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Abstract

We introduce here a new approach to the study of m-quasi-invariants. This
approach consists in representing m-quasi-invariants as N tuples of invariants. Then
conditions are sought which characterize such N tuples. We study here the case
of S3 m-quasi-invariants. This leads to an interesting free module of triplets of
polynomials in the elementary symmetric functions e1, e2, e3 which explains certain
observed properties of S3 m-quasi-invariants. We also use basic results on finitely
generated graded algebras to derive some general facts about regular sequences of
Sn m-quasi-invariants

1 Introduction

The ring of polynomials in x1, x2, . . . , xn with rational coefficients will be denoted Q[Xn].
For P ∈ Q[Xn] we will write P (x) for P (x1, x2, . . . , xn).

Let us denote by sij the transposition which interchanges xi with xj . Note that for
any pair i, j and exponents a, b we have the identities

xa
i x

b
j − xa

jx
b
i

xi − xj

=




xa
i x

a
j (

∑b−a−1
r=0 xr

jx
b−a−1−r
i ) if a ≤ b ,

xb
ix

b
j(

∑a−b−1
r=0 xr

ix
a−b−1−r
j ) if a > b.

(1.1)

This shows that the ratio in (1.1) is always a polynomial that is symmetric in xi, xj. It
immediately follows from (1.1) that the so-called “divided difference”operator

δij =
1

xi − xj
(1 − sij)

sends polynomials into polynomials symmetric in xi, xj .
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It follows from this that for any P ∈ Q[Xn] the highest power of (xi −xj) that divides
the difference (1 − sij)P must necessarily be odd. This given, a polynomial P ∈ Q[Xn]
is said to be “m-quasi-invariant” if and only if, for all pairs 1 ≤ i < j ≤ n, the difference

(1 − sij)P (x)

is divisible by (xi −xj)
2m+1. The space of m-quasi-invariant polynomials in x1, x2, . . . , xn

will here and after be denoted “QIm[Xn]” or briefly “QIm”. Clearly QIm is a vector
space over Q, moreover since the operators δij satisfy the “Leibnitz” formula

δij PQ = (δijP )Q+ (sijP )δijQ (1.2)

we see that QIm is also a ring. Note that we have the inclusions

Q[Xn] = QI0[Xn] ⊃ QI1[Xn] ⊃ QI2[Xn] ⊃ · · · ⊃ QIm[Xn] ⊃ · · · ⊃ QI∞[Xn]

= SYM[Xn] .

where SYM[Xn] here denotes the ring of symmetric polynomials in x1, x2, . . . , xn.
It was recently shown by Etingof and Ginzburg [4] that each QIm[Xn] is a free module

over SYM[Xn] of rank n!. In fact, this is only the Sn case of a general result that is
proved in [4] for all Coxeter groups. There is an extensive literature (see [1], [3], [5], [7],
[9]) covering several aspects of quasi-invariants. These spaces appear to possess a rich
combinatorial underpinning resulting in truly surprising identities. The Sn case deserves
special attention since the results in this case extend in a remarkable manner many well
known classical results that hold true for the familiar polynomial ring Q[Xn]. To be
precise note that for each m we have the direct sum decomposition

QIm = H0

[
QIm

]
⊕H1

[
QIm

]
⊕ · · · ⊕ Hk

[
QIm

]
⊕ · · ·

where Hk

[
QIm

]
denotes the subspace of m-quasi-invariants that are homogeneous of

degree k. Since m-quasi-invariance and homogeneity are preserved by the Sn action each
Hk

[
QIm

]
is an Sn module and we can thus define the graded Frobenius characteristic of

QIm by setting

Φm(x; q) =
∑
k≥0

qkFcharHk

[
QIm

]
(1.3)

where we denote by F the Frobenius map. Now it is shown by Felder and Veselov in [6]
that we have

(1 − q)(1 − q2) · · · (1 − qn)Φm(x; q) =
∑
λ`n

Sλ

( ∑
T∈ST (λ)

qco(T )
)
qm

(
(n

2)−cλ

)
(1.4)

where Sλ is the Schur function corresponding to λ, ST (λ) denotes the collection of stan-
dard tableaux of shape λ, co(T ) denotes the cocharge of T and cλ gives the sum of the
contents of the partition λ. This truly beautiful formula extends in a surprisingly simple
manner the well known classical result for m = 0. In fact, more is true. Since the ideal

(e1, e2, . . . , en)QIm[Xn]
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generated in QIm[Xn] by the elementary symmetric functions e1, e2, . . . , en is also Sn-
invariant, it follows from the Etingov-Ginsburg result that the polynomial on the right
hand side of (1.4) is none other than the graded Frobenius characteristic of the quotient

QIm[Xn]/(e1, e2, . . . , en)QIm[Xn]. (1.5)

Unfortunately, the literature on quasi-invariants makes use of such formidable machinery
that presently the theory is accessible only to a few. This given, the above examples
should provide sufficient motivation for a further study of Sn m-quasi-invariants from a
more elementary point of view.

In this vein we find particularly intriguing in (1.4) the degree shift of each isotypic
component of QIm expressed by the presence of the factor

qm
(
(n

2)−cλ

)
.

This shift pops out almost magically from manipulations involving a certain Knizhnik-
Zamolodchikov connection used in [6] to compute the graded character of QIm.

The present work results from an effort to understand the underlining mechanism that
produces this degree shift. In this paper we only deal with the S3 case but the methods
we introduce should provide a new approach to the general study of m-quasi-invariants.

The idea is to start with what is known when m = 0 and determine the deformations
that are needed to obtain QIm. More precisely our point of departure is the following
well known result.

Theorem 1.6 Every polynomial P (x) ∈ Q[Xn] has a unique expansion in the form

P (x) =
∑

xε∈ART (n)

xεAε(x) (with Aε ∈ SYM[Xn] ) (1.7)

and
ART (n) =

{
xε = xε1

1 x
ε2
1 · · ·xεn

n : 0 ≤ εi ≤ i− 1
}
, (1.8)

It follows from this that each P (x) ∈ Q[Xn] may be uniquely represented by a n!tuple

of symmetric polynomials. The question then naturally arises as to what conditions these
symmetric polynomials must satisfy so that P (x) lies in QIm. In this work we give a
complete answer for S3. Remarkably, we shall see that, even in this very special case, the
answer stems from a variety of interesting developments. We should mention that Feigin
and Veselov in [7] prove the freeness result of the m-quasi-invariants for all Dihedral
groups. They do this by exhibiting a completely explicit basis for the quotients analogous
to (1.5). Of course, since the S3 m-quasi-invariants are easily obtained from the m-quasi-
invariants of the dihedral groupd D3, in principle, the results in [7] should have a bearing
on what we do here. However, as we shall see in the first section, the freeness result for
m-quasi-invariants is quite immediate whenever the invariants form a polynomial ring on
two generators. Moreover, the methods used in [7] are quite distinct from ours and don’t
reveal the origin of the observed degree shift.
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This paper is divided in to three sections. In the first section we start with a review
of some basic facts and definitions concerning finitely generated graded algebras. Two
noteworthy developments in this section are a very simple completely elementary proof
of the freeness result for dihedral groups m-quasi-invariants and the remarkable fact that
the freeness result for all m-quasi-invariants follows in a completely elementary manner
from one single inequality. Namely that the quotient of the ring m-quasi-invariants by
the ideal generated by the G-invariants has dimension bounded by the order of G. In
the second section we determine the conditions that 6tuples of symmetric functions give
an element of QIm[X3]. It develops that the trivial and alternating representations are
immediately dealt with. In the third section we show how that these conditions, for the
2-dimensional irreducible of S3, lead to the construction of an interesting free module of
triplets over the ring Q[e1, e2, e3] which is at the root of the observed degree shift for S3.

2 Cohen-Macauliness and m-quasi-invariants.

Before we can proceed with our arguments we need to introduce notation and state a few
basic facts. To begin let us recall that the Hilbert series of a finitely generated, graded
algebra A is given by the formal sum

FA(t) =
∑
m≥0

tm dimHm(A) (2.1)

where Hm(A) denotes the subspace spanned by the elements of A that are homogeneous
of degree m. It is well known that FA(t) is a rational function of the form

FA(t) =
P (t)

(1 − t)k

with P (t) a polynomial. The minimum k for which this is possible characterizes the growth
of dimHm(A) as m→ ∞. This integer is customarily called the “Krull dimension” of A
and is denoted “dimK A”. It is easily shown that we can always find in A homogeneous
elements θ1, θ2, . . . , θk such that the quotient of A by the ideal generated by θ1, θ2, . . . , θk

is a finite dimensional vector space. In symbols

dim A/(θ1, θ2, . . . , θk)A <∞ (2.2)

It is shown that dimK A is also equal to the minimum k for which this is possible. When
(2.2) holds true and k = dimK A then {θ1, θ2, . . . , θk} is called a ”homogeneous system
of parameters”, HSOP in brief.

It follows from (2.2) that if η1, η2, . . . , ηN are a basis for the quotient in (2.2) then
every element of A has an expansion of the form

P =

N∑
i=1

ηiPi(θ1, θ2, . . . , θk) (2.3)
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with coefficients Pi(θ1, θ2, . . . , θk) polynomials in their arguments. The algebra A is said
to be Cohen-Macaulay, when the coefficients Pi(θ1, θ2, . . . , θk) are uniquely determined by
P . This amounts to the requirement that the collection{

ηi θ
p1

1 θ
p2

2 · · · θpk

k

}
i,p

(2.4)

is a basis for A as a vector space. Note that when this happens and θ1, θ2, . . . , θk;
η1, η2, . . . , ηN are homogeneous of degrees d1, d2, . . . , dk; r1, r2, . . . , rN then we must neces-
sarily have

FA(t) =

∑N
i=1 t

ri

(1 − td1)(1 − td2) · · · (1 − tdk)
(2.5)

from which it follows that k = dimK A. It develops that this identity implies that,
for any i = 1, 2, . . . , k the element θi is not a zero a zero divisor of the quotient

A/(θ1, θ2, . . . , θi−1)A

We call such sequences θ1, θ2, . . . , θk “regular”. Conversely, if A has an HSOP θ1, θ2, . . . , θk

that is a regular sequence, then (2.5) must hold true for any basis η1, η2, . . . , ηN of the
quotient A/(θ1, θ2, . . . , θk)A and the uniqueness in the expansions (2.4) must necessarily
follow yielding the Cohen-Macauliness of A. However, for our applications to m-Quasi-
Invariants we need to make use of the following stronger criterion

Proposition 2.6 Let A be finitely generated graded algebra and θ1, θ2, . . . , θk be an HSOP
with di = degree(θi), then A is Cohen-Macaulay and θ1, θ2, . . . , θk is a regular sequence if
and only if

lim
t→ −1

(1 − td1)(1 − td2) · · · (1 − tdk)FA(t) = dim A/(θ1, θ2, . . . , θk)A (2.7)

This result is known. An elemtary proof of it may be found in [8].
A particular example which plays a role here is when A = Q[x1, x2, . . . , xn] is the

ordinary polynomial ring and the HSOP is the sequence e1, e2, . . . , en of elementary
symmetric functions. As we mentioned in the introduction following result is well known
but for sake of completeness we give a sketch of the proof.

Theorem 2.8 Every polynomial P (x) ∈ Q[x1, x2, . . . , xn] has a unique expansion of the
form

P (x) =
∑

xε∈ART (n)

xεPε(e1, e2, . . . , en) (2.9)

where
ART (n) =

{
xε = xε1

1 x
ε2
2 · · ·xεn

n : 0 ≤ εi ≤ i− 1
}

In particular e1, e2, . . . , en is a regular sequence.
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Proof It is easily seen that we have

n∏
i=1

1

1 − txi

∼= 1

where “∼=” here denotes equivalence modulo the ideal (e1, e2, . . . , en). This implies the
identity

i−1∏
j=1

(
1 − txj

) ∼=
n∏

j=i

1(
1 − txj

) =
∑
r≥0

hr(xi, xi+1 . . . , xn)tr .

Equating coefficients of ti we derive that

0 ∼= hi(xi, xi+1 . . . , xn)

Now this gives

xi
i
∼=

i−1∑
j=0

xj
ihi−j(xi+1 . . . , xn) ( for 1 ≤ i ≤ n− 1) (2.10)

as well as
xn

n
∼= 0 . (2.11)

It is easily seen that (2.10) and (2.11) yield an algorithm for expressing, modulo the ideal
(e1, e2, . . . , en), every monomial as a linear combination of monomials in ART (n). This
implies that the collection{

xεep1

1 e
p2

2 · · · epn
n : xε ∈ ART (n) ; pi ≥ 0

}
(2.12)

spans Q[x1, x2, . . . , xn]. In particular we derive the coefficient-wise inequality

FQ[x1 ,x2,...,xn](t) <<

∏n
i=2(1 + t+ · · ·+ ti−1)

(1 − t)(1 − t2) · · · (1 − tn)
=

1

(1 − t)n
(2.13)

since

FQ[x1 ,x2,...,xn](t) =
1

(1 − t)n

equality must hold in (2.13), but that implies that the collection in (2.12) has the correct
number of elements in each degree and must therefore be a basis, proving uniqueness for
the expansions in (2.18).

We can now apply these observations to the study of m-quasi-invariants. To begin
note that, we have the following useful fact

Theorem 2.14 To prove that e1, e2, . . . , en is a regular sequence in QIm[Xn] we need
only construct a spanning set of n! elements for the quotient

QIm[Xn]/(e1, e2, . . . , en)QIm[Xn] (2.15)

In particular the Cohen-Macauliness of QIm[Xn] is equivalent to the statement that this
quotient has n! dimensions.
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Proof Let Π(x) denote the Vandermonde determinant

Π(x) =
∏

1≤i<j≤n

(xi − xj) .

This given, it is easy to see that the map

P (x) −→ Π(x)2mP (x)

is an injection of Q[x1, x2, . . . , xn] into QIm[Xn]. This fact combined with the inclusion
QIm[Xn] ⊆ Q[x1, x2, . . . , xn] yields the coefficient-wise Hilbert series inequalities

tn(n−1)m

(1 − t)n
<< FQIm[Xn](t) <<

1

(1 − t)n

this gives
lim

t→ −1
(1 − t)(1 − t2) · · · (1 − tn)FQIm[Xn](t) = n! . (2.16)

Thus if e1, e2, . . . , en is a regular in sequence in QIm[Xn], (2.25) then the quotient

QIm[Xn]/(e1, e2, . . . , en)QIm[Xn] (2.17)

must be of dimension n!. To prove the converse, note that if we have a homogeneous
basis η1, η2, . . . ηN ,of degrees r1, r2, . . . , rn, for this quotient, then we the Hilbert series
inequality

FQIm[Xn](t) <<

∑N
i=1 t

ri

(1 − t)(1 − t2) · · · (1 − tn)

combined with (2.16) yields that
n! ≤ N.

On the other hand if we have a spanning set of n! elements for the quotient in (2.17) we
must also have

N ≤ n!

This forces the equality

lim
t→ −1

(1 − t)(1 − t2) · · · (1 − tn)FQIm[Xn](t) = dimQIm[Xn]/(e1, e2, . . . , en)QIm[Xn] .

Thus we can apply Proposition 2.6 and derive that e1, e2, . . . , en is a regular sequence in
QIm[Xn]. This completes our argument.

It develops that the regularity of e1, e2, e3, can be shown in a very elementary fashion
for all n. This of course implies the Cohen-Macauliness of QI[X3]. But before we give
the general argument it will be good to go over the case of e1, e2, e3 in QI[X3]. In fact,
we can proceed a bit more generally and work in the Dihedral group setting.

Let us recall that the Dihedral group Dn is the group of transformations of the x, y
plane generated by the reflection T across the x-axis and a rotation Rn by 2π/n. In
complex notation we may write

Tz = z , and Rnz = e2πi/nz (2.18)
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It follows from this that the two fundamental invariants of Dn are

p2 = x2 + y2 , and gn = Re zn =

bn/2c∑
r=0

(
n

2r

)
(−1)rxn−2ry2r . (2.19)

Note that if n = 2k and we set

P (t) =
k∑

r=0

(
2k

2r

)
(−1)rtk−r

then we may write
P (t) = P (−1) + (1 + t)Q(t) (2.20)

with Q(t) a polynomial of degree k − 1. Now setting t = x2/y2 in (2.20) and mutiplying
both sides by y2k we get, since P (−1) = (−1)k22k−1

gn(x, y) = (−1)k22k−1y2k + p2(x, y) y
2k−2Q(x2/y2) .

This shows that y2k lies in the ideal (p2, gn)Q[x,y] . In particular, under the total order
x > y we derive that x2 and y2k lie in the upper set of leading monomials of the elements
of this ideal. It follows that the monomials

1, y, y2, . . . , y2k−1 ; x, xy, xy2, . . . , xy2k−1 (2.21)

span the quotient
Q[x, y]/(p2, gn)Q[x,y] (2.22)

This forces the Hilbert series inequality

FQ[x,y](t) <<
(1 + t)

(
1 + t+ · · ·+ t2k−1

)
(1 − t2)(1 − t2k)

=
1

(1 − t)2

since we also have

FQ[x,y](t) =
1

(1 − t)2

It follows that the monomials in (2.21) are in fact a basis for the quotient in (2.22). An
analogous argument yields a similar result when n = 2k + 1. We need only observe that
in this case we use the polynomial

P (t) =

k∑
r=0

(
2k + 1

2r

)
(−1)rtr

and the total order y > x to obtain that y2 and x2k+1 are in the upper set of leading
monomials of the ideal (p2, gn)Q[x,y] . This implies that

1, x, x2, . . . , x2k ; y, yx, yx2, . . . , yx2k

are a basis of the quotient in (2.22). Thus in either case we obtain that and that p2, gn

are a regular sequence in Q[x, y].
It develops that this immediately implies the Cohen Macauliness the ring QIm(Dn)

of m-quasi-invariants of Dn. More precisely we have
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Theorem 2.23 The Dn invariants p2, gn are a regular sequence in QIm(Dn).

Proof By definition, a polynomial P (x, y) ∈ Q[x, y] is said to be Dn m-quasi-invariant
if and only if for any reflection s of Dn we have

(1 − s)P (x, y) = αs(x, y)
2m+1P ′(x, y) (P ′(x, y) ∈ Q[x, y])

where αs(x, y) denotes the equation of the line accross which s reflects. This given, since
QIm(Dn) ⊆ Q[x, y], we clearly see that p2 itself is not a zero divisor in QIm(Dn). So we
need only show that gn is not a zero divisor modulo (p2)QIm(Dn). Now suppose that for
some H ∈ QIm(Dn) we have

H gn = p2K (with K ∈ QIm(Dn)) .

Then since p2, gn are regular in Q[x, y] it follows that for some K ′ ∈ Q[x, y] we have

H = p2K
′

applying 1 − s to both sides the invariance of p2 gives

(1 − s)H(x, y) = (x2 + y2)(1 − s)K ′(x, y)

and them-quasi-invariance ofH yields that αs(x, y)
2m+1 divides the right hand side. Since

x2 + y2 has no real factor, the polynomial (1− s)K ′(x, y) must be divisible by (x, y)2m+1.
This shows that K ′ ∈ QIm(Dn) proving that gn in not a zero divisor in (p2)QIm(Dn) and
our argument is complete.

Our next step is to use the fact that the Weyl group of A2 is D3 to derive the Cohen-
Macauliness of QIm[X3]. To this end set

f1 = (1, 0, 0), f2 = (0, 1, 0), f1 = (0, 0, 1) .

and take as basis for the plane

Π = {(x1, x2, x3) : x1 + x2 + x3 = 0}

the orthonormal vectors

u =

√
2

3

(f1 + f2

2
− f3

)
, v =

1√
2
(f2 − f1) .

This gives the expansions

1√
2
(f1 − f2) = −v, 1√

2
(f1 − f3) =

√
3

2
u− 1

2
v,

1√
2
(f2 − f3) =

√
3

2
u+

1

2
v .

Note that we also have

xu+ y v = f1

( 1√
6
x − 1√

2
y
)

+ f2

( 1√
6
x +

1√
2
y
)
− f3

√
2

3
x
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Since the vector

(x1 − e1/3 x2 − e1/3 x3 − e1/3) (with e1 = x1 + x2 + x3)

lies in the plane Π we can find x, y giving

x1 − e1/3 =
1√
6
x − 1√

2
y, x2 − e1/3 =

1√
6
x +

1√
2
y, x3 − e1/3 = −

√
2

3
x

Solving these equations for x and y gives

x =
1√
6

(e1 − 3x3), y =
1√
2
(x2 − x1)

Thus the substitution maps

φ : Q[x1, x2, x3] −→ Q[x, y], ψ : Q[x, y] −→ Q[x1, x2, x3]

defined by setting

φP (x1, x2, x3) = P
(
φ(x1), φ(x2), φ(x3)

)
, ψQ(x, y) = Q

(
ψ(x), ψ(y)

)
with

φ(x1) =
1√
6
x − 1√

2
y, φ(x2) =

1√
6
x +

1√
2
y, φ(x3) = −

√
2

3
x (2.24)

and

ψ(x) =
1√
6

(
e1 − 3x3

)
, ψ(y) =

1√
2
(x2 − x1) (2.25)

satisfy the identities

x1 = ψφ(x1) + e1/3, x1 = ψφ(x2) + e1/3, x1 = ψφ(x3) + e1/3 .

In particular it follows that for P (x1, x2, x3) ∈ Q[x1, x2, x3] we will have

P (x1, x2, x3) = ψφP (x1, x2, x3) + e1Q(x1, x2, x3) (2.26)

with Q(x1, x2, x3) ∈ Q[x1, x2, x3]. Moreover, a simple calculation with the elementary
symmetric functions

e1 = x1 + x2 + x3, e2 = x1x2 + x1x3 + x2x3, e3 = x1x2x3

gives

φ(e1) = 0, φ(e2) = −x
2 + y2

2
, φ(e3) =

1

3
√

6

(
x3 − 3xy2

)
=

1

3
√

6
g3(x, y) . (2.27)

We have now all the ingredients needed to prove
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Theorem 2.28 The elementary symmetric functions e1, e2, e3 are a regular sequence in
QIm[X3].

Proof Clearly, e1 is not a zero divisor in QIm[X3]. Likewise, we can show that e2 is not
a zero divisor in QIm[X3]/(e1)QIm[X3] in exactly the same way we showed that gn is not
a zero divisor in QIm(Dn)/(p2)QIm(Dn). The only remaining step is to show that

h e3 = Ae1 +Be2 with h,A,B ∈ QIm[X3] (2.29)

implies
h = Ae1 +Be2 with A,B ∈ QIm[X3]. (2.30)

Note that using the relations in (2.27), (2.29) gives

φ(h)
1

3
√

6

(
x3 − 3xy2

)
= −φ(B)(x2 + y2)/2

Since φ maps S3 m-quasi-invariants onto D3 m-quasi-invariants, from Theorem 2.23 we
derive that

φ(h) = C(x, y) (x2 + y2) (2.31)

with C(x, y) a D3 m-quasi-invariant. Applying ψ to both sides and using (2.38) we get

h = ψ(C)ψ((x2 + y2)) + e1D (2.32)

with a suitable polynomial D. But

ψ(x2 + y2) =
1

6

(
e21 − 6e1x3 + 9x2

3

)
+

1

2

(
x2

2 + x2
1 − 2x1x2

)
=

1

6

(
e21 − 6e1x3 + 9x2

3 + 3x2
2 + 3x2

1 − 6x1x2

)
(2.33)

=
1

6

(
e21 − 6(x1x3 + x2x3 + x2

3) + 9x2
3 + 3x2

2 + 3x2
1 − 6x1x2

)
=

1

6

(
4e21 − 12e2

)
=

2

3
e21 − 2 e2

Thus combining (2.32) and (2.33) we obtain

h = ψ(C)
(

2
3
e21 − 2 e2

)
+ e1D (2.34)

Since ψ(C) is an S3 m-quasi-invariant and 2
3
e21 − 2 e2 is invariant, this relation forces D

to be S3 m-quasi-invariant as well and our argument is complete.
We terminate this section by showing that the mechanism we have used for passing

from the Weyl group of A2 to S3 can be extended to all n. More precisely we can show
that

Theorem 2.35 For any 1 < i2 < i3 ≤ n the elementary symmetric functions e1, ei2, ei3

are a regular sequence in QIm[Xn].
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Proof
We start by noting that the same argument we used for Dn yields that for any 1 <

i2 ≤ n the two elementary symmetric functions e1, ei2 are a regular sequence in QIm[Xn].
So the extension of the previous argument consists in deriving from this that ei3 is not
a zero divisor in QIm(Xn]/(e1, ei2)QIm[Xn]. Since ei2 , ei3 are basic Sn-invariants for the
polynomials on the space V = {x1+x2+· · ·+xn = 0}, this particular step is a consequence
of the following general result. To state it we need some definitions.

Let λ(x) = a1x1 + · · · + anxn be a nonzero homogeneous polynomial in n variables
and let u be such that λ(u) = 1. Let R be a subalgebra of the algebra of polynomials
on V . If f is a polynomial on V we extend f to Qn by setting f(v + tu) = f(v). If
g ∈ Q[x1, . . . , xn] then we write g for the restiction g|V of g to V . Let S be the subalgebra
of Q[x1, x2, . . . , xn] generated by the extensions of the elements of R and λ. This given
we have

Theorem 2.36 If f1, . . . , fk is a regular sequence in R then λ, f1, . . . , fk is a regular
sequence in S.

Proof
Every element, f , of S has a unique expansion (ignoring coefficients that are 0)

f = f + f1λ + · · ·+ fdλ
d

with fi ∈ R. Clearly λ is not a zero divisor in S. Suppose that g ∈ S and gf1 ∈ Sλ. Then

g = g + g1λ+ · · ·+ grλ
r

with g, g1, . . . , gr ∈ R. Restricting to V we have gf1 = 0. Since f1 is not a zero divisor
in R this implies that g = 0. Hence g = λ(g1 + · · · + grλ

r−1) = λh with h ∈ S. Assume
that we have shown that λ, f1, . . . , fj−1 is a regular sequence in S. Suppose that we have

gfj = h0λ+ h1f1 + · · ·+ hj−1fj−1

with hl ∈ S for l = 0, . . . , j − 1. Restricting both sides of this equation to V we get

gfj = h1f1 + · · · + hj−1fj−1.

Here hl ∈ R for l = 1, . . . , j−1 and since f1, . . . , fj is a regular sequence in R this implies
that

g = γ1f1 + · · · + γj−1fj−1 (with γi ∈ R for i = 1, . . . , j − 1.)

Now g = g + g1λ+ · · ·+ grλ
r with gi ∈ R. Thus g − g = λ(g1 + · · ·+ grλ

r−1) = λh with
h ∈ S. Hence

g = γ1f1 + · · ·+ γj−1fj−1 + λh .

This completes the proof.
To apply this result to m-quasi-invariants. We take λ(x) = e1 = x1 + · · · + xn,

u = (1, . . . , 1)/n and V the zero set of e1. Finally we take R be the Sn m-quasi-invariants
polynomials on V and let S = QIM [Xn]. The only missing ingredient is given by the
following
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Lemma 2.37 QIm[Xn] is the subalgebra of Q[x1, . . . , xn] generated by R and e1.

Proof First observe that if g = he1 and g ∈ QIm[Xn] then h ∈ QIm[Xn]. Indeed, if α
is a root of An−1then (1 − sα)g = ((1 − sα)h)e1. Now (1 − sα)g = α2m+1w. Thus have

α2m+1w = ((1 − sα)h)e1.

But α and e1 are relatively prime. Hence e1 divides w. That is w = φe1. Hence
((1 − sα)h)e1 = α2m+1φe1. Dividing off e1 yields the m-quasi-invariance of h.

We need to show that if f ∈ QIm[Xn] and if

f = f0 + f1e1 + · · · + fre
r
1 (2.38)

with fi polynomials on V then fi ∈ R for all i. Note that the assertion is trivially true
for r = 0. We can thus proceed by induction on r and assume the assertion true up to
r − 1. To prove it for r note that if we restrict both sides of (2.38) to V we have f = f0.
Since f ∈ QIm[Xn], f ∈ R. Thus f0 ∈ R. Now f − f0 = e1(f1 + · · · + fre

r−1
1 ). From the

observation at the beginning of the proof we derive that f1 + · · ·+ fre
r−1
1 ∈ QIm[X3] and

the induction hypothesis completes the argument.

3 More on S3 m-quasi-invariants.

Using Theorem 2.8 we will start by writing every element P (x) ∈ QIm[X3] in the form

P (x) = A000 + A010x2 + A001x3 + A011x2x3 + A002x
2
2 + A012 x2x

2
3 . (3.1)

Our goal is to see what conditions the coefficients Aijk must satisfy to assure that
P (x) ∈ QIm[X3]. The idea is to use the fact that the spaces QIm[Xn] are Sn modules

to gain information about these kinds of expansions. This given, our point of departure
is the following identity in the algebra of S3.

id = S3 + 1
3
(1 − s12)(1 + s23) + 1

3
(1 − s23)(1 + s12) + A3 (3.2)

where
S3 = 1

6

(
1 + s12 + s13 + s23 + (1, 2, 3) + (3, 2, 1)

)
and

A3 = 1
6

(
1 − s12 − s13 − s23 + (1, 2, 3) + (3, 2, 1)

)
Note that, since the operator A3 kills all the monomials 1, x2, x3, x2x3, x

2
3, applying it to

P as given by (3.1) gives
A3P = A012Π3(x)/6

with
Πn(x) =

∏
1≤i<j≤n

(xi − xj).
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However, note that it is an immediate consequence of the definition that any alternant in
QIm[Xn] must be a multiple of Π(x)2m+1 by a symmetric polynomial. This implies that
the symmetric polynomial A012 must necessarily be a multiple of Π3(x)

2m. Note further
that a multiple of Π3(x)

2m by any polynomal in x1, x2, x3 lies in QIm[X3]. This given, we
see that A012 may here and after be assumed to be of the form A012 = B(x)∆3(x)

2m with
B(x) an arbitrary symmetric polynomial. It is also clear that A000 can also be arbitrarily
chosen. This reduces our study to the elements of QIm[X3] which are of the form

P (x) = A010x2 + A001x3 + A011x2x3 + A002x
2
3 . (3.3)

When we apply the identity in (3.2) to this expansion we derive that

P (x) = A(x) + 1
3
(1 − s12)(1 + s23)P (x) + 1

3
(1 − s23)(1 + s12)P (x)

with A(x) a suitable symmetric polynomial. This is because A3 kills every monomial in
(3.3) and S3 sends every monomial into a symmetric function .

Now we see that

(1 + s23)P (x) = A010(x2 + x3) + A001(x2 + x3) + 2A011x2x3 + A002(x
2
2 + x2

3) (3.4)

but we can easily check that we have

x2
2 + x2

3 = −x2x3 − e2 + e1(x2 + x3) (3.5)

Using this (3.4) becomes

(1 + s23)P (x) = −A002e2 + (A010 + A001 + e1A002)(x2 + x3) + (2A011 −A002)x2x3+

Note further that

(1 + s12)P (x) = A010(x1 + x2) + 2A001x3 + A011(x1 + x2)x3 + 2A002x
2
3

= A010(e1 − x3) + 2A001x3 + A011(e1 − x3)x3 + 2A002x
2
3

= A010e1 + (2A001 − A010 + e1A011)x3 + (2A002 −A011)x
2
3

This reduces our study to elements of QIm[X3] of the form

P1(x) = A1(x2 + x3) +B1x2x3

and elements of the form
P2(x) = A2x3 +B2x

2
3

together with their images s12P1 and s23P2.
Now it develops that we have the following remarkably simple criterion.

Theorem 3.6 The polynomials P1 = A1(x2 + x3) +B1x2x3 and P2 = A2x3 +B2x
2
3, with

A1, A2, B1, B2 symmetric, are m-quasi-invariant if and if only we have

a) A1 = −δ12x1(x1 − x3)
2m θ1(x) B1 = δ12(x1 − x3)

2m θ1(x)

b) A2 = δ12(x2 + x3)(x1 − x3)
2m θ2(x) B2 = −δ12(x1 − x3)

2m θ2(x)
(3.7)

where θ1 and θ2 are any polynomials that satisfy the two conditions

a) s13 θ = θ , b) δ23δ12(x1 − x3)
2mθ = 0 , (3.8)
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Proof We begin by proving necessity. To this end note that for P1(x) to be m-quasi-
invariant we must have

(1 − s13)P1(x) = (x1 − x3)
2m+1 θ1(x) (3.9)

with θ1 a polynomial in Q[X3] satisfying the condition

s13 θ1 = θ1 . (3.10)

In fact, applying 1 + s13 to (3.9) gives

0 = (x1 − x3)
2m+1 θ1(x) − (x1 − x3)

2m+1 s13 θ1(x)

and (3.10) follows upon division by (x1 − x3)
2m+1. On the other hand the symmetry of

A1, B1 gives
(1 − s13)P1 = A1(x3 − x1) +B1x2(x3 − x1)

using this in (3.9) we get

A1(x3 − x1) +B1x2(x3 − x1) = (x1 − x3)
2m+1 θ1(x)

or better
A1 +B1x2 = −(x1 − x3)

2m θ1(x) . (3.11)

Using again the symmetry of A1, B1 , applying δ12 to both sides of (3.11) we obtain

−B1 = −δ12(x1 − x3)
2m θ1(x) . (3.12)

Finally, multiplying by x1 both sides of (3.11) and applying δ12 gives

A1 = −δ12x1(x1 − x3)
2m θ1(x) . (3.13)

This proves (3.7) (a). Similarly for P2 to be m-quasi-invariant we must have

(1 − s13)P2 = (x1 − x3)
2m+1 θ2(x) (3.14)

for a suitable θ2(x) invariant under s13. But the symmetry of A2, B2, gives

(1 − s13)P2 = A2(x3 − x1) +B2(x
2
3 − x2

1)

using this in (3.14) and cancelling the common factor we get

−A2 − B2(x1 + x3) = (x1 − x3)
2m θ2(x) .

Proceeding as before, using again the symmetry of A2, B2, we obtain

B2 = −δ12(x1 − x3)
2m θ2(x) (3.15)
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Finally, multiplying both sides by x2 + x3 and applying δ12 we get

A2 = δ12(x2 + x3)(x1 − x3)
2m θ2(x) . (3.16)

This proves (3.7) (b). To complete our proof of necessity, we are only left to show that
θ1 and θ2 must satisfy (3.8) (b). It turns out that (3.8) (b) is all we need to assure the
symmetry of A1, A2, B1, B2. To show this it is convenient to set

Hi = −(x1 − x3)
2m θi(x) (3.17)

so that (3.12), (3.13), (3.18) and (3.19) become

A1 = δ12x1H1 , A2 = −δ12(x2 + x3)H2 ,

B1 = −δ12H1 . B2 = δ12H2 . (3.18)

Clearly, A1, A2, B1, B2 are symmetric if and only if they are invariant under the action
of s12 and s23. However, since all of them are images of δ12 there are automatically s12-
invariant. Thus we only need to assure that they are also s23-invariant. Note that since,
when θ2 = θ1

B2 = −B1 and A2 = −δ12(e1 − x1)H = e1B1 + A1 (3.19)

we need only assure the s23-invariance of A1 and B1. This is equivalent to the two
equations

a) δ23δ12x1H1 = 0 ,
b) δ23δ12H1 = 0 .

(3.20)

It develops that the first equation here is a consequence of the second. To see this note
that since (3.21) (b) implies that δ12H1 is symmetric in particular it is left unchanged by
s13. Thus

δ12H1 = s13δ12H1

(by (3.10) and (3.18)) = s13δ12s13H1

= δ32H1 = −δ23H1 .

On the other hand we see that we have (by the Leibnitz formula)

δ23δ12x1H1 = δ23
(
H1 + x2δ12H1

)
= δ23H1 + δ12H1 + x3δ23δ12H1 .

Thus (3.21) (b) implies (3.21) (a) as asserted. Recalling the definition of H1 in (3.18), we
see that the equations in (3.21) reduce to

δ23δ12(x1 − x3)
2mθ1 = 0 .

This completes the proof of necessity.
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To prove sufficiency, note that the formulas in (3.7) together with the conditions in
(3.8) assure that A1, A2, B1, B2 are symmetric, and that P1 = A1(x2 + x3) + B1x2x3 and
P2 = A2x3 +B2x

2
3 satisfy

a) (1 − s13)P1 = (x1 − x3)
2m+1θ1 b) (1 − s13)P2 = (x1 − x3)

2m+1θ2 (3.21)

Indeed, from (3.7) we derive that

δ13P1 =−A1 −B1x2

= 1
x1−x2

(
(1 − s12)

(
x1(x1 − x3)

2m θ1(x)
)
−

(
(1 − s12)(x1 − x3)

2m θ1(x)
)
x2

)
= (x1 − x3)

2m θ1(x) + 1
x1−x2

(
−s12

(
x1(x1 − x3)

2m θ1(x)
)

+ s12

(
x1(x1 − x3)

2m θ1(x)
))

and this just another way of writing (3.21) (a). An entirely analogous calculation gives
(3.21) (b).

Now the invariance of A1, A2, B1, B2 assures that

a) (1 − s23)P1 = 0 b) (1 − s12)P2 = 0 (3.22)

On the other hand hitting (3.22) (a) by s23 and (3.22) (b) by s12 we get

a) (1 − s12)s23P1 = (x1 − x2)
2m+1s23θ1 b) (1 − s23)s12P2 = (x2 − x3)

2m+1s12θ2

and from (3.23) we finally derive that

a) (1 − s12)P1 = (x1 − x2)
2m+1s23θ1 b) (1 − s23)P2 = (x2 − x3)

2m+1s12θ2

Thus the m-quasi-invariance of P1 and P2 is assured and our proof is complete.
Our next task is to find all solutions θ of the system

a) δ23δ12(x1 − x3)
2mθ = 0 ,

b) s13θ = θ .
(3.23)

To work with expansions in the Artin basis ART (3) it will be more convenient to solve
the system

a) δ13δ12(x2 − x3)
2mθ = 0 ,

b) s23θ = θ .
(3.24)

There is no loss here since applying the transposition s12 to (3.24) gives

a) δ13δ12(x2 − x3)
2ms12θ = 0 ,

b) s23s12θ = s12θ .

So if θ satifies (3.24) then s12θ satisfies (3.25) and vice versa.
Now note that expanding (x2 − x3)

2m in terms of ART (3) we obtain that

(x2 − x3)
2m = Am +Bm(x2 + x3) + Cmx2x3 . (3.25)
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with Am, Bm, Cm suitable symmetric polynomials of degrees 2m 2m−1 2m−2 respectively.
For the same reason any solution θ of (3.25) (b) must have the form

θ = a+ b(x2 + x3) + cx2x3 .

Our task then is to find all triplets (a, b, c) such that the resulting θ satisfies also (3.25)
(a). To carry this out we need the following auxiliary fact.

Proposition 3.26 Let

Hi = Ai +Bi (x2 + x3) + Ci x2x3

(
with i = 1, 2

)
(3.27)

then we shall have
δ13δ12H1H2 = 0

if and only if

C1

(
A2 +B2e1 + C2e2

)
+B1

(
B2 + C2e1

)
+ A1C2 = 0 . (3.28)

Proof Note that we have

δ13δ12H1H2 = δ13

((
δ12H1

)
H2 +

(
s12H1

)
δ12H2

)
=

(
δ13δ12H1

)
H2 +

(
s13δ12H1

)
δ13 H2 (3.29)

+
(
δ13 s12H1

)
δ12H2 +

(
s13s12H1

)
δ13δ12H2

Now using the expressions in (3.28) we derive that

δ12Hi = −Bi − Cix3

s13δ12Hi = −Bi − Cix1

δ13Hi = −Bi − Cix2

δ13δ12Hi = Ci

s13Hi = Ai +Bi(x1 + x2) + Cix1x2

s12Hi = Ai +Bi(x1 + x3) + Cix1x3

s13s12Hi = Ai +Bi(x1 + x3) + Cix1x3

δ13s12Hi = 0

This reduces (3.31) to

δ13δ12H1H2 = C1

(
A2 +B2(x2 + x3) + C2x2x3

)
+ (−B1 − C1x1)(−B2 − C2x2)

+(A1 +B1(x1 + x3) + C1x1x3)C2

Clearly this expression vanishes identically if and only if

C1A2 +B1B2 + A1C2 + C1B2e1 +B1C2e1 + C1C2e2 = 0 .

Grouping terms according to C1, B1, A1 yields (3.29) precisely as asserted.
This immediately brings us to the next step in our development.
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Theorem 3.30 Recalling that

(x2 − x3)
2m = Am +Bm(x2 + x3) + Cmx2x3 and θ = a+ b(x2 + x3) + cx2x3 ,

with Am, Bm, Cm, a, b, c suitable symmetric polynomials. We shall have

δ13δ12(x2 − x3)
2mθ = 0 (3.31)

if and only if
cAm + bBm + aCm = 0 (3.32)

where we have set

Am = Am +Bme1 + Cme2, Bm = Bm + Cme1, Cm = Cm (3.33)

Proof Using (3.29) with H1 = θ and H2 = (x2 − x3)
2m, we get that (3.32) holds true if

and only if the vector (a, b, c) satisfies the equation

c
(
Am +Bme1 + Cme2

)
+ b

(
Bm + Cme1

)
+ aCm = 0 ,

and this is (3.33).
Our next task is to characterize the triplets of symmetric functions (a, b, c) that satisfy

the equation in (3.33). This will be carried out in the next section.

4 Some Cohen-Macaulay modules of triplets.

To proceed we need some notation. To begin let

Rx = Q[x1, x2, x3], Re = Q[e1, e2, e3]

and note that the corresponding Hilbert series are

FRx(t) =
1

(1 − t)3
FRx(t) =

1

(1 − t)(1 − t2)(1 − t3)
. (4.1)

Now set

R3
x =

{
(a, b, c) : a, b, c ∈ Rx

}
, R3

e =
{
(a, b, c) : a, b, c ∈ Re

}
and let us make R3

x and R3
e into graded modules by saying that a triplet (a, b, c) is

“homogeneous of degree k ” if and only a, b, c are homogeneous of degrees k, k − 1, k − 2
respectively. We shall view the solution spaces

Mm(x) =
{
(a, b, c) ∈ Rx : cAm + bBm + aCm = 0

}
Mm(e) =

{
(a, b, c) ∈ Rx : cAm + bBm + aCm = 0

}
as a graded submodules of R3

x and R3
e respectively. Now we have the following crucial

Hilbert series identities
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Proposition 4.2

1) FMm(x)(t) = (1 + t)(1 + t+ t2)FMm(e)(t)

2) t2m−2FMm(x)(t) = F(Am,Bm,Cm)Rx
(t) + t2m−2+t2m−1+t2m−1

(1−t)3
(4.3)

Proof Note that by definition (u, v, w) ∈ Mm(x) if and only if

wAm + vBm + uCm = 0 . (4.4)

Now Theorem 2.8 gives the expansions

u =
∑

xε∈ART (3)

xεaε, v =
∑

xε∈ART (3)

xεbε, w =
∑

xε∈ART (3)

xεcε, (4.5)

using this in (4.4) gives ∑
xε∈ART (3)

xε
(
cεAm + bεBm + aεCm

)
= 0

and the uniqueness part of Theorem 2.8 now yields that for all xε ∈ ART (3) we must
have

cεAm + bεBm + aεCm = 0 .

In other words, each triplet (u, v, w) ∈ Mm(x) decomposes into a linear combination of
triplets (aε, bε, cε) ∈ Mm(e) with coefficients xε ∈ ART (3). But then again the uniqueness
part of Theorem 2.8 forces this decomposition to be unique. In symbols we may write

Mm(x) =
⊕

xε∈ART (3)

xεMm(e) .

This implies the Hilbert series identity

FMm(x)(t) =
∑

xε∈ART (3)

tdegree(xε)FMm(e)(t)

and (4.3) (1) follows since ∑
xε∈ART (3)

tdegree(xε) = (1 + t)(1 + t+ t2) .

To prove (4.3) (2) it is convenient to set

Wm(x) = Rx/(Am, Bm, Cm)Rx

We clearly see from (3.33) that

(Am, Bm, Bm)Rx = (Am, Bm, Cm)Rx ,
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so
Wm(x) = Rx/(Am, Bm, Cm)Rx .

Clearly FWm(x)(t) is given by the difference between the Hilbert series of Rx and the
Hilbert series of the ideal (Am, Bm, Cm)Rx. In symbols

FWm(x)(t) =
1

(1 − t)3
− F(Am,Bm,Cm)(t) (4.6)

Now, by definition

(Am, Bm, Cm)Rx = {cAm + bBm + aCm : a, b, c ∈ Rx }.

Note further that the polynomial cAm + bBm +aCm is homogeneous of degree k+2m−2
if and only if a, b, c are respectively homogeneous of degrees k, k − 1, k − 2. Clearly the
dimension of the space of such triplets a, b, c is given by the expression

FRx(t)
∣∣
tk

+ FRx(t)
∣∣
tk−1 + FRx(t)

∣∣
tk−2 . (4.7)

To get the dimension of the degree k + 2m − 2 homogeneous component of the ideal
(Am, Bm, Cm)Rx we must subtract from (4.7) the dimension of the collection of all triplets
(a, b, c) ∈ Mm(x) which are homogeneous of degree k. This may be written as

FRx(t)
∣∣
tk

+ FRx(t)
∣∣
tk−1 + FRx(t)

∣∣
tk−2 − FMm(x)(t)

∣∣
tk
.

Multiplying by t2m−2+k and summing for k ≥ 0 gives the identity

F(Am,Bm,Cm)Rx
(t) = t2m−2

∑
k≥0

FRx(t)
∣∣
tk
tk

+t2m−1
∑
k≥1

FRx(t)
∣∣
tk−1t

k−1 (4.8)

+t2m
∑
k≥2

FRx(t)
∣∣
tk−2t

k−2 − t2m−2FMm(x)(t)

Now using (4.1) we derive that

t2m−2
∑

k≥0 FRx(t)
∣∣
tk
tk + t2m−1

∑
k≥1 FRx(t)

∣∣
tk−1t

k−1 + t2m
∑

k≥2 FRx(t)
∣∣
tk−2t

k−2

= t2m−2+t2m−1+t2m

(1−t)3

and (4.8) becomes

F(Am,Bm,Cm)Rx
(t) =

t2m−2 + t2m−1 + t2m

(1 − t)3
− t2m−2FMm(x)(t) (4.9)

Substituting this in (4.6) we finally obtain

FWm(x)(t) =
1

(1 − t)3
− t2m−2 + t2m−1 + t2m

(1 − t)3
+ t2m−2FMm(x)(t) .
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and this is simply another way of writing (4.3) (2). Our proof is thus complete.
We shall show in the next section that

FWm(x)(t) =
(1 + tm + tm−1)(1 − tm)(1 − tm−1)

(1 − t)3
. (4.10)

and we can state

Theorem 4.11 Upon the validity of (4.10) it follows that

FMm(e)(t) =
tm + tm+1

(1 − t)(1 − t2)(1 − t3)
(4.12)

Proof Using (4.10) in (4.3) (2) gives

t2m−2FMm(x)(t) =
(1 + tm + tm−1)(1 − tm)(1 − tm−1)

(1 − t)3
+
t2m−2 + t2m−1 + t2m − 1

(1 − t)3
.

=
(1 + tm + tm−1)(1 − tm − tm−1 + t2m−1) + t2m−2 + t2m−1 + t2m − 1

(1 − t)3
.

=
t3m−1 + t3m−2

(1 − t)3
.

Now from (4.3) (1) we get

t2m−2(1 + t)(1 + t+ t2)FMm(e)(t) =
t3m−1 + t3m−2

(1 − t)3
.

and (4.12) follows by cancelling the factor t2m−2 and division of both sides by (1 + t)(1 +
t+ t2).

This brings us to the crucial result of this section,

Theorem 4.13 Upon the validity of (4.10) it follows that the collection

Mm(e) =
{
(a, b, c) : cAm + bBm + aCm = 0

}
is a free Q[e1, e2, e3]-module of rank 2

Proof From the Hilbert series in (4.12) it follows that the subspaces Hm

(
Mm(e)

)
and

Hm+1

(
Mm(e)

)
of homogeneous triplets of Mm(e) of degrees m and m + 1 have dimen-

sions 1 and 2 respectively. This given, let Θ1 = (a1, b1, c1) be a non trivial element of
Hm

(
Mm(e)

)
and note that e1Θ1 = (e1a1, e1b1, e1c1) ∈ Hm+1

(
Mm(e)

)
. This accounts for

one of the 2 dimensions of Hm+1

(
Mm(e)

)
. Let us pick Θ2 = (a2, b2, c2) ∈ Hm+1

(
Mm(e)

)
so that together with e1Θ1 we have a basis for Hm+1

(
Mm(e)

)
. Now suppose that for two

symmetric functions D1 and D2 we have

D1Θ1 +D2Θ2 = 0 (4.14)
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Clearly there is no loss in assuming that D1 and D2 have no common factor. Then it
follows from (4.14) that D2 must divide a1, b1 and c1. But since Θ1 is an element of least
degree in Mm(e) it follows that D2 must be a constant and there is no loss in taking it
to be −1. So (4.14) becomes

D1Θ1 = Θ2 (4.15)

This given, equating the first components in (4.14) gives D1a1 = a2 this forces D1 to be
homogeneous of degree 1 since it is symmetric it can only be a constant multiple of e1,
but then (4.15) contraddicts our initial choice of Θ2. Thus there is no relation such as in
(4.14). This means that the collection

{Θie
p1

1 e
p2

2 e
p3

3 } i=1,2
pi≥0

is an independent subset of Mm(e) and since it has the correct number of elements in
each degree it must be a basis. In summary, Θ1,Θ2 generate Mm(e) as a free Q[e1, e2, e3]-
module and our proof is complete.

We can now obtain our desired result on S3 m-quasi-invariants:

Theorem 4.16 Let (a1, b1, c1) and (a2, b2, c2) be the generators of Mm(e) of degrees m
and m+ 1 and set

θ1 = a1 + b1(x1 + x3) + c1x1x3, θ2 = a2 + b2(x1 + x3) + c2x1x3.

Then QIm[X3] is a free Q[e1, e2, e3]- module with basis

1, G1, s12G1, G2, s12G2, x2x
2
3 Π(x)2m (4.17)

where Π(x) denotes the Vandermonde determinant in x1, x2, x3,

G1 = −
(
δ12x1(x1 − x3)

2m θ1
)
(x2 + x3) +

(
δ12(x1 − x3)

2m θ1
)
x2x3

and
G2 = −

(
δ12x1(x1 − x3)

2m θ2
)
(x2 + x3) +

(
δ12(x1 − x3)

2m θ2
)
x2x3

Proof We have seen in section 2 that every m-quasi-invariant in x1, x2, x3 is a sum of
terms involving

(1) An invariant

(2) The polynomial x2x
2
3 Π(x)2m times an invariant.

(3) An m-quasi-invariant P1 = A1(x2 + x3) +B1x2x3 and its image by s12 .

(4) An m-quasi-invariant P2 = A2x
2
3 +B2x

2
3 and its image by s23.
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with A1, B1, A2, B2 invariants. We have also shown that for P1 and P2 to be m-quasi-
invariant it is necessary and sufficient that A1, B1, A2, B2 have the expressions given in
(3.7). Now it develops that an m-quasi-invariant of the form P2 = A2x

2
3 + B2x

2
3 can be

obtained (modulo the ideal generated by e1, e2, e3) as an S3 image of an m-quasi-invariant
polynomial of the form P1 = A1(x2 + x3) + B1x2x3 In fact, note that from (3.7) (a) and
(b) we derive that when θ1 = θ2 = θ

A2 = δ12(x2 + x3)(x1 − x3)
2m θ(x)

= δ12(e1 − x1)(x1 − x3)
2m θ(x) and B2 = −B1 ,

= A1 + e1B1

This gives

(1 + s12)P1 = A1(x1 + x2 + 2x3) +B1(x1x3 + x2x3)

= A1(e1 + x3) +B1(e1 − x3)x3

= A1e1 + (A1 +B1e1)x3 +B2x
2
3 = A1e1 + P2 .

Combining this with Theorem 4.11 we derive that every m-quasi-invariant P is of the
form

P = U +G+ s12G+ V x2x
2
3 Π(x)2m

where U, V are arbitrary invariants and

G =
(
− δ12x1(x1 − x3)

2m θ(x)
)
(x2 + x3) +

(
δ12(x1 − x3)

2m θ(x)
)
x2x3

where
θ = a+ b(x1 + x3) + c x1x3 with (a, b, c) ∈ Mm(e)

This implies that the polynomials in (4.17) span QIm[X3] as a Q[e1, e2, e3]-module. Since
they are altogether 6 = 3! in total, we can use Theorem 2.14 and obtain the polynomials
in (4.17) are in fact a free Q[e1, e2, e3]-module basis for QIm[X3].

5 Determining the quotient Rx/(Am,bm,Cm)Rx .

Our first task is to construct the Gröbner basis of the ideal (Am, Bm, Cm)Rx . The following
identities open up a surprising path.

Proposition 5.1 Denoting by Π(x) the vandemonde determinant in x1, x2, x3 we have

Pm(x) = Π(x)Am(x) = x2
3(x1 − x2)

2m+1 + x2
1(x2 − x3)

2m+1 + x2
2(x3 − x1)

2m+1

Qm(x) = Π(x)Bm(x) = −x3(x1 − x2)
2m+1 − x1(x2 − x3)

2m+1 − x2(x3 − x1)
2m+1

Rm(x) = Π(x)Cm(x) = (x1 − x2)
2m+1 + (x2 − x3)

2m+1 + (x3 − x1)
2m+1 (5.2)
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Proof Because of uniqueness of the expansions in terms of ART (3) and the symmetry
of Am, bm, Cm it is sufficient to verify the identity in (3.27). In other words we need to
show that

Π(x)(x2 − x3)
2m = Pm +Qm(x2 + x3) +Rm x2x3 , (5.3)

Now denoting by RHS the right hand side and using (5.2) we get

RHS = x2
3(x1 − x2)

2m+1 + x2
1(x2 − x3)

2m+1 + x2
2(x3 − x1)

2m+1

−(x2 + x3)
(
x3(x1 − x2)

2m+1 − x1(x2 − x3)
2m+1 − x2(x3 − x1)

2m+1
)

x2x3

(
(x1 − x2)

2m+1 + (x2 − x3)
2m+1 + (x3 − x1)

2m+1
)

= (x2
1 − x2x1 − x3x1 + x2x3)(x2 − x3)

2m+1

= (x1 − x2)(x1 − x3)(x3 − x1)
2m+1 = π(x)(x3 − x1)

2m.

This proves (5.3).
To proceed it will be convenient to make a change of variables and set

x1 = y + u, x2 = y, x3 = y − v. (5.4)

This gives
x1 − x2 = u, x2 − x3 = v, x3 − x1 = −u− v. (5.5)

Thus we may write

Am =
(y − v)2u2m+1 + (y + u)2v2m+1 − y2(u+ v)2m+1

−uv(u+ v)

Bm =
−(y − v)u2m+1 − (y + u)v2m+1 + y(u+ v)2m+1

−uv(u+ v)
(5.6)

Cm =
u2m+1 + v2m+1 − (u+ v)2m+1

−uv(u+ v)

Now note that

Bm = −yCm +
vu2m+1 − uv2m+1

−uv(u+ v)
= −yCm +

v2m − u2m

u+ v
= −yCm + B̃m ,

where we have set

B̃m =
v2m − u2m

u+ v
. (5.7)

Similarly we get

Am = y2Cm +
−2yvu2m+1 + 2yuv2m+1

−uv(u+ v)
+
v2u2m+1 + u2v2m+1

−uv(u+ v)

= y2Cm − 2y
u2m − v2m

−(u+ v)
− vu2m + uv2m

u+ v
= y2Cm − 2y B̃m − Ãm
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where we have set

Ãm =
vu2m + uv2m

u+ v
, (5.8)

and we clearly see that we have

(Am, Bm, Cm)Q[u,v,y ] = (Ãm, B̃m, Cm)Q[u,v,y ]. (5.9)

Note further that from (5.7) and (5.8) we get

Ãm + vB̃m =
vu2m + uv2m

u+ v
+ v

v2m − u2m

u+ v
= v2m

and (5.9) can be then replaced by

(Am, Bm, Cm)Q[u,v,y ] = (v2m, B̃m, Cm)Q[u,v,y ] . (5.10)

To work with this ideal will be convenient to set, here and after

P (t) =
1 − t2m

1 + t
and Q(t) =

(1 + t)2m+1 − t2m+1 − 1

t(1 + t)
(5.11)

So that we may write

B̃m(u, v) = v2m−1P (u/v) and Cm(u, v) = v2m−2Q(u/v) . (5.12)

We can easily see that

P (t) =
2m−1∑
r=0

(−t)r and Q(t) =
2m−1∑
r=1

tr−1

r∧(2m−r)∑
s=1

(
2m+ 1

s

)
(−1)s−r .

However these expansions will play no role. All we need to know is that P (t) and Q(t) are
of degrees 2m − 1 and 2m − 2 respectively and that the following technical result holds
true.

Lemma 5.13 Suppose that we have

R(t) = a(t)P (t) + b(t)Q(t), (5.14)

with a(t), b(t) polynomials of degrees bounded by some j < m, Then the polynomial R(t)
must have degree at least 2m− 2 − j

Proof Set
S(t) = t2m−1 − 1 and T (t) = (1 + t)2m−1 − (1 + t) (5.15)

then multiplying (5.14) by t(1 + t) gives

t(1 + t)R(t) = a(t)
(
t− t2m+1

)
+ b(t)

(
(1 + t)2m+1 − t2m+1 − 1

)
=

(
a(t) + b(t)

)(
t− t2m+1

)
+ b(t)

(
(1 + t)2m+1 − (1 + t)

)
.
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In summary, we get that for some polynomials c(t) and b(t) of degrees bounded by j we
have

t(1 + t)R(t) = −c(t)S(t) + b(t)T (t), (5.16)

Now, proceeding by contraddiction, suppose if possible that the degree of R(t) is strictly
less than 2m− 2 − j. Then differentiating both sides of (5.16) 2m− j times gives(

d

dt

)2m−j

a(t)S(t) =

(
d

dt

)2m−j

b(t)T (t)

or better
2m−j∑
i=0

(
2m− j

i

)
c(i)(t)S(2m−j−i)(t) =

2m−j∑
i=0

(
2m− j

i

)
b(i)(t)T (2m−j−i)(t)

since j < m we will have 2m− j > m and since by assumption both b and c have degrees
bounded by j < m < 2m− j, these sums need only be carried out for i ≤ j, giving

j∑
i=0

(
2m− j

i

)
c(i)(t)S(2m−j−i)(t) =

j∑
i=0

(
2m− j

i

)
b(i)(t)T (2m−j−i)(t) (5.17)

This means that both S(t) and T (t) are differentiated at least 2m − j > m times, that
is at least two times, since m ≥ 1. This means that we can ignore the linear terms and
obtain

S(2m−j−i)(t) = (2m+1)2m−j−it
1+i+j and T (2m−j−i)(t) = (2m+1)2m−j−i(1+t)1+i+j.

So (5.17) may be rewritten as

t1+j

j∑
i=0

(
2m− j

i

)
c(i)(t)(2m+ 1)2m−j−it

i (5.18)

= (1 + t)1+j

j∑
i=0

(
2m− j

i

)
b(i)(t)(2m+ 1)2m−j−i(1 + t)i

Setting

U(t) =
∑j

i=0

(
2m−j

i

)
c(i)(t)(2m+ 1)2m−j−it

i

and V (t) =
∑j

i=0

(
2m−j

i

)
b(i)(t)(2m+ 1)2m−j−i(1 + t)i

from (5.18) we derive that

(1 + t)1+j
∣∣U(t) and t1+j

∣∣V (t)

Now since both c and b have degrees < j + 1, (5.18) forces both U(t) and V (t) to vanish.
That means that we must have(

d
dt

)2m−j
a(t)S(t) = 0 and

(
d
dt

)2m−j
b(t)T (t) = 0

but that is absurd since both a(t)S(t) and b(t)T (t) have degrees ≥ 2m+ 1.
This brings us in a position to state and prove the crucial result of this section
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Theorem 5.19 The dlex minimal elements of the lower set of leading monomials of the
ideal

(v2m, B̃m, Cm)Q[u,v] (5.20)

with respect to the total order u > v are

u2m−2, v2u2m−3 , v4u2m−4 , . . . , v2iu2m−2−i . . . , v2m−2um−1, v2m (5.21)

Proof We shall start by proving that every leading monomial of the ideal in (5.20) is
divisible by one of the monomials in (5.21). To begin note that if uhvk is a monomial not
divisible by any of the monomials in (5.12) then v < 2m and we must have

k =




2j
or (for some 0 ≤ j < m)

2j + 1
(5.22)

as well as
0 ≤ h < 2m− 2 − j . (5.23)

Suppose if possible that a monomial uhvk with h, k satisfying (5.22) and (5.23) is the

leading monomial of a homogeneous element of M(u, v) ∈ (v2m, B̃m, Cm)Q[u,v] . Then,
setting

r = h+ k (5.24)

we have the expansion

M(u, v) = uhvk +
∑

k′ > k
h′ + k′ = r

ch′,k′uh′
vk′

= vkR(u, v) (5.25)

with R(u, v) homogeneous of degree h and leading monomial uh and there will be some
homogeneous polynomials a(u, v), b(u, v), c(u, v) giving

vkR(u, v) = a(u, v)B̃m(u, v) + b(u, v)Cm(u, v) + c(u, v)v2m (5.26)

then setting u = tv and denoting by da, db and dc the degrees of a(u, v), b(u, v) and c(u, v)
we obtain

vk+hR(t, 1) = vda+2m−1a(t, 1)P (t) + vdb+2m−2b(t, 1)Q(t) + vdc+2mc(t, 1). (5.27)

This gives
k + h = da + 2m− 1 = db + 2m− 2 = dc + 2m,

and cancelling the common factor vh+k (5.27) may be rewritten as

R(t, 1) − c(t, 1) = a(t, 1)P (t) + b(t, 1)Q(t). (5.28)
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Now note that from (5.22) and (5.23) we get

da = k + h− 2m+ 1 <




2j + 2m− 2 − j − 2m+ 1 if k = 2j

2j + 1 + 2m− 2 − j − 2m+ 1 if k = 2j
(5.29)

=




j − 1 if k = 2j

j if k = 2j + 1

similarly we must also have

db <




j if k = 2j

j + 1 if k = 2j + 1
and dc <




j − 2 if k = 2j

j − 1 if k = 2j + 1
(5.30)

Thus in any case the polynomials a(t, 1) and b(t, 1) have degrees bounded by j. This
places us in a position to use Lemma 5.13 and conclude that R(t, 1) − c(t, 1) must be of
degree at least 2m − 2 − j. But in any case (5.30) shows that c(t) has degree at most
j − 1 < 2m − 2 − j thus R(t, 1) itself must have degree at least 2m − 2 − j but that
contradicts (5.23). So every leading monomial of the ideal in (5.20) must be divisible by
one of the monomials in (5.21) precisely as asserted.

To complete the proof we need to show that each of the monomials in (5.21) is a leading
monomial. To this end we apply the Berlekamp algorithm [2] for computing the greatest
common divisor of P and Q, as given by (5.21), we obtain a sequence of polynomials

Qi(t) Ri(t) ai(t) bi(t) (for i = −1, 0, 1, 2, . . . , m)

determined by the initial conditions

R−1 = P a−1 = 1 b−1 = 0
Ro = Q a0 = 0 b0 = 1

(5.31)

where Qi and Ri are the quotient and the remainder of the division of Ri−2 by Ri−1, in
symbols

Ri−2 = Ri−1Qi +Ri (5.32)

and ai, bi are obtained from the recursions

a) ai−2 = ai−1Qi + ai b) bi−2 = bi−1Qi + bi . (5.33)

This allows us to express Ri in the form

Ri = ai P + bi Q . (5.34)

Clearly the degree of Ri as constructed from (5.15) decreases by 1 at least at each step.
Since we see from (5.14) that R−1 has degree 2m− 1 it follows that

degree(Ri) ≤ 2m− 2 − i (for all i < m) (5.35)
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Actually we will show that equality must hold here. Since as we noted this is true for
i = −1, 0, we can proceed by induction an assume that the equality

degree(Ri) = 2m− 2 − i (5.36)

has been established for all i < j. Now note this equality for all i < j together with (5.32)
gives that Qi is of degree 1 for all 0 ≤ i ≤ j in particular we can recursively obtain from
(5.33) that aj and bj are of degrees j − 1 and j respectively. This places us in a position
to apply Lemma 5.13 to (5.34) for i = j that is

Rj = aj P + bj Q . (5.37)

and conclude that the degree of Rj must be at least 2m− 2− j which combined with the
inequality in (5.35) yields that

degree(Rj) = 2m− 2 − j (5.38)

completing the induction. Now setting t = u/v in (5.35) and mutiplying both sides by
v2m−2−j , gives

v2jv2m−2−jRj(u/v) = vj−1ai(u/v)v
2m−1P (u/v) + vjbj(u/v)v

2m−2Q(u/v),

Using the relations in (5.12) this may be rewritten as

v2iR(u, v) = a(u, v)B̃m(u, v) + b(u, v)Cm(u, v), (5.39)

with

a(u, v) = vj−1aj(u/v), b(u, v) = vjbj(u/v), R(u, v) = vj−1a(u/v), (5.40)

Now we have seen that the equality in (5.35) for all i < m forces aj and bj to be of
degrees j−1 and j respectively we derive from (5.39) that a(u, v), b(u, v) are homogeneous
polynomials, likewise (5.37) yields that R(u, v) is a homogeneous polynomial with leading
monomial u2m−2−j. But then (5.38) proves that v2ju2m−2−j is a leading monomial of the

ideal (v2m, B̃m, Cm)Q[u,v] . Thus our proof is complete.
It develops that Theorem 5.19 is more that is needed to establish the Hilbert series

equality in (4.10). More precisely we have

Theorem 5.41 The standard basis of the quotient

Q[u, v]/(B̃m, Cm, v
2m)

relative to the order u > v is given by the collection of monomials

Bm = (5.42){
v2i, v2iu, v2iu2, . . . , v2iu2m−3−i ; v2i+1, v2i+1u, v2i+1u2, . . . , v2i+1u2m−3−i

}
0≤i<m
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In particular the Hilbert series of the quotients

Q[u, v, y]/(B̃m, Cm, v
2m), Rx/(Am, Bm, Cm)Rx (5.43)

are given by the rational function

(1 − tm)(1 − tm−1)(1 + tm + tm−1)

(1 − t)3
(5.44)

Proof Note that by Theorem 5.19, the collection in (5.40) constitutes the lower set

of non-leading monomials of the ideal (B̃m, Cm, v
2m). Thus it is the standard basis as

asserted. Thus the Hilbert series of the quotient Q[u, v]/(B̃m, Cm, v
2m) is given by the

generating function

∑
b∈B

tdegree(b) =
m−1∑
i=0

(t2i + t2i+1)
(
1 + t+ · · ·+ t2m−3−i

)

=
1 + t

1 − t

m−1∑
i=0

t2i
(
1 − t2m−2−i

)

=
1 + t

1 − t

(1 − t2m

1 − t2
− t2m−2 1 − tm

1 − t

)
=

(1 − tm)

1 − t

(1 + tm

1 − t
− t2m−2 + t2m−1

1 − t

)
=

(1 − tm)(1 − tm−1(1 + tm + tm−1))

(1 − t)2
.

This gives that the rational function in (5.43) gives the Hilbert series of Q[u, v, y]/

(B̃m, Cm, v
2m). The extra factor of (1− t) in the denominator accounting for the presence

of the extra variable y. This completes our proof since the manipulations at the beginning
of the section prove that the two quotients in (5.42) have the same Hilbert series.
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