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Dans la théorie de Morse, quand on veut étudier
un espace, on introduit une fonction numérique; puis
on aplatit cet espace sur l’axe de la valeur de cette
fonction. Dans cette opération d’aplatissement, on crée
des singularités de la fonction et celles-ci sont en
quelque sorte les vestiges de la topologie qu’on a tuée.

René Thom, Logos et Théorie des catastrophes, .

Dedicated to Richard Stanley,
on the occasion of his sixtieth birthday.

Abstract
As for the symmetric group of ordinary permutations there is also a statistical
study of the group of signed permutations, that consists of calculating multi-
variable generating functions for this group by statistics involving record values
and the length function. Two approaches are here systematically explored, us-
ing the flag-major index on the one hand, and the flag-inversion number on the
other hand. The MacMahon Verfahren appears as a powerful tool throughout.

1. Introduction

The elements of the hyperoctahedral group Bn (n ≥ 0), usually called signed
permutations, may be viewed as words w = x1x2 . . . xn, where the letters xi are positive
or negative integers and where |x1| |x2| . . . |xn| is a permutation of 1 2 . . . n (see [Bo68]
p. 252–253). For typographical reasons we shall use the notation i := −i in the sequel.
Using the χ-notation that maps each statement A onto the value χ(A) = 1 or 0
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depending on whether A is true or not, we recall that the usual inversion number,
inv w, of the signed permutation w = x1x2 . . . xn is defined by

inv w :=
∑

1≤j≤n

∑
i<j

χ(xi > xj).

It also makes sense to introduce
inv w :=

∑
1≤j≤n

∑
i<j

χ(xi > xj),

and verify that the length function (see [Bo68, p. 7], [Hu90, p. 12]), that will be denoted
by “finv” (flag-inversion number) in the whole paper, can be defined, using the notation
neg w :=

∑
1≤j≤n

χ(xj < 0), by

finv w := inv w + inv w + neg w.

Another equivalent definition will be given in (7.1). The flag-major index “fmaj” and
the flag descent number “fdes” were introduced by Adin and Roichman [AR01] and
read:

fmajw := 2 majw + neg w;
fdes w := 2 des w + χ(x1 < 0);

where majw :=
∑

j j χ(xj > xj+1) denotes the usual major index of w and des w the
number of descents des w :=

∑
j χ(xj > xj+1).

Another class of statistics needed here is the class of lower records. A letter xi

(1 ≤ i ≤ n) is said to be a lower record of the signed permutation w = x1x2 . . . xn,
if |xi| < |xj| for all j such that i + 1 ≤ j ≤ n. When reading the lower records of w
from left to right we get a signed subword, called the lower record subword, denoted by
Lower w. Denote the number of positive (resp. negative) letters in Lower w by lowerp w
(resp. lowern w).

In our previous paper [FoHa05] we gave the construction of a transformation Ψ on
(arbitrary) signed words, that is, words, whose letters are positive or negative with
repetitions allowed. When applied to the group Bn, the transformation Ψ has the
following properties:

(a) fmaj w = finv Ψ(w) for every signed permutation w;
(b) Ψ is a bijection of Bn onto itself, so that “fmaj” and “finv” are equidistributed

over the hyperoctahedral group Bn;
(c) Lower w = Lower Ψ(w), so that lowerp w = lowerp Ψ(w) and lowernw =

lowern Ψ(w).
Actually, the transformation Ψ has stronger properties than those stated above, but

these restrictive properties will suffice for the following derivation. Having properties
(a)–(c) in mind, we see that the two three-variable statistics (fmaj, lowerp, lowern) and
(finv, lowerp, lowern) are equidistributed over Bn. Hence, the two generating polynomials

fmajBn(q, X, Y ) :=
∑

w∈Bn

qfmajX lowerp wY lowern w

finvBn(q, X, Y ) :=
∑

w∈Bn

qfinvX lowerp wY lowern w
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are identical. To derive the analytical expression for the common polynomial we have
two approaches, using the “fmaj” interpretation, on the one hand, and the “finv”
geometry, on the other. In each case we will go beyond the three-variable case, as
we consider the generating polynomial for the group Bn by the five-variable statistic
(fdes, fmaj, lowerp, lowern, neg)

(1.1) fmajBn(t, q, X, Y, Z) :=
∑

w∈Bn

tfdes wqfmaj wX lowerp wY lowern wZneg w

and the generating polynomial for the group Bn by the four-variable statistic
(finv, lowerp, lowern, neg)

(1.2) finvBn(q, X, Y, Z) :=
∑

w∈Bn

qfinv wX lowerpwY lowern wZneg w.

Using the usual notations for the q-ascending factorial

(a; q)n :=
{

1, if n = 0;
(1 − a)(1 − aq) . . . (1 − aqn−1), if n ≥ 1;(1.3)

in its finite form and
(a; q)∞ := limn(a; q)n =

∏
n≥0

(1 − aqn);(1.4)

in its infinite form, we consider the products

(1.5) H∞(u) :=

(
uq
( Z + q

1 − q2
− ZY

)
; q2
)
∞(

u
(q(Z + q)

1 − q2
+ X

)
; q2
)
∞

,

in its infinite version, and

(1.6) H2s(u) :=
1 − q2

1 − q2 + uq2s+1(Z + q)

(
uq

Z + q − ZY (1 − q2)
1 − q2 + uq2s+1(Z + q)

; q2
)
s(

u
q(Z + q) + X(1 − q2)

1 − q2 + uq2s+1(Z + q)
; q2
)
s+1

,

as well as

(1.7) H2s+1(u) :=

(
uq

Z + q − ZY (1 − q2)
1 − q2 + uq2s+2(Zq + 1)

; q2
)

s+1(
u

q(Z + q) + X(1 − q2)
1 − q2 + uq2s+2(Zq + 1)

; q2
)

s+1

,

in its graded version under the form
∑
s≥0

tsHs(u).

The purpose of this paper is to prove the following two theorems and derive several
applications regarding statistical distributions over Bn.
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Theorem 1.1 (the “fmaj” approach). Let fmajBn(t, q, X, Y, Z) be the generating
polynomial for the group Bn by the five-variable statistic (fdes, fmaj, lowerp, lowern, neg)
as defined in (1.1). Then

(1.8)
∑
n≥0

(1 + t) fmajBn(t, q, X, Y, Z)
un

(t2; q2)n+1
=
∑
s≥0

tsHs(u),

where Hs(u) is the finite product introduced in (1.6) and (1.7).

Theorem 1.2 (the “finv” approach). Let finvBn(q, X, Y, Z) be the generating polyno-
mial for the group Bn by the four-variable statistic
(finv, lowerp, lowern, neg), as defined in (1.2). Then

(1.9) finvBn(q, X, Y, Z) = (X + q + · · · + qn−1 + qnZ + · · ·+ q2n−2Z + q2n−1Y Z)
· · · × (X + q + q2 + q3Z + q4Z + q5Y Z)(X + q + q2Z + q3Y Z)(X + qY Z).

The proofs of those two theorems are very different in nature. For proving Theo-
rem 1.1 we re-adapt the MacMahon Verfahren to make it work for signed permutations.
René Thom’s quotation that appears as an epigraph to this paper illustrates the essence
of the MacMahon Verfahren. The topology of the signed permutations measured by the
various statistics, “fdes”, “fmaj”, . . . must be reconstructed when the group of the
signed permutations is mapped onto a set of plain words for which the calculation of
the associated statistic is easy. There is then a combinatorial bijection between signed
permutations and plain words that describes the “flattening” (“aplatissement”) process.
This is the content of Theorem 4.1.

Another approach might have been to make use of the P -partition technique
introduced by Stanley [St72] and successfully employed by Reiner [Re93a, Re93b, Re93c,
Re95a, Re95b] in his statistical study of the hyperoctahedral group.

Theorem 1.2 is based upon another definition of the length function for Bn (see
formula (7.1)). Notice that in the two theorems we have included a variable Z, which
takes the number “neg” of negative letters into account. This allows us to re-obtain the
classical results on the symmetric group by letting Z = 0.

In the next section we show that the infinite product Hs(u) first appears as the gen-
erating function for a class of plain words by a four-variable statistic (see Theorem 2.2).
This theorem will be an essential tool in section 4 in the MacMahon Verfahren for
signed permutations to handle the five-variable polynomial fmajBn(t, q, X, Y, Z). Sec-
tion 3 contains an axiomatic definition of the Record-Signed-Euler-Mahonian Polyno-
mials Bn(t, q, X, Y, Z). They are defined, not only by (1.8) (with Bn replacing fmajBn),
but also by a recurrence relation. The proof of Theorem 1.1 using the MacMahon Ver-
fahren is found in Section 4. In Section 5 we show how to prove that the polynomials
fmajBn(t, q, X, Y, Z) satisfy the same recurrence as the polynomials Bn(t, q, X, Y, Z),
using an insertion technique. The specializations of Theorem 1.1 are numerous and
described in section 6. We end the paper with the proof of Theorem 1.2 and its special-
izations.
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2. Lower Records on Words

As mentioned in the introduction, Theorem 2.2 below, dealing with ordinary words,
appears to be a preparation lemma for Theorem 1.1, that takes the geometry of signed
permutations into account. Consider an ordinary word c = c1c2 . . . cn, whose letters
belong to the alphabet {0, 1, . . . , s}, that is, a word from the free monoid {0, 1, . . . , s}∗.
A letter ci (1 ≤ i ≤ n) is said to be an even lower record (resp. odd lower record) of c, if
ci is even (resp. odd) and if cj ≥ ci (resp. cj > ci) for all j such that 1 ≤ j ≤ i−1. Notice
the discrepancy between even and odd letters. Also, to define those even and odd lower
records for words the reading is made from left to right, while for signed permutations,
the lower records are read from right to left (see Sections 1 and 4). We could have
considered a totally ordered alphabet with two kinds of letters, but playing with the
parity of the nonnegative integers is more convenient for our applications. For instance,
the even (resp. odd) lower records of the word c = 5 44 1 5 2 10 40 3 are reproduced in
boldface (resp. in italic).

For each word c let evenlower c (resp. oddlower c) be the number of even (resp. odd)
lower records of c. Also let tot c (“tot” stands for “total”) be the sum c1 +c2 + · · ·+cn of
the letters of c and odd c be the number of its odd letters. Also denote its length by |c| and
let |c|k be the number of letters in c equal to k. Our purpose is to calculate the generating
function for {0, 1, . . . , s}∗ by the four-variable statistic (tot, evenlower, oddlower, odd).

Say that c = c1c2 . . . cn is of minimal index k (0 ≤ k ≤ s/2), if min c :=
min{c1, . . . , cn} is equal to 2k or 2k + 1. Let cj be the leftmost letter of c equal to
2k or 2k + 1. Then, c admits a unique factorization

(2.1) c = c′cjc
′′,

having the following properties:
c′ ∈ {2k + 2, 2k + 3, . . . , s}∗, cj = 2k or 2k + 1, c′′ ∈ {2k, 2k + 1, . . . , s}∗.

With the forementioned example we have the factorization c′ = 5 4 4, cj = 1,
c′′ = 5 2 1 0 4 0 3. In this example notice that cj = 1 6= min c = 0.

Lemma 2.1. The numbers of even and odd lower records of a word c can be calculated
by induction as follows: evenlower c = oddlower c := 0 if c is empty; otherwise, let
c = c′cjc

′′ be its minimal index factorization (defined in (2.1)). Then

evenlower c = evenlower c′ + χ(cj = 2k) + |c′′|2k;(2.2)
oddlower c = oddlower c′ + χ(cj = 2k + 1).(2.3)

Proof. Keep the same notations as in (2.1). If cj = 2k, then cj is an even lower
record, as well as all the letters equal to 2k to the right of cj . On the other hand, there
is no even lower record equal to 2k to the left of cj , so that (2.2) holds. If cj = 2k + 1,
then cj is an odd lower record and there is no odd lower record equal to 2k + 1 to the
right of cj . Moreover, there is no odd lower record to the left of cj equal to cj . Again
(2.3) holds.
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It is straightforward to verify that the fraction Hs(u) displayed in (1.6) and (1.7)
can also be expressed as

H2s(u) =
∏

0≤k≤s

1 − u([q2k+1(1 − Y )Z + q2k+2 + · · ·+ q2s−2 + q2s−1Z + q2s])
1 − u(q2kX + [q2k+1Z + q2k+2 + · · ·+ q2s−2 + q2s−1Z + q2s])

(2.4)

H2s+1(u) =
∏

0≤k≤s

1 − u(q2k+1(1 − Y )Z + [q2k+2 + · · ·+ q2s + q2s+1Z])
1 − u(q2kX + q2k+1Z + [q2k+2 + · · ·+ q2s + q2s+1Z])

,(2.5)

where the expression between brackets vanishes whenever k = s, and that the Hs(u)’s
satisfy the recurrence formula

(2.6) H0(u) =
1

1 − uX
; H1(u) =

1 − uqZ(1 − Y )
1 − u(X + qZ)

; and for s ≥ 1

H2s(u) =
1 − u(q(1 − Y )Z + q2 + q3Z + · · ·+ q2s−1Z + q2s)
1 − u(X + qZ + q2 + q3Z + · · · + q2s−1Z + q2s)

H2s−2(uq2);

H2s+1(u)=
1 − u(q(1 − Y )Z + q2 + q3Z+· · ·+q2s + q2s+1Z)
1 − u(X + qZ + q2 + q3Z + · · ·+ q2s + q2s+1Z)

H2s−1(uq2).

Theorem 2.2. The generating function for the free monoid {0, 1, . . . , s}∗ by the four-
variable statistic (tot, evenlower, oddlower, odd) is equal to Hs(u), that is to say,

(2.7)
∑

c∈{0,1,...,s}∗
u|c|qtot cXevenlower cY oddlower cZodd c = Hs(u).

Proof. Let H∗
s (u) denote the left-hand side of (2.7). Then,

H∗
0 (u) =

∑
c∈{0}∗

u|c|q0X |c|Y 0Z0 =
1

1 − uX
.

When s = 1 the minimal index factorization of each nonempty word c reads c = cjc
′′,

so that

H∗
1 (u) = 1 + u(X + qY Z)

∑
c′′∈{0,1}∗

u|c′′|q|c
′′|1X |c′′|0Y 0Z|c′′|1

= 1 + u(X + qY Z)
1

1 − u(X + qZ)
=

1 − uqZ(1 − Y )
1 − u(X + qZ)

.

Consequently, H∗
s (u) = Hs(u) for s = 0, 1. For s ≥ 2 we write

H∗
s (u) =

∑
0≤k≤s/2

H∗
s,k(u)

with
H∗

s,k(u) :=
∑

c∈{0,1,...,s}∗
mini ci=2k or 2k+1

u|c|qtot cXevenlower cY oddlower cZodd c.
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From Lemma 2.1 it follows that

H∗
s,0(u) =

∑
c′∈{2,...,s}∗

u|c′|qtot c′Xevenlower c′Y oddlower c′Zodd c′ × u(X + qY Z)

×
∑

c′′∈{0,...,s}∗
u|c′′|qtot c′′X |c′′|0Zodd c′′

=
∑

c′∈{0,...,s−2}∗
(uq2)|c

′|qtot c′Xevenlower c′Y oddlower c′Zodd c′× u(X + qY Z)

×
∑

c′′∈{0,...,s}∗
(uX)|c

′′|0(uqZ)|c
′′|1(uq2)|c

′′|2(uq3Z)|c
′′|3(uq4)|c

′′|4 · · ·

= H∗
s−2(uq2)u(X + qY Z)

1
1 − u(X + qZ + q2 + q3Z + q4 + · · · ) ,

the polynomial in the denominator ending with · · · + qs−1Z + qs or · · · + qs−1 + qsZ
depending on whether s is even or odd.

On the other hand,∑
1≤k≤s/2

H∗
s,k(u) =

∑
c∈{2,3,...,s}∗

u|c|qtot cXevenlower cY oddlower cZodd c

=
∑

c∈{0,1,...,s−2}∗
(uq2)|c|qtot cXevenlower cY oddlower cZodd c

= H∗
s−2(uq2).

Hence,
H∗

s (u) =
(
1 +

u(X + qY Z)
1 − u(X + qZ + q2 + q3Z + q4 + · · · )

)
H∗

s−2(uq2)

=
1 − u(qZ(1 − Y ) + q2 + q3Z + q4 + · · · )
1 − u(X + qZ + q2 + q3Z + q4 + · · · ) H∗

s−2(uq2).

As the fractions H∗
s (u) satisfy the same induction relation as the Hs(u)’s, we conclude

that H∗
s (u) = Hs(u) for all s.

When s tends to infinity, then Hs(u) tends to H∞(u), whose expression is shown
in (1.5). In particular, we have the identity:

(2.8)
∑

c∈{0,1,2,...}∗
u|c|qtot cXevenlower cY oddlower cZodd c = H∞(u).

3. The Record-Signed-Euler-Mahonian Polynomials

Our next step is to form the series
∑

s≥0 tsHs(u) and show that the series can be
expanded as a series in the variable u in the form

(3.1)
∑
n≥0

Cn(t, q, X, Y, Z)
un

(t2; q2)n+1
=
∑
s≥0

tsHs(u),

where Bn(t, q, X, Y, Z) := Cn(t, q, X, Y, Z)/(1 + t) is a polynomial with nonnegative
integral coefficients such that Bn(1, 1, 1, 1, 1) = 2nn! .
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Definition. A sequence
(
Bn(t, q, X, Y, Z) =

∑
k≥0

tkBn,k(q, X, Y, Z)
)

(n ≥ 0) of

polynomials in five variables t, q, X , Y and Z is said to be record-signed-Euler-Mahonian,
if one of the following equivalent three conditions holds:

(1) The (t2, q2)-factorial generating function for the polynomials

(3.2) Cn(t, q, X, Y, Z) := (1 + t)Bn(t, q, X, Y, Z)

is given by identity (3.1).

(2) For n ≥ 2 the recurrence relation holds:

(3.3) (1 − q2)Bn(t, q, X, Y, Z)

=
(
X(1 − q2) + (Zq + q2)(1 − t2q2n−2) + t2q2n−1(1 − q2)ZY

)
Bn−1(t, q, X, Y, Z)

− 1
2
(1 − t)q(1 + q)(1 + tq)(1 + Z)Bn−1(tq, q, X, Y, Z)

+
1
2
(1 − t)q(1 − q)(1 − tq)(1 − Z)Bn−1(−tq, q, X, Y, Z),

while B0(t, q, X, Y, Z) = 1, B1(t, q, X, Y, Z) = X + tqY Z.

(3) The recurrence relation holds for the coefficients Bn,k(q, X, Y, Z):

(3.4) B0,0(q, X, Y, Z) = 1, B0,k(q, X, Y, Z) = 0 for all k 6= 0;
B1,0(q, X, Y, Z) = X, B1,1(q, X, Y, Z) = qY Z,

B1,k(q, X, Y, Z) = 0 for all k 6= 0, 1;
Bn,2k(q, X, Y, Z) = (X + qZ + q2 + q3Z + · · ·+ q2k)Bn−1,2k(q, X, Y, Z)

+ q2kBn−1,2k−1(q, X, Y, Z)
+ (q2k + q2k+1Z + · · ·+ q2n−1Y Z)Bn−1,2k−2(q, X, Y, Z),

Bn,2k+1(q, X, Y, Z)=(X + qZ + q2 + · · ·+ q2k + q2k+1Z)Bn−1,2k+1(q, X, Y, Z)
+ q2k+1ZBn−1,2k(q, X, Y, Z)
+ (q2k+1Z + q2k+2 + · · ·+ q2n−2 + q2n−1Y Z)Bn−1,2k−1(q, X, Y, Z),

for n ≥ 2 and 0 ≤ 2k + 1 ≤ 2n − 1.

Theorem 3.1. The conditions (1), (2) and (3) in the previous definition are equivalent.

Proof. The equivalence (2) ⇔ (3) requires a lengthy but elementary algebraic
argument and will be omitted. The other equivalence (1) ⇔ (2) involves a more elaborate
q-series technique, which is now developed. Let Gs(u) := Hs(u2); then

G0(u) =
1

1 − u2X
; G1(u) =

1 − u2qZ(1 − Y )
1 − u2(X + qZ)

;
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and by (2.6)

G2s(u) =
1 − u2(qZ(1 − Y ) + q2 + q3Z + · · ·+ q2s−1Z + q2s)
1 − u2(X + qZ + q2 + q3Z + · · · + q2s−1Z + q2s)

G2s−2(uq),

G2s+1(u) =
1 − u2(qZ(1 − Y )+q2+q3Z+· · ·+q2s+q2s+1Z)
1 − u2(X + qZ + q2 + q3Z + · · ·+ q2s + q2s+1Z)

G2s−1(uq),

for s ≥ 1. Working with the series
∑
s≥0

tsGs(u) we obtain

∑
s≥0

t2sG2s(u)
(
1 − u2

(
X +

Zq + q2

1 − q2
− q2s

1 − q2
(Zq + q2)

))
+
∑
s≥0

t2s+1G2s+1(u)
(
1 − u2

(
X +

Zq + q2

1 − q2
− q2s+2

1 − q2
(Zq + 1)

))

= 1 + t(1 − u2qZ(1 − Y ))

+
∑
s≥1

t2sG2s−2(qu)
(
1 − u2

(−qZY +
Zq + q2

1 − q2
− q2s

1 − q2
(Zq + q2)

))

+
∑
s≥1

t2s+1G2s−1(qu)
(
1 − u2

(−qZY +
Zq + q2

1 − q2
− q2s+2

1 − q2
(Zq + 1)

))
,

which may be rewritten as∑
s≥0

tsGs(u)
(
1 − u2

(
X +

Zq + q2

1 − q2

))
= 1 + t(1 − u2qZ(1 − Y ))

+
∑
s≥0

ts+2Gs(qu)
(
1 − u2

(−qZY +
Zq + q2

1 − q2

))

−
∑
s≥0

(tq)2s
(
G2s(u) − t2q2G2s(qu)

)
u2 Zq + q2

1 − q2

−
∑
s≥0

(tq)2s+1
(
G2s+1(u) − t2q2G2s+1(qu)

)
u2q

Zq + 1
1 − q2

.

Now let
∑

n≥0bn(t)u2n :=
∑

s≥0t
sGs(u). This gives:∑

n≥0

bn(t)u2n
(
1 − u2

(
X +

Zq + q2

1 − q2

))
= 1 + t(1 − u2qZ(1 − Y ))

+
∑
n≥0

bn(t)t2q2nu2n
(
1 − u2

(−qZY +
Zq + q2

1 − q2

))

−
∑
n≥0

bn(tq) + bn(−tq)
2

(1 − t2q2n+2)u2n+2 Zq + q2

1 − q2

−
∑
n≥0

bn(tq) − bn(−tq)
2

(1 − t2q2n+2)u2n+2q
Zq + 1
1 − q2

.
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We then have b0(t) =
1

1 − t
, b1(t) =

X + tqY Z

(1 − t)(1 − t2q2)
and for n ≥ 2

bn(t)(1 − t2q2n) =
(
X +

Zq + q2

1 − q2
+ t2q2n−1ZY − t2q2n−2 Zq + q2

1 − q2

)
bn−1(t)

− bn−1(tq)
2(1 − q2)

(1 − t2q2n)q(1 + q)(1 + Z) +
bn−1(−tq)
2(1 − q2)

(1 − t2q2n)q(1 − q)(1 − Z).

Because of the presence of the factors of the form (1 − t2q2n) we are led to introduce
the coefficients Cn(t, q, X, Y, Z) := bn(t)(t2; q2)n+1 (n ≥ 0). By multiplying the latter
equation by (t2; q2)n we get for n ≥ 2

(3.5) (1 − q2)Cn(t, q, X, Y, Z)

=
(
X(1 − q2) + (Zq + q2)(1 − t2q2n−2) + t2q2n−1(1 − q2)ZY

)
Cn−1(t, q, X, Y, Z)

− 1
2
(1 − t2)q(1 + q)(1 + Z)Cn−1(tq, q, X, Y, Z)

+
1
2
(1 − t2)q(1 − q)(1 − Z)Cn−1(−tq, q, X, Y, Z),

while C0(t, q, X, Y, Z) = 1 + t, C1(t, q, X, Y, Z) = (1 + t)(X + tqY Z).
Finally, with Cn(t, q, X, Y, Z) := (1 + t)Bn(t, q, X, Y, Z) (n ≥ 0) we get the recur-

rence formula (3.3), knowing that the factorial generating function for the polynomials
Cn(t, q, X, Y, Z) = (1+ t)Bn(t, q, X, Y, Z) is given by (3.1). As all the steps are perfectly
reversible, the equivalence holds.

4. The MacMahon Verfahren

Now having three equivalent definitions for the record-signed-Euler-Mahonian
polynomial Bn(t, q, X, Y, Z), our next task is to prove the identity

(4.1) fmajBn(t, q, X, Y, Z) = Bn(t, q, X, Y, Z).

Let N
n (resp. NIW(n)) be the set of all the words (resp. all the nonincreasing

words) of length n, whose letters are nonnegative integers. As we have seen in section 2
(Theorem 2.2), we know how to calculate the generating function for words by a certain
four-variable statistic. The next step is to map each pair (b, w) ∈ NIW(n) × Bn onto
c ∈ N

n in such a way that the geometry on w can be derived from the latter statistic
on c.

For the construction we proceed as follows. Write the signed permutation w as the
linear word w = x1x2 . . . xn, where xk is the image of the integer k (1 ≤ k ≤ n). For
each k = 1, 2, . . . , n let zk be the number of descents in the right factor xkxk+1 . . . xn

and εk be equal to 0 or 1 depending on whether xk is positive or negative. Next, form
the words z = z1z2 . . . zn and ε = ε1ε2 . . . εn.
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Now, take a nonincreasing word b = b1b2 . . . bn and define ak := bk + zk,
c′k := 2ak + εk (1 ≤ k ≤ n), then a := a1a2 . . . an and c′ := c′1c

′
2 . . . c′n. Finally, form the

two-matrix
(

c′1 c′2 . . . c′n
|x1| |x2| . . . |xn|

)
. Its bottom row is a permutation of 1 2 . . . n; rearrange

the columns in such a way that the bottom row is precisely 1 2 . . . n. Then the word
c = c1c2 . . . cn which corresponds to the pair (b, w) is defined to be the top row in the
resulting matrix.

Example. Start with the pair (b, w) below and calculate all the necessary ingredi-
ents:

b = 1 1 1 0 0 0 0
w = 6 5 4 1 7 3 2
z = 2 1 1 1 1 0 0
ε = 0 1 1 0 0 1 1
a = 3 2 2 1 1 0 0
c′ = 6 5 5 2 2 1 1
c = 2 1 1 5 5 6 2

Theorem 4.1. For each nonnegative integer r the above mapping is a bijection of
the set of all the pairs (b, w) = (b1b2 . . . bn, x1x2 . . . xn) ∈ NIW(n) × Bn such that
2b1 + fdes w = r onto the set of the words c = c1c2 . . . cn ∈ N

n such that max c = r.
Moreover,

(4.2) 2b1 + fdes w = max c; 2 tot b + fmajw = tot c;
(4.3) lowerpw = evenlower c; lowern w = oddlower c; neg w = odd c.

Before giving the proof of Theorem 4.1 we derive its analytic consequences. First,
it is q-routine to prove the three identities, where b1 is the first letter of b,

1
(u; q)N

=
∑
n≥0

[
N + n − 1

n

]
q

un;(4.4)

[
N + n

n

]
q

=
∑

b∈NIW(N), b1≤n

qtot b;(4.5)

1
(u; q)N+1

=
∑
n≥0

un
∑

b∈NIW(N), b1≤n

qtot b.(4.6)

We then consider

1 + t

(t2; q2)n+1

fmajBn(t, q, X, Y, Z),

where
fmajBn(t, q, X, Y, Z) :=

∑
w∈Bn

tfdes wqfmaj wX lowerpwY lowern wZneg w,
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which we rewrite as

∑
r′≥0

(t2r′
+ t2r′+1)

[
n + r′

r′

]
q2

fmajBn(t, q, X, Y, Z) [by (4.4)]

=
∑
r≥0

tr
[
n + br/2c
br/2c

]
q2

fmajBn(t, q, X, Y, Z) [and by (4.5)]

=
∑
r≥0

tr
∑

b∈NIW(n), 2b1≤r

q2 tot b
∑

w∈Bn

tfdes wqfmaj wX lowerp wY lowern wZneg w

=
∑
s≥0

ts
∑

b∈NIW(n), w∈Bn

2b1+fdes w≤s

q2 tot b+fmaj wX lowerpwY lowern wZneg w.

By Theorem 4.1 the set {(b, w) : b ∈ NIW(n), w ∈ Bn, 2b1 + fdes w ≤ s} is in bijection
with the set {0, 1, . . . , s}n and (4.2) and (4.3) hold. Hence,

1 + t

(t2; q2)n+1

fmajBn(t, q, X, Y, Z) =
∑
s≥0

ts
∑

c∈{0,...,s}n

qtot cXevenlower cY oddlower cZodd c.

Now use Theorem 2.2:∑
s≥0

tsHs(u) =
∑
s≥0

ts
∑

c∈{0,1,...,s}∗
u|c|qtot cXevenlower cY oddlower cZodd c

=
∑
n≥0

un
∑
s≥0

ts
∑

c∈{0,1,...,s}n

qtot cXevenlower cY oddlower cZodd c

=
∑
n≥0

(1 + t) fmajBn(t, q, X, Y, Z)
un

(t2; q2)n+1
.

Thus, identity (4.1) is proved, as well as Theorem 1.1.
Let us now complete the proof of Theorem 4.1. First, max c = c′1 = 2a1 + ε1 =

2b1+2z1 +ε1 = 2b1+fdes w; also tot c = tot c′ = 2 tota+tot ε = 2 tot b+2 tot z+tot ε =
2 tot b + fmajw. Hence (4.2) holds.

Next, prove that (b, w) 7→ c is bijective. As both sequences b and z are nonincreasing,
a = b + z is also nonincreasing. If xk > xk+1, then zk = zk+1 + 1 and ak ≥ ak+1 + 1,
then c′k = 2ak + εk ≥ 2ak+1 + 2 + εk ≥ 2ak+1 + 2 > 2ak+1 + εk+1 = c′k+1. Thus,

(4.7) xk > xk+1 ⇒ c′k > c′k+1.

To construct the reverse bijection we proceed as follows. Start with a sequence
c = c1c2 . . . cn; form the word δ = δ1δ2 . . . δn, where δi := χ(ci even) − χ(ci odd)
(1 ≤ i ≤ n) and the two-row matrix(

c1 c2 . . . cn

1δ1 2δ2 . . . nδn

)
.
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Rearrange the columns in such a way that
(
ci

i

)
occurs to the left of

(
cj

j

)
, if either ci > cj ,

or ci = cj , i < j. The bottom of the new matrix is a signed permutation w. After those
two transformations the new matrix reads(

c′

w

)
=
(

c′1 c′2 . . . c′n
x1 x2 . . . xn

)
.

The sequences ε and z are defined as above, as well as the sequence a := (c′ − ε)/2.
As the sequence c′ is nonincreasing, the inequality c′k − εk ≥ c′k+1 − εk+1 holds if εk = 0
or if εk = εk+1 = 1. It also holds when εk = 1 and εk+1 = 0, because in such a case c′k
is odd and c′k+1 even and then c′k ≥ 1 + c′k+1. Hence, a is also nonincreasing.

Finally, define b := a − z. Because of (4.7) we have zk = zk+1 + 1 ⇒ c′k > c′k+1.
If c′k and c′k+1 are of the same parity, then c′k > c′k+1 ⇒ ak > ak+1. If c′k > c′k+1

holds and the two terms are of different parity, then c′k is even and c′k+1 odd. Hence,
ak = c′k/2 > (c′k+1 − εk+1)/2 = ak+1. Thus zk = zk+1 + 1 ⇒ ak > ak+1. As zn = 0, we
conclude by a decreasing induction that bk = ak − zk ≥ ak+1 − zk+1 = bk+1, so that b
is a nonincreasing sequence of nonnegative integers.

There remains to prove (4.3). First, the letter cj of c is odd, if and only if j occurs
with the minus sign in w, so that neg w = odd c. Next, suppose that xj is a positive
lower record of w = x1x2 . . . xn. For j < i we have xj < |xi|. Hence, the following
implications hold: |xi| < xj ⇒ i < j ⇒ c′i ≥ c′j ⇒ c|xj | ≤ c|xi| and cxi

is an even lower
record of c. If xj is a negative lower record of w, then j < i ⇒ −xj < |xi|, so that
|xi| < −xj ⇒ i < j ⇒ c′i > c′j ⇒ c|xj | < c|xi| and c|xi| is an odd lower record of c.

5. The Insertion Method

Another method for proving identity (4.1) is to make use of the insertion method.
Each signed permutation w′ = x′

1 . . . x′
n−1 of order (n − 1) gives rise to 2n signed

permutations of order n when n or −n is inserted to the left or to the right w′, or between
two letters of w′. Assuming that w′ has a flag descent number equal to fdes w′ = k, our
duty is then to watch how the statistics “fmaj”, “lowerp”, “lowern”, “neg” are modified
after the insertion of n or −n into the possible n slots. Such a method has already
been used by Adin et al. [ABR01], Chow and Gessel [ChGe04], Haglund et al. [HLR04],
for “fmaj” only. They all have observed that for each j = 0, 1, . . . , 2n − 1 there is one
and only one signed permutation of order n derived by the insertion of n or −n whose
flag-major index is increased by j.

In our case we observe that the number of positive (resp. negative) lower records
remains alike, except when n (resp. −n) is inserted to the right of w′, where it increases
by 1. The number of negative letters increases only when −n is inserted. For controlling
“fdes” we make a distinction between the signed permutations having an even flag
descent number and those having an odd one. For the former ones the first letter
is positive. When n (resp. −n) is inserted to the left of w′, the flag descent number
increases by 2 (resp. by 1). For the latter ones the first letter is negative. When n (resp.
−n) is inserted to the left of w′, the flag descent number increases by 1 (resp. remains
invariant).
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For n ≥ 2, 0 ≤ k ≤ 2n − 1 let
fmajBn,k :=

∑
w∈Bn, fdes w=k

qfmaj wX lowerp wY lowern wZneg w,

and fmajB0,0 := 1, fmajB0,k := 0 when k 6= 0; fmajB1,0 = X , fmajB1,1 = qY Z. Making use
of the observations above we easily see that the polynomials fmajBn,k satisfy the same
recurrence relation, displayed in (3.4), as the Bn,k(q, Y, Y, Z).

Remark. How to compare the MacMahon Verfahren and the insertion method?
Recurrence relations may be difficult to be truly verified. The first procedure has the
advantage of giving both a new identity on ordinary words (Theorem 2.1) and a closed
expression for the factorial generating function for the polynomials fmajBn(t, q, X, Y, Z)
(formula (1.8)).

6. Specializations

When a variable has been deleted in the following specializations of the polynomials
Bn(t, q, X, Y, Z), this means that the variable has been given the value 1. For instance,
Bn(q, X, Y, Z) := Bn(1, q, X, Y, Z).

When s tends to infinity, then Hs(u) tends to H∞(u) given in (1.1). Hence, when
identity (3.1) is multiplied by (1 − t) and t is replaced by 1, identity (3.1) specializes
into

(6.1)
∑
n≥0

Bn(q, X, Y, Z)
un

(q2; q2)n
=H∞(u)=

(
uq
( Z + q

1 − q2
− ZY

)
; q2
)
∞(

u
(q(Z + q)

1 − q2
+ X

)
; q2
)
∞

.

Now expand H∞(u) by means of the q-binomial theorem [GaRa90, chap.1]. We get:

H∞(u) =
∑
n≥0

(q
( Z + q

1 − q2
− Y Z

)
q(Z + q)
1 − q2

+ X

; q2

)
n

(
u
(q(Z + q)

1 − q2
+ X

))n/
(q2; q2)n.

By identification

Bn(q, X, Y, Z) =

(q
( Z + q

1 − q2
− Y Z

)
q(Z + q)
1 − q2

+ X

; q2

)
n

(q(Z + q)
1 − q2

+ X
)n

,

which can also be written as
(6.2) Bn(q, X, Y, Z) = (X + qZ + q2 + q3Z + · · ·+ q2n−2 + Y Zq2n−1)

· · · × (X + qZ + q2 + q3Z + q4 + q5Y Z)(X + qZ + q2 + q3Y Z)(X + qY Z),
or, by induction,
(6.3) Bn(q, X, Y, Z) = (X + qZ + q2 + q3Z + · · ·+ q2n−2 + Y Zq2n−1)Bn−1(q, X, Y, Z)
for n ≥ 2 and B1(q, X, Y, Z) = X + qY Z.
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In particular, the polynomial fmajBn(q, X, Y ) defined in the introduction is equal
to

(6.4) Bn(q, X, Y ) = (X + q + q2 + q3 + · · ·+ q2n−2 + Y q2n−1)
· · · × (X + q + q2 + q3 + q4 + q5Y )(X + q + q2 + q3Y )(X + qY ).

Finally, when X = Y = Z := 1, identity (6.4) reads

(6.5)
∑
n≥0

(1 + t)Bn(t, q)
un

(t2; q2)n+1
=
∑
s≥0

ts
1

1 − u(1 + q + q2 + · · ·+ qs)
,

an identity derived by several authors (Adin et al. [ABR01], Chow & Gessel [ChGe04],
Haglund et al. [HLR04]) with ad hoc methods. Also notice that for X = Y = Z := 1
formula (6.2) yields Bn(q) = (q2; q2)n/(1 − q)n.

For Z = 0 we get

fmajBn(t, q, X, Y, 0) =
∑

w∈Sn

tfdes wqfmaj wX lowerpw,

since the monomials corresponding to signed permutations having negative letters
vanish. The summation is then over the ordinary permutations. Also notice that
fmajBn(t, q, X, Y, 0) = fmajBn(t, q, X, 0, 0). Moreover, for each ordinary permutation w
we have: fdes w = 2 des w and fmajw = 2 majw. When Y = Z = 0 we also have

H2+1(u) = H2s(u) =

( uq2

1 − q2 + uq2(s+1)
; q2
)

s+1(
u

X(1 − q2) + q2

1 − q2 + uq2(s+1)
; q2
)

s+1

and ∑
n≥0

(1 + t) fmajBn(t, q, X, 0, 0)
un

(t2; q2)n+1
=
∑
s≥0

(t2s + t2s+1)H2s(u).

With An(t, q, X) := fmajBn(t1/2, q1/2, X, 0, 0) =
∑

w∈Sn

tdes wqmaj wX lowerp w we obtain the
identity

(6.7)
∑
n≥0

An(t, q, X)
un

(t; q)n+1
=
∑
s≥0

ts

( uq

1 − q + uqs+1
; q
)

s+1(
u

X(1 − q) + q

1 − q + uqs+1
; q
)

s+1

,

apparently a new identity for the generating function for the symmetric groups Sn by
the three-variable statistic (des, maj, lowerp), as well as the following one obtained by
multiplying the identity by (1 − t) and letting t go to infinity:

(6.8)
∑
n≥0

An(q, X)
un

(q; q)n
=

( uq

1 − q
; q
)
∞(

uX +
uq

1 − q
; q
)
∞

.
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7. Lower Records and Flag-inversion Number

The purpose of this section is prove Theorem 1.2. We proceed as follows. For each
(ordinary) permutation σ = σ1σ2 . . . σn of order n and for each i = 1, 2, . . . , n let bi(σ)
denote the number of letters σj to the left of σi such that σj < σi. On the other hand,
for each signed permutation w = x1x2 . . . xn of order n let abs w denote the (ordinary)
permutation |x1| |x2| . . . |xn|. It is straightforward to see that another expression for the
flag-inversion number (or the length function), finv w, of w is the following

(7.1) finv w = inv abs w +
∑

1≤i≤n

(2bi(absw) + 1)χ(xi < 0).

The generating polynomial finvBn(q, X, Y ) can be derived as follows. Let Lower σ denote
the set of the (necessarily positive) records of the ordinary permutation σ. By (7.1) we
have

finvBn(q, X, Y, Z) =
∑

w∈Bn

qfinv wX lowerp wY lowern wZneg w

=
∑

σ∈Sn

∑
abs w=σ

qfinv wX lowerpwY lowern wZneg w

=
∑

σ∈Sn

qinv σ
∏

σi∈Lower σ

(X + Y Zq2bi(σ)+1)
∏

σi 6∈Lower σ

(1 + Zq2bi(σ)+1)

:=
∑

σ∈Sn

f(σ),

showing that finvBn(q, X, Y, Z) is simply a generating polynomial for the group Sn itself.
But Sn can be generated from Sn−1 by inserting the letter n into the possible n

slots of each permutation of order n− 1. Let σ′ = σ′
1σ

′
2 . . . σ′

n−1 be such a permutation.
Then

f(σ′
1σ

′
2 . . . σ′

n−2σ
′
n−1n) = f(σ′)(X + Y Zq2n−1);

f(σ′
1σ

′
2 . . . σ′

n−2nσ′
n−1) = f(σ′)q(1 + Zq2n−3);
· · · · · ·

f(σ′
1nσ′

2 . . . σ′
n−2σ

′
n−1) = f(σ′)qn−2(1 + Zq3);

f(nσ′
1σ

′
2 . . . σ′

n−2σ
′
n−1) = f(σ′)qn−1(1 + Zq).

Hence, finvBn(q, X, Y, Z) = finvBn−1(q, X, Y, Z)(X+q+ · · ·+qn−1 +qnZ + · · ·+q2n−2Z +
q2n−1Y Z) (n ≥ 2). As finvB1(q, X, Y, Z) = X + qY Z, we get the expression displayed in
(1.9).

Comparing (6.2) with (1.9) we see that the two polynomials finvBn(q, Z) and
Bn(q, Z) are different as soon as n ≥ 2, while finvBn(q, X, Y ) = Bn(q, X, Y ) for all n.
This means that any bijection Ψ of the group Bn onto itself having the property that

fmajw = finv Ψ(w)

does not leave the number of negative letters “neg” invariant. It was, in particular, the
case for the bijection constructed in our previous paper [FoHa05].
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Remark 1. Instead of considering lower records from right to left we can introduce
lower records from left to right. Let lowerp′ w and lowern′ w denote the numbers of such
records, positive and negative, respectively and introduce

finvBn(q, X, Y, X ′, Y ′):=
∑

w∈Bn

qfinv wX lowerp wY lowern wX ′ lowerp′ wY ′ lowern′ w.

Using the method developed in the proof of the previous theorem we can calculate this
polynomial in the form

finvBn(q, X, Y, X ′, Y ′)
= (X + q + · · · + qn−2 + qn−1X ′ + qnY ′ + qn+1 + · · · + q2n−2 + q2n−1Y )

· · · × (X + q + q2X ′ + q3Y ′ + q4 + q5Y )(X + qX ′ + q2Y ′ + q3Y )(XX ′ + qY Y ′).

Remark 2. The same method may be used for ordinary permutations. For each
permutation σ let upper σ denote the number of its upper records from right to left and
define:

invAn(q, X, V ) :=
∑

σ∈Sn

qinv σX lowerpσV upper σ.

Then
invAn(q, X, V ) = XV (X + qV )(X + q + q2V ) · · · (X + q + q2 + · · ·+ qn−1V ),

an identity which can be put into the form

(7.2)
∑
n≥0

invAn(q, X, V )
un

(q; q)n
= 1 − XV

X + V − 1
+

XV

X + V − 1

( u

1 − q
− ux; q

)
∞(

uX +
uq

1 − q
; q
)
∞

,

which specializes into

(7.3)
∑
n≥0

invAn(q, X)
un

(q; q)n
=

( uq

1 − q
; q
)
∞(

uX +
uq

1 − q
; q
)
∞

;

(7.4)
∑
n≥0

invAn(q, V )
un

(q; q)n
=

( u

1 − q
− uV ; q

)
∞( u

1 − q
; q
)
∞

.

Comparing (7.3) with (6.8) we then see that An(q, X) = invAn(q, X). In other words, the
generating polynomial for Sn by (maj, lowerp) is the same as the generating polynomial
by (inv, lowerp). A combinatorial proof of this result is due to Björner and Wachs
[BjW88], who have made use of the transformation constructed in [Fo68]. Finally, the
expression of invAn(q, X, V ) for q = 1 was derived by David and Barton ([DaBa62],
chap. 10).
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