):

Theorem 3. (a) Hk(j) is a polynomial in j of degree (k − 1)2.
(b) The following relations hold:

Hk(−1) = Hk(−2) = · · · = Hk(−k + 1) = 0, (12)

and
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Hk(−k − j) = (−1)k−1Hk(j). (13)

It can be shown that the two statements above are equivalent to

∑
j≥0

Hk(j)x
j =

h0 + h1x + · · ·+ hdx
d

(1 − x)(k−1)2+1
, d = k2 − 3k + 2, (14)

with h0 + h1 + . . . hd 6= 0 and hi = hd−i.
(c) The leading coefficient of Hk(j) is the relative volume of Bk - the k-th Birkhoff

polytope, i.e. leading coefficient is equal to vol(Bk)
kk−1 .

By definition, the k-th Birkhoff polytope is the convex hull of permutation matrices:

Bk =

{
(xij) ∈ R

k2

∣∣∣∣ xij ≥ 0;

k∑
i=1

xij = 1;

k∑
j=1

xij = 1

}
. (15)

For example,

H3(j) =
1

8
j4 +

3

4
j3 +

15

8
j2 +

9

4
j + 1,

and ∑
j≥0

H3(j)x
j =

1 + x + x2

(1 − x)5
.

Further, in the example above,

vol(B3) =
1

8
× 9.

Of course, the joint mixed moments in (6)involve counting rectangular arrays with
general row and column sums. This subject has an extensive literature; see the survey
article [22]. The latest results on the complexity of this problem may be found in [19].
We will return to the discussion of computational aspects in section 2.4.

2.3 Proof of Theorem 2

Before proceeding with the proof of Theorem 2 we review some basic notions and notations
of symmetric function theory, referring the reader to [44, 50, 55] for more details.

A partition λ of a nonnegative integer n is a sequence (λ1, . . . , λr) ∈ N
r satisfying

λ1 ≥ · · · ≥ λr and
∑

λi = n. We call |λ| =
∑

λi the size of λ. The number of parts of λ
is the length of λ, denoted l(λ). Write mi = mi(λ) for the number of parts of λ that are
equal to i, so we have λ = 〈1m12m2 . . . 〉.

The Young diagram of a partition λ is defined as the set of points (i, j) ∈ Z
2 such

that 1 ≤ i ≤ λj; it is often convenient to replace the set of points above by squares. The
conjugate partition λ′ of λ is defined by the condition that the Young diagram of λ′ is the
transpose of the Young diagram of λ; equivalently mi(λ

′) = λi − λi+1.
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3
1
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3
2

5
2

6
3

Partition λ SSYT T

Figure 1:

A semi-standard Young tableau (SSYT) of shape λ is a filling of the boxes of λ with
positive integers such that the rows are weakly increasing and the columns are strictly
increasing.

In the figure we exhibited a partition λ = (5, 5, 3, 2) = 〈10213152〉, and a SSYT T
of shape λ (we write λ = sh(T )). We say that T has type α = (α1, α2, . . . ), denoted
α = type(T ), if T has αi = αi(T ) parts equal to i. Thus, the SSYT in the figure has type
(2, 3, 3, 0, 2, 4, 1). For any SSYT T of type α write

xT = x
α1(T )
1 x

α2(T )
2 . . . .

In our example we have
xT = x2

1x
3
2x

3
3x

0
4x

2
5x

4
6x

1
7

Let λ be a partition. We define the Schur function sλ in the variables x = (x1, x2, . . . )
as the formal power series

sλ(x) =
∑

T

xT , (16)

where the sum is over all SSYT’s T of shape λ. The number of SSYT of shape λ and
type α is denoted Kλα, and is called the Kostka number. We have

sλ =
∑

α

Kλαxα. (17)

In the course of this paper, in addition to the combinatorial definition given above,
we will make use of (all of) the following equivalent definitions of Schur functions.

The classical definition of Schur functions is as a ratio of two determinants:

sλ(x) =
det
(
x

λj+n−j
i

)n

i,j=1

det
(
xn−j

i

)n
i,j=1

. (18)

Before proceeding with the next definition of Schur functions we remind the reader
that the elementary symmetric functions er(x1, . . . , xn) are given by

er(x1, . . . , xn) =
∑

i1<···<ir

xi1 . . . xir , (19)
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and for a partition λ we denote

eλ =
∏

eλj
. (20)

We now ready to give another definition of Schur functions, known as Jacobi-Trudi
identity:

sλ = det
(
eλ′

i−i+j

)n
i,j=1

. (21)

Finally, the Schur functions give the irreducible characters of U(N):

EU

(
sλ(M)sµ(M)

)
= δλµ; (22)

here λ and µ have at most N rows.
We now turn to the proof of Theorem 2.
First of all we observe that

Scj(M) = ej(M), (23)

where ej are the elementary symmetric functions defined in (19), and that

l∏
j=1

(Scj(M))aj (Scj(M))
bj

= eµ(M)eµ̃(M), (24)

where µ and µ̃ are partitions µ = 〈1a1 . . . lal〉, µ̃ = 〈1b1 . . . lbl〉 and eµ, eµ̃ are elementary
symmetric functions defined in (20). We express the elementary symmetric functions in
terms of Schur functions (see p. 335 in [55]):

eµ =
∑

λ

Kλ′µsλ, (25)

where Kλµ is the Kostka number defined preceding (17).
We now integrate over the unitary group and use the fact that the Schur function are

irreducible characters expressed in (22), to obtain:∫
U(N)

eµ(M)eµ̃(M)dM =
∑

λ′`|µ|=|µ̃|
Kλ′µKλ′µ̃ = Nµµ̃ (26)

where Nµµ̃ is the number of nonnegative integer matrices A with row(A) = µ and
col(A) = µ̃. The last equality in (26) is the consequence of the Knuth correspondence
[43], establishing a bijection between N -matrices A of finite support and ordered pairs of
(P, Q) of SSYT of the same shape with type(P ) = col(A) and type(Q) = row(A). This
completes proof of Theorem 2.

2.4 Some consequences

Theorem 2 shows that EUN
(Sca

j (M)) = 0 for any fixed j, a ≥ 1 ; further for any fixed
j1, . . . , jk and a1, . . . , ak we have

EUN
(Sca1

j1
(M) . . . Scak

jk
(M)) = 0;
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it also easily implies that Scj(M) are not independent:

EUN
|Scj(M)|2|Sck(M)|2 = j + 1 6= 1.

We further remark, that as a consequence of Theorem 1, Diaconis and Shahshahani
have shown that if M is chosen from Haar measure on UN , the traces of successive powers
have limiting Gaussian distributions: as N → ∞, for any fixed k and Borel sets B1, . . . , Bk

P (TrM ∈ B1, . . . , TrMk ∈ Bk) →
k∏

j=1

P (
√

j Z ∈ Bj), (27)

where Z is standard complex normal. This has the following implication for secular
coefficients

Proposition 4. Let M be chosen uniformly in UN . For fixed j and for any Borel set B
we have

P{Scj(M) ∈ B} → P{Wj ∈ B}, (28)

where Wj is the polynomial in independent standard complex Gaussian variables Z1, . . . , Zj,
given by

Wj =
1

j!

∣∣∣∣∣∣∣∣∣∣∣

Z1 1 0 . . . 0√
2Z2 Z1 2 . . . 0
...

...
...

. . .
...√

j − 1Zj−1

√
j − 2Zj−2

√
j − 3Zj−3 . . . j − 1√

jZj

√
j − 1Zj−1

√
j − 2Zj−2 . . . Z1

∣∣∣∣∣∣∣∣∣∣∣
. (29)

For example,

Sc3(M) ∼ 1

6
Z3

1 −
1√
2
Z1Z2 +

1√
3
Z3

This proposition follows easily from (27) and the Newton formula relating elementary
and power sum symmetric functions [44, p.28].

Now, since the number of magic squares Hk(j) can be expressed as the k-th power
of this Gaussian polynomial, this proposition might be useful in computing Hk(j) and
its leading coefficient vol(Bk) — a subject which has received much recent attention (see
[6, 11, 19, 20, 24, 46]). The connection with Toeplitz determinants, which is discussed in
the next section, might also be of interest in connection with computing Hk(j).

Formula (29) gives the asymptotic distribution of the jth secular coefficient for fixed
j as N tends to infinity as a polynomial of degree j in independent Gaussian variables.
It is natural to ask for limiting distribution as j grows with N . For example what is the
limiting distribution of the bN/2c secular coefficient? On the one hand, (29) suggests it is
a complex sum of independent random variables, so perhaps normal. On the other hand,
(5) holds for all j making normality questionable.

Finally, we note that Theorem 2 served as one of the motivations for [17], where
integral moments of partial sums of the Riemann zeta function on the critical line were
computed and the following result was proved.
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Theorem 5. Let ak be the arithmetic factor given by

ak =
∏

p

(
1 − 1

p

)k2 ∞∑
j=0

dk(p
j)2

pj
, (30)

where dk(n) is the number of ways of expressing n as a product of k factors.
Then

lim
T→∞

1

T

∫ T

0

∣∣∣∣∣
X∑

n=1

1

n
1
2
+it

∣∣∣∣∣
2k

dt = akγk(log X)k2

+ O
(
(log X)k2−1

)
. (31)

Here γk is the geometric factor, γk = vol(Pk), where Pk is the convex polytope of
substochastic matrices, defined by the following inequalities (note the similarity with (15)):

Pk =

{
(xij) ∈ R

k2

∣∣∣∣ xij ≥ 0;
k∑

i=1

xij ≤ 1;
k∑

j=1

xij ≤ 1

}
. (32)

3 Connection with the Toeplitz determinants

For certain functions f an alternative approach to computing the averages
∫

U(N)
f(M)dM

over the unitary group can be based on the Heine-Szego formula.

Proposition 6. [Heine-Szego formula] For f ∈ L1(S1) we have:

1

(2π)N

∫ 2π

0

. . .

∫ 2π

0

N∏
j=1

f(eiθj )
∏

1≤ k≤ l≤ N

|eiθk − eiθl|2 dθ1 . . . dθN = DN(f). (33)

Here DN(f) is the N × N Toeplitz determinant with symbol f :

DN(f) = det
(
f̂(j − k)

)
0≤j,k≤N

, (34)

where f̂(r) = 1
2π

∫ 2π

0
f(eirθ) dθ. See [9] for a proof and references to early literature.

K. Johansson [38] gave a proof of Diaconis and Shahshahani result (27) using (33) and
Szego strong limit theorem for Toeplitz determinats; on the other hand, as explained in
[9], the asymptotic normality (27) gives a new proof (and some extensions) of the strong
Szego limit theorem.

To apply proposition Proposition 6 in our setting it is convenient to introduce the
following polynomial

QM(z) = det(I + Mz) =

N∑
j=0

Scj(M)zj . (35)
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The polynomial QM(z) is closely related to the characteristic polynomial, in fact

QM

(
−1

z

)
=

(−1)N

zN
PM(z). (36)

With QM(z) =
∑N

j=0 Scj(M)z−j we then have:

EUN

[
QM(z1) . . . QM(zl)QM(zl+1) . . . QM (zm)

]
=

1

(zl+1 . . . zm)N
DN(f), (37)

where

f(t) =
1

tm−l

m∏
i=1

(1 + zit) =
∑

r≥l−m

trer+m−l(z1, . . . , zm). (38)

Following [9], the Toeplitz determinant with symbol (38) can be computed using the
Jacobi-Trudi identity (21) and is found to be equal to sNm−l(z1, . . . , zm). We thus obtain
an alternative simple proof of the following result, first established in [16]:

Theorem 7. Notation being as above, we have

EUN

[
QM(z1) . . .QM(zl)QM(zl+1) . . . QM(zm)

]
=

sNm−l(z1, . . . , zm)

(zl+1 . . . zm)N
(39)

We remark that for computing higher moments of secular coefficients the approach
presented in section 2.3 seems to be more advantageous. Theorem 7 straightforwardly
implies only the following hard-to-unravel result:

EUN
Scα1(M) . . .Scαl

(M)ScN−αl+1
(M) . . .ScN−αm(M) = KN l−mα. (40)

The Toeplitz determinant associated with the symbol given by (38) is also closely
related to a classical formula of Schmidt and Spitzer; before stating it we briefly review
Haake’s derivation of (5).

It is implicitly based on the following lemma due to Andréief [3] (see also [58]):

Lemma 8. Let f(z), g(z) be square-integrable functions on S1. Then

EUN
det(f(M)) det(g(M †)) = det

(
1

2π

∫ 2π

0

f(eiθ)g(e−iθ)ei(j−k)θ dθ

)
0≤j,k≤N

. (41)

Applying this lemma with f(z) = z − λ and g(z) = z − µ with z = eiφ and µ = eiχ

and letting x = ei(φ−χ), we have that the integral on the right-hand side of equation (41)is
given by

1

2π

∫ 2π

0

(eiθ −x)(e−iθ − 1)ei(j−k)θ dθ = (1+x)δ(j − k)− δ(j − k +1)−xδ(j − k− 1), (42)
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where δ(k) is 0 or 1 as k is nonzero or zero. Denoting the determinant on the right-hand
side of (41) by DN(x) it is easy to see that for this choice of f and g it satisfies the
recurrence

DN(x) = DN−1(x)x + 1,

whence

DN(x) =

N∑
j=0

xj , (43)

yielding the proof of (5).
Formula (43) is also an easy consequence of the following result of Schmidt and Spitzer

[51] on Toeplitz determinants:

Theorem 9. Let a be given by

a(t) = t−p

p+q∏
j=1

(t − ρj) (t = eiθ). (44)

If the zeroes ρ1, . . . ρp+q are pairwise distinct then for every N ≥ 1,

DN(a) =
∑

L

CLwN
L , (45)

where the sum is taken over all
(

p+q
q

)
subsets L ∈ {1, 2, . . . , p + q} of cardinality |L| = p

and with L̄ = {1, . . . , p + q} \ L,

wL = (−1)q
∏
j∈L̄

ρj , CL =
∏
j∈L̄

ρp
j

∏
j∈L̄
k∈L

(ρj − ρk)
−1. (46)

If we let
a(t) = a−1t

−1 + a0 + t = t−1(t − ρ)(t − σ) (47)

with ρ 6= σ, then theorem 9 gives

DN (a) =
σ

σ − ρ
(σ)N +

ρ

ρ − σ
(−ρ)N = (−1)N σN+1 − ρN+1

σ − ρ
; (48)

and setting σ = x, ρ = 1 this is easily seen to be equivalent to (43).
We now give a simple proof of Theorem 9 using Theorem 7. We have

DN(a(t)) =

p+q∏
j=1

(
1

−ρj

)N

DN(g(t)), (49)

where

g(t) = t−p

p+q∏
j=1

(1 − ρjt). (50)
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Consequently

DN (a(t)) =

p+q∏
j=1

(
− 1

ρj

)N

sNp(−ρ1, . . . ,−ρp+q) = (−1)qN

p+q∏
j=1

(
1

ρj

)N

sNp(ρ1, . . . , ρp+q).

(51)
Now using the classical definition of Schur fucntions (18), and recalling that

det(xn−j
i ) =

∏
1≤i<j≤n

(xi − xj), (52)

we obtain the Schmidt-Spitzer formula by using Laplace expansion1 in the first p rows of
the determinant appearing in the numerator of SNp in formula (51):∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρp+q−1+N
1 ρp+q−2+N

1 . . . ρN
1

...
...

. . .
...

ρp+q−1+N
p ρp+q−2+N

p . . . ρN
p

ρp+q−1
p+1 ρp+q−2

p+1 . . . ρ0
p+1

...
...

. . .
...

ρp+q−1
p+q ρp+q−2

p+q . . . ρ0
p+q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
ρp+q−1

1 ρp+q−2
1 . . . ρ0

1
...

...
. . .

...

ρp+q−1
p+q ρp+q−2

p+1q . . . ρ0
p+q

∣∣∣∣∣∣∣
−1

. (53)

4 Secular coefficients of random orthogonal and sym-

plectic matrices

In this section we prove the analogues of Theorem 2 for the orthogonal group O(N) and
for the symplectic group Sp(2N).

Theorem 10. (a) Consider a = (a1, . . . , al) with aj nonnegative natural numbers. Let µ

be a partition µ = 〈1a1 . . . lal〉. Then for N ≥∑l
1 jaj and |µ| even we have

EO(N)

l∏
j=1

(Scj(M))aj = NSOµ. (54)

Here NSOµ is the number of nonnegative symmetric integer matrices A with row(A) =
col(A) = µ and with all diagonal entries of A equal to 0. For |µ| odd the expected value
in (54) is 0.

(b) In particular, for N ≥ jk and jk even we have

EO(N)Scj(M)k = So
k(j), (55)

where So
k(j) is the number of k×k symmetric nonnegative integer matrices with each row

and column summing up to j and all diagonal entries equal to zero (equivalently j-regular
graphs on k vertices without loops). For jk odd the expected value in (55) is 0.

1We recall the definition of Laplace expansion. Fix p rows of matrix A. Then the sum of products of
the minors of order p that belong to these rows by their cofactors is equal to the determinant of A.
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Proof: We have Scj(M) = ej(M) and
l∏

j=1

(Scj(M))aj = eµ(M); as in the proof of

theorem 2, we begin by expressing the elementary symmetric functions in terms of Schur
functions eµ =

∑
λ Kλ′µsλ.

We now integrate over the orthogonal group and use the fact that for integrals of Schur
functions we have the following expression (see [48]):

EO(N)sλ(M) =

{
1, if λ = 2ν, l(λ) ≤ N ;

0, otherwise,
(56)

where 2ν represents the partition produced by doubling each elements of ν. Note that if
λ = 2ν, then λ′ = ν ′2, where ν2 represents the partition produced by writing each element
of ν twice. We thus obtain

EO(N)eµ(M) =
∑
λ=ν2

Kλµ. (57)

Next we observe that the condition λ = ν2 is equivalent to the condition that the
associated tableau have all columns of even length. Now we recall that a version of
the Knuth correspondence [43] establishes a bijection between symmetric matrices of
nonnegative integers with column sums given by µ and tableaux of any shape with content
µ; and that furthermore in this correspondence the trace of the matrix is the number of odd
length columns of the corresponding tableau. We finally note that symmetric nonnegative
matrix whose diagonal elements are all zero corresponds to an adjacency matrix of a graph
without loops. This completes the proof of Theorem 10.

We remark that for the case of the 2k-th moment of the first secular coefficient, that
is the moments of trace studied in [23], (57) specializes to the following formula:

EO(N)Tr(M)2k =
∑

λ′=2ν

Kλ12k =
∑

λ′=2ν

fλ = 1 × 3 · · · × (2k − 1), (58)

where fλ denotes the number of standard tableaux of shape λ. We refer the reader to
[37] for the representation-theoretic significance of this formula and its generalizations.

Theorem 11. (a) Consider a = (a1, . . . , al) with aj nonnegative natural numbers. Let µ

be a partition µ = 〈1a1 . . . lal〉. Then for N ≥∑l
1 jaj and |µ| even we have

ESp(2N)

l∏
j=1

(Scj(M))aj = NSPµ. (59)

Here NSPµ is the number of nonnegative symmetric integer matrices A with row(A) =
col(A) = µ and with all diagonal entries of A even. For |µ| odd the expected value in (59)
is 0.

(b) In particular, for N ≥ jk and jk even we have

ESp(2N)Scj(M)k = Ssp
k (j), (60)
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where Ssp
k (j) is the number of k × k symmetric nonnegative integer matrices with each

row and column summing up to j and all diagonal entries even (equivalently, the number
of j-regular graphs on k vertices with loops and multiple edges). For jk odd the expected
value in (60) is 0.

Proof: We proceed as in the proof of Theorem 10, this time using the following
expression for integrals of the Schur functions over the symplectic group:

ESp(2N)sλ(M) =

{
1, if λ = ν2, l(λ) ≤ 2N ;

0, otherwise,
(61)

to obtain
ESp(2N)eµ(M) =

∑
λ=2ν

Kλµ. (62)

Next we observe that the condition λ = 2ν is equivalent to the condition that the
associated tableau have all rows of even length. Now we recall that a version of Knuth
correspondence introduced by Burge [10] establishes a bijection between symmetric ma-
trices of nonnegative integers with column sums given by µ and tableaux of any shape
with content µ; and that furthermore in this correspondence the number of odd diagonal
elements of the matrix is equal to the number of odd length rows of the corresponding
tableau. We finally note that symmetric nonnegative matrix whose diagonal elements are
all even corresponds to an adjacency matrix of a graph with loops and multiple edges.
This completes the proof of Theorem 11.

Remark 1. The limiting distiribution of the secular coefficients for both orthogonal and
symplectic group can be obtained in exact analogy with the Proposition 4 by invoking
Newton’s identities to express the secular coefficients in terms of power sums and then
using limit theorems for power sums proved in [21, 23]. The analogues of Theorem 5 for
L-functions with orthogonal and symplectic symmetries are proved in [18].

5 Secular coefficients of GUE matrices and matching

polynomials

Let µN(dM) denote the GUE measure on the space HN of hermitian N × N matrices;
“G” and “U” refer to it being Gaussian and U(N)-invariant. If we denote the matrix
elements by mjk = xjk + iyjk,

µN(dM) =
∏

1≤j<k≤N

1

π
e−|mjk |2dxjkdyjk

N∏
k=1

1√
2π

e−
x2

kk
2 dxkk. (63)

The eigenvalues of a matrix M chosen at random with respect to (63) are distributed
with the density
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PN(λ1, . . . , λN) =
∏

1≤j<k≤N

(λj − λk)
2

N∏
k=1

e−
λ2

k
2

k!
√

2π
. (64)

We will denote the Vandermonde determinant by Van(f1, . . . , fN):

Van(f1, . . . , fN) =
∏

1≤j<k≤N

(fj − fk). (65)

Now consider the characteristic polynomial

PM(x) = det(Ix − M) =
N∏

j=1

(x − λj) =
N∑

j=0

Scj(M)xN−j(−1)j , (66)

where Scj(M) is the j-th secular coefficient. We are interested in moments of Scj(M)
with respect to µN(M).

The combinatorial significance of the higher moments of the first secular coefficient
Sc1(M), i.e. the moments of traces, has been thoroughly investigated, starting with the
work of Harer and Zagier [33]; see also [32, 29]. Let

C(k, N) = EµN
TrM2k.

Harer and Zagier have shown that this integral is always a positive integer and using the
Wick formula obtained the following combinatorial interpretation:

C(k, N) =
∑

0≤g≤k/2

εg(k)Nk+1−2g, (67)

where εg(k) denotes the number of ways to obtain an orientable surface of genus g by
identifying in pairs the sides of 2k-gon. They also proved the following formula for C(k, N)
by using rather complicated manipulations with generating functions:

C(k, N) = (2k − 1)!!

k∑
j=0

(
N

j + 1

)(
k

j

)
2j . (68)

We refer to [60] for an elegant account of this work and further developments.
In one of his last papers [42] Sergei Kerov gave a simple combinatorial interpretation

of the numbers C(k, N) in terms of rook polynomials or, equivalently, in terms of appro-
priate involutions. As we show below the combinatorial significance of the moments of
higher secular coefficients can also be obtained by considering appropriate involutions, or
equivalently, matching polynomials.

We start with the following simple observation (which cannot possibly be new).
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Proposition 12. Notation being as above we have

EµN
(PM(x)) =

∫
PM(x)dµN(x) = hN(x),

where hN(x) is the N th normalized Hermite polynomial (see the definition in Remark 2
below).

Proof: This follows from Heine’s formula [57, p. 27], which can be stated as follows:
Let α(x) be a weight function on the interval [a, b] (where we allow a = −∞, b = +∞).
Then

pN(x) =

∫ b

a

. . .

∫ b

a︸ ︷︷ ︸
N

N∏
i=1

(x − xi)
∏
i<j

(xi − xj)
2

N∏
i=1

α(xi)dxi (69)

defines orthogonal polynomials of degree N with weight function α(x).
Combining (69) with (64) and (66) yields the proof of the proposition.

Remark 2. Hermite polynomials Hn(x) are orthogonal with respect to e−x2
and can be

defined by

Hn(x) = (−1)nex2 dn

dxn
e−x2

. (70)

Explicitly we have:

Hn(x) =

[n/2]∑
k=0

(−1)kn!

k!(n − 2k)!
(2x)n−2k. (71)

The first few Hermite polynomials are as follows:

H0(x) = 1.

H1(x) = 2x.

H2(x) = 4x2 − 2.

H3(x) = 8x3 − 12x.

H4(x) = 16x4 − 48x2 + 12.

Normalized Hermite polynomials, hN(x) are defined by

hn(x) = 2−
n
2 Hn(

x√
2
), (72)

or explicitly:
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hn(x) =

[n/2]∑
k=0

(−1)kn!

k!(n − 2k)!

xn−2k

2k
. (73)

The first few normalized Hermite polynomials are as follows:

h0(x) = 1.

h1(x) = x.

h2(x) = x2 − 1.

h3(x) = x3 − 3x.

h4(x) = x4 − 6x2 + 3.

The polynomials 1√
n!

hn(x) are orthonormal with respect to the weight 1√
2π

e−
x2

2 and
satisfy the following orthogonality relations:∫ ∞

−∞
hn(x)hm(x)e−

x2

2 =
√

2πn!δnm (74)

To bring out the combinatorial significance of Proposition 12, let us recall the following
definition.

Definition 2. Given a graph G with n vertices and m edges, let p(G, k) denote the
number of ways in which one can select k independent edges in G. Let further p(G, 0) = 1
for all G. Then the matching polynomial α(G) of the graph G is given by

α(G) = α(G, x) =
m∑
0

(−1)kp(G, k)xn−2k. (75)

Heilmann and Lieb [34] (see also Godsil and Gutman [28]) have proved that for a
complete graph Kn the matching polynomial α(Kn, x) = hn(x); this immediately implies
the following corollary.

Corollary 13. Notation being as above, EµN
|Scj(M)| is equal to the number of j-matchings

in the complete graph KN :

EµN
|Scj(M)| =

N !

2jj!(n − 2j)!
. (76)

We can apply the known results about matching polynomials to EµN
|Scj(M)|. For

example, the asymptotic normality of EµN
|Scj(M)|, in the sense made precise below, is

implied by the following result of Godsil:
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Theorem (Godsil [27]). Let G be a graph and let p(G) be the total number of matchings
in G. Let X be the random variable whose value is the number of edges in a randomly
chosen matching; denote by m(G) its mean and by σ(G) its standard deviation. There
exist numbers K and L such that for any graph G where σ(G) > K,

|σ(G)p(G, k)

p(G)
− 1√

2π
e−(k−m(G))2/2σ2(G)| <

L√
σ(G)

. (77)

We also easily obtain the following result which can be viewed as a very simple instance
of the universality phenomenon in random matrix theory.

Proposition 14. Let M be a random symmetric matrix of size N with zeroes on the
main diagonal and off-diagonal entries taking values {+1,−1} with probability 1

2
. Then

the expected value of the characteristic polynomial of M is hN(x).

Proof: Let G be a graph with n vertices and m edges. Let u = (u1, . . . , um) ∈
{−1, 1}m. Let Gu be the weighted graph obtained from G by associating the weight ui

with the edge ei for i = 1, . . . , m. Let further P (Gu) be the characteristic polynomial of
Gu. It was proved by Godsil and Gutman [28] (Corollary 2.2) that

α(G) = 2−m
∑

u

P (Gu), (78)

where the summation is ranging over all 2m distinct m-tuples u. The proposition follows
at once by applying this result to the complete graph G = KN and recalling that α(KN) =
hN .

Remark 3. In fact it is easy to see that the proof of Corollary 2.2. in [28] applies to any
symmetric distribution of the entries.

Now we prove the following generalization of Proposition 12:

Theorem 15. Let 2k be a nonnegative integer. Notation being as above, we have

EµN
(P 2k

M (x)) = h
(k)
N (x),

where h
(k)
N (x) is the N th monic generalized Hermite polynomial. These are orthogonal

polynomials with respect to the weight |x|2ke−x2
.

We will give explicit formulas for generalized Hermite polynomials and will discuss
their combinatorial significance following the proof of the Theorem.

Proof: Consider the product of characteristic polynomials at k values of x and inte-
grate it with respect to µN :

fk(x1, . . . , xk) = EµN
[PM(x1) . . . PM(xk)]∑

j1,...,jk

EµN
[Scj1(M) . . .Scjk

(M)]xN−j1
1 . . . xN−jk

k (−1)j1+...+jk

=
1

ZN

∫ ∞

−∞
. . .

∫ ∞

−∞︸ ︷︷ ︸
N

N∏
i=1

dµ(λj)Van2(λ1, . . . , λN)
k∏

i=1

N∏
j=1

(xi − λj),

(79)
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where ZN is the normalization in the definition of µN :

µN =
1

ZN
e−

1
2

PN
i=1 λ2

i Van2(λ1, . . . , λN) (80)

and

dµ(λ) = e−
λ2

2 dλ.

As is well known [60],

ZN =

N∏
k=1

k! (81)

If we set all of the x1, . . . , xk to be equal, we obtain a generating function fk(x):

fk(x) = EµN
(P k

M(x)) =
∑

j1,...,jk

EµN
[Scj1(M) . . .Scjk

(M)]xNk−Pk
l=1 jl(−1)

Pk
l=1 jl. (82)

Our approach up to (86) follows the method in [8]. In formula (79) we can rewrite the
integrand as follows:

Van(λ1, . . . , λN)
k∏

i=1

N∏
j=1

(xi − λj) =
Van(λ1, . . . , λN ; x1, . . . , xk)

Van(x1, . . . , xk)
. (83)

Furthermore, we can express Van(λ1, . . . , λN) as the determinant

Van(λ1, . . . , λN) = det[pn(λj)]
0≤n≤N−1
1≤j≤N , (84)

where pn(x) are arbitrary monic polynomials of degree n.
Combining (84) with (83) we can rewrite the latter as follows

Van(λ1, . . . , λN ; x1, . . . , xk) = det[pα(vβ)], (85)

where {
0 ≤ α ≤ N + k − 1

1 ≤ β ≤ N + k

and

vβ =

{
λβ, if β ≤ N ;

xβ−N , if N < β ≤ N + k;.

If we now choose the polynomials pn to be orthogonal with respect to the measure

dµ(λ) = e−
λ2

2 , i.e. choose them to be monic Hermite polynomials hn we obtain after
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integrating over the N eigenvalues:

fk(x1, . . . , xk) =

1

ZN

∫ ∞

−∞
. . .

∫ ∞

−∞︸ ︷︷ ︸
N

N∏
i=1

dµ(λj)Van(λ1, . . . , λN ; x1, . . . , xk)Van(λ1, . . . , λN)

=
N !
∏N−1

n=0 n!

ZN
det[hα(xβ)]N≤α≤N+k−1

1≤β≤k .

Now (81) and (74) imply that the factor
N !

QN−1
n=0 n!

ZN
is equal to 1, so we obtain

fk(x1, . . . , xk) =
1

Van(x1, . . . , xk)
det

∣∣∣∣∣∣∣∣∣
hN(x1) hN+1(x1) . . . hN+k−1(x1)
hN(x2) hN+1(x2) . . . hN+k−1(x2)

...
...

. . .
...

hN(xk) hN+1(xk) . . . hN+k−1(xk)

∣∣∣∣∣∣∣∣∣
. (86)

If we now set all x1 = · · · = xk = x in (86) we get:

fk(x) =
(−1)

k(k−1)
2∏k−1

j=0 j!
det

∣∣∣∣∣∣∣∣∣
hN (x) hN+1(x) . . . hN+k−1(x)
h′

N (x) h′
N+1(x) . . . h′

N+k−1(x)
...

...
. . .

...
h′

N (x) h′
N+1(x) . . . h′

N+k−1(x)

∣∣∣∣∣∣∣∣∣
= CkW (hN(x), hN+1(x), . . . , hN+k−1(x)) .

(87)

Here W (hN(x), hN+1(x), . . . , hN+k−1(x)) is the Wronskian of polynomials

hN (x), hN+1(x), . . . , hN+k−1(x).

Now by the Christoffel formula [57, p.30],

W (hN (x), hN+1(x), . . . , hN+k−1(x)) = h
(k/2)
N (x),

where h
(k/2)
N (x) are monic generalized Hermite polynomials [13, p.156-157], orthogonal

with respect to the weight |x|ke−x2
. This concludes the proof of Theorem 15.

Monic generalized Hermite polynomials h
(k)
N (x) are related to generalized Hermite

polynomials H
(k)
n (x) by the following formula (cf. (72)):

h(k)
n (x) = 2−

n
2 H(k)

n (
x√
2
). (88)

Generalized Hermite polynomials where defined by G. Szegö[57, p.380, Problem 25]
and studied by Chihara [12] in his Ph.D. thesis. Generalized Hermite polynomials can be
expressed in terms of Laguerre polynomials as follows:

H
(k)
2n (x) = (−1)k22nn!L

k− 1
2

n (x2),
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H
(k)
2n+1(x) = (−1)k22n+1n!L

k+ 1
2

n (x2).

Recall that Laguerre polynomials [57, p. 100], Lα
n(x) with α > −1 are orthogonal on

[0,∞) with respect to the weight e−xxα; they are explicitly given by

Lα
n(x) =

n∑
j=0

(
n + α

n − j

)
(−x)j

j!
. (89)

The first few generalized Hermite polynomials are as follows:

H
(k)
0 (x) = 1.

H
(k)
1 (x) = 2x.

H
(k)
2 (x) = 4x2 − 2(1 + 2k).

H
(k)
3 (x) = 8x3 − 4(3 + 2k)x.

H
(k)
4 (x) = 16x4 − 16(3 + 2k)x2 + 4(1 + 2k)(3 + 2k).

The connection between Laguerre polynomials and rook placements goes back to Ka-
plansky and Riordan [39, 49]. Combinatorial properties of generalized Hermite polynomi-

als H
(k)
n (x) were studied by Strehl [56]; we summarize his results in (91) and (92) below.

First of all, we note that the number of j-matchings in a complete graph KN , figuring in
Corollary 13 is equal to the number of involutions of SN having j transpositions. Thus,
denoting the set of involutions of the set {1, . . . , N} by Inv[N ], and for any σ ∈ Inv[N ]

letting fix(σ) stand for the number of fixed points and trans(σ) stand for the number
of transpositions, we have the following alternative description of normalized Hermite
polynomials hN (x):

hN(x) =
∑

σ∈Inv[N]

xfix(σ)(−1)trans(σ). (90)

We now give a parallel combinatorial description of h
(k)
N . Let

[−N, N ] = {−N, . . . ,−1, 1, . . . , N}

and
[−N, N ]0 = {−N, . . . ,−1, 0, 1, . . . , N}.

Denote by Inv[−N,N ] the set of involutions of [−N, N ] (and by Inv[−N,N ]0 the set of involu-
tions of [−N, N ]0) and for σ ∈ Inv[−N,N ] let cyc(σ) stand for the number of cycles in the
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action of σ combined with the action of the “mirror” involution sending each i to −i for
all i = 1, . . . , N . Then

h
(k)
2N (x) =

∑
σ∈Inv[N,N]

(2k + 1)cyc(σ)xfix(σ)(−1)trans(σ), (91)

and
h

(k)
2N+1(x) =

∑
σ∈Inv[N,N]0

(2k + 1)cyc(σ)xfix(σ)(−1)trans(σ). (92)

6 Concluding Remarks

1. It should be possible to prove part (a) of Theorem 3, purely probabilistically from
the expression for Hk(j) as moments of the polynomial in the i.i.d. Gaussians given
in Proposition 4. On the other hand, it would be interesting to understand the
probabilistic implications of part(b) of Theorem 3.

2. We also note that EU(N)|Scj(M)|2ν = Hν(j) makes sense for any real values of ν
and that the resulting expression can be thought of as a generalization of Hk(j) for
integral values of k. The methods based on using symmetric functions theory do
not easily extend to the non-integral situation; however the methods based on using
the Toeplitz determinants, as discussed in Section 3, do apply.

3. The type of determinant given in (86) appears in the work of Karlin and McGregor
[40] in connection with coincidence probabilities so there might be connections with
queues, etc.

4. It would be very interesting to generalize the universality result of Proposition 14
to the higher moments, in particular to hk

N and to the expression for C(k, N) =
EµN

Tr(M)2k.

5. It would be interesting to extend the results of Section 5 to other Gaussian ensem-
bles.

6. In the limit (suitably interpreted) as N → ∞, the coefficients of CUE and GUE
matrices should have the same universal behavior. The GUE case seems to be more
amenable to Riemann-Hilbert asymptotic analysis.

7. Finally we remark that a unitary matrix M is conjugate on the one hand to the
diagonal matrix with eigenvalues on the diagonal, and on the other hand to the
Frobenius, or companion matrix, with first row consisting of the secular coefficients,
ones below the main diagonal, and remaining entries zero. This strongly suggests
that secular coefficients are (as Gian-Carlo Rota might have put it) “nearly equi-
primordial” with the eigenvalues and indicates that computing their moments is not
the only, and perhaps not the most natural, question to ask.
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