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Abstract. By using cutting strips and transformations on outside decompositions of a
skew diagram, we show that the Giambelli-type matrices for a given skew Schur func-
tion are stably equivalent to each other over symmetric functions. As a consequence, the
Jacobi-Trudi matrix and the transpose of the dual Jacobi-Trudi matrix are stably equiva-
lent over symmetric functions. This leads to an affirmative answer to a question proposed
by Kuperberg.
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1. Introduction

In [3] Kuperberg introduced the notion of stable equivalence of matrices over a ring, under
which the cokernel of a Kasteleyn or Kasteleyn-Percus matrix is invariant. Let R be a
commutative ring with unit. Let M be an n × k matrix over R, and let MT denote the
transpose of M . Recall that any matrix M ′ is called a stably equivalent form of M if M ′

can be obtained from M under the following operations: general row operations,

M � AM

where A is an n × n invertible matrix over R; general column operations,

M � MB

where B is a k × k invertible matrix over R; and stabilization

M �
(

1 0
0 M

)

and its inverse.

This paper is motivated by Kuperberg’s problem [3, Question 15] on the stable equiva-
lence property between the Jacobi-Trudi matrix and the transpose of the dual Jacobi-Trudi
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matrix of skew Schur functions over the ring Λ of symmetric functions. We assume that
the reader is familiar with the notation and terminology of symmetric functions in [5].
Given a partition λ, let `(λ) denote the length of λ. The Jacobi-Trudi matrix for the skew
Schur function sλ/µ is given by

Jλ/µ =
(
hλi−µj−i+j

)`(λ)

i,j=1
, (1.1)

where hk denotes the k-th complete symmetric function, h0 = 1 and hk = 0 for k < 0.
The dual Jacobi-Trudi matrix for sλ/µ is given by

Dλ/µ =
(
eλ′

i−µ′
j−i+j

)`(λ′)

i,j=1
, (1.2)

where λ′ is the partition conjugate to λ, ek denotes the k-th elementary symmetric func-
tion, e0 = 1 and ek = 0 for k < 0.

Theorem 14 of Kuperberg [3] states that the Jacobi-Trudi matrix and the dual Jacobi-
Trudi matrix are stably equivalent over the polynomial ring. He asked whether they
are stably equivalent over the ring of symmetric functions. But we note the the proof
of [3, Thm. 14] actually shows that the Jacobi-Trudi matrix is stably equivalent to
the transpose of the dual Jacobi-Trudi matrix. Consequently, Kuperberg’s problem [3,
Question 15] should be stated as follows:

Kuperberg’s Question: Are Jλ/µ and DT
λ/µ stably equivalent over the ring of symmetric

functions?

In this paper, we will provide an affirmative answer to the above question. This paper
is organized as follows. First we review some concepts of outside decompositions for a
given skew diagram. Utilizing the cutting strips for a given edgewise connected skew shape
as introduced by Chen, Yan and Yang [1], we demonstrate how a twist transformation
changes the set of contents of the initial boxes of border strips in an outside decomposition,
and how it changes the set of the contents of the terminal boxes. In Section 3, we
construct the canonical form of the Giambelli-type matrix of the skew Schur function
assuming that the outside decomposition is fixed. Using this canonical form we establish
the stable equivalence property of the Giambelli-type matrix for the edgewise connected
skew diagram. In Section 4, we show that for a general skew diagram the Jacobi-Trudi
matrix and the transpose of its dual form are stably equivalent over the ring of symmetric
functions.

2. Twist transformations

Let λ be a partition of n with k parts, i.e., λ = (λ1, λ2, . . . , λk) where λ1 ≥ λ2 ≥ . . . ≥
λk > 0 and λ1 + λ2 + . . . + λk = n. We represent λ by its Young diagram: an array of
boxes justified from the top and left corner with k rows and λi boxes in row i. A box
(i, j) in the diagram is the box in row i from the top and column j from the left. The
content of (i, j), denoted τ((i, j)), is given by j − i. Given two partitions λ and µ, we say
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that µ ⊆ λ if µi ≤ λi for all i. If µ ⊆ λ, we define a skew partition λ/µ, whose Young
diagram is obtained from the Young diagram of λ by peeling off the Young diagram of µ
from the upper left corner. The conjugate of a skew partition λ/µ, which we denote by
λ′/µ′, is defined to be the transpose of the skew diagram λ/µ.

A skew diagram λ/µ is connected if it can be regarded as a union of an edgewise
connected set of boxes, where two boxes are said to be edgewise connected if they share a
common edge. A border strip is a connected skew diagram with no 2 × 2 block of boxes.
If no two boxes lie in the same row, we call such a border strip a vertical border strip. If
no two boxes lie in the same column, we call such a border strip a horizontal border strip.
An outside decomposition of λ/µ is a partition of the boxes of λ/µ into pairwise disjoint
border strips such that every border strip in the decomposition has a starting box on the
left or bottom perimeter of the diagram and an ending box on the right or top perimeter
of the diagram, see Figure 2.1 (d). This concept was used by Hamel and Goulden [2] to
give a lattice path proof for the Giambelli-type determinant formulas for the skew Schur
function.

Recall that a diagonal with content c of λ/µ is the set of all the boxes in λ/µ having
content c. Starting from the lower left corner of the skew diagram λ/µ, we use consecutive
integers 1, 2, . . . , d to number these diagonals. Chen, Yan and Yang [1] obtained the
following characterization of outside decompositions of a skew shape.

Theorem 2.1 ([1, Theorem 2.2]) Suppose that λ/µ is an edgewise connected skew par-
tition with d non-empty diagonals. Then there is a one-to-one correspondence between the
outside decompositions of λ/µ and the set of border strips with d boxes.

For each outside decomposition Π, the corresponding border strip T is called the
cutting strip of Π in [1], which is given by the rule: for i = 1, 2, . . . , d − 1, the relative
position between the i-th box and the (i + 1)-st box in T coincides with the relative
position between the two boxes in the same border strip of Π, one of which is on the i-th
diagonal and the other on the (i + 1)-st diagonal, see Figure 2.1.

Notice that the relative position between the i-th box and the (i + 1)-st box of the
border strip imposes an up or right direction to the i-th box according to whether the
(i + 1)-st box lies above or to the right of the i-th box.

From the cutting strip characterization of outside decompositions, one can obtain any
outside decomposition from another by a sequence of basic transformations of changing
the directions of the boxes on a diagonal, which corresponds to the operation of chang-
ing the direction of a box in the cutting strip. This transformation is called the twist
transformation on border strips.

Let λ/µ be an edgewise connected skew shape. Let L be the diagonal of λ/µ consisting
of the boxes with content i. Throughout this paper, we will read diagonals from the top
left corner to the bottom right corner. Note that L must be one of the four possible
diagonal types classified by whether the first diagonal box has a box immediately above
it, and whether the last diagonal box has a box immediately to its right. These four types
are depicted by Figure 2.2.

the electronic journal of combinatorics 11(2) (2005), #R23 3



(c) (d)

(a) (b)

r

r

HHHj

��
�*

⇓

r

r

r

r

r

r

r

r

Figure 2.1 The cutting strip of an outside decomposition

Given an outside decomposition Π = (θ1, θ2, . . . , θm) of λ/µ and a strip θ in Π, we
denote the content of the initial box of θ and the content of the terminal box of θ respec-
tively by p(θ) and q(θ). Let φ be the cutting strip of Π. It is known [1] that θ can be
regarded as the segment of φ with the initial content p(θ) and the terminal content q(θ),
denoted φ[p(θ), q(θ)].

Given two skew diagrams I and J , let I I J be the diagram obtained by gluing the
lower left-hand corner box of diagram J to the right of the upper right-hand corner box
of diagram I, and let I ↑ J be the diagram obtained by gluing the lower left-hand corner
box of diagram J to the top of the upper right-hand corner box of diagram I. Suppose
that the strip θ has a box in diagonal L. Then θ can be written as φ[p(θ), i] I φ[i+1, q(θ)]
if L has the right direction, and θ can be written as φ[p(θ), i] ↑ φ[i + 1, q(θ)] if L has the
up direction.

Let ωi denote the twist transformation acting on an outside decomposition Π by chang-
ing the direction of the diagonal L. Let

PΠ = {p(θ1), p(θ2), . . . , p(θm)}, (2.3)

QΠ = {q(θ1), q(θ2), . . . , q(θm)}. (2.4)

The following theorem describes the actions of ωi on PΠ and QΠ.

Theorem 2.2 Given an outside decomposition Π, let Π′ be the outside decomposition
obtained from Π by applying the twist transformation ωi. Then we have

(a) i 6∈ QΠ, i + 1 6∈ PΠ, PΠ′ = PΠ ∪ {i + 1} and QΠ′ = QΠ ∪ {i}, or

(b) i ∈ QΠ, i + 1 ∈ PΠ, PΠ′ = PΠ \ {i + 1} and QΠ′ = QΠ \ {i}, or
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Figure 2.2 Four possible types of diagonals of λ/µ

(c) i ∈ QΠ, i + 1 6∈ PΠ, PΠ′ = PΠ and QΠ′ = QΠ, or

(d) i 6∈ QΠ, i + 1 ∈ PΠ, PΠ′ = PΠ and QΠ′ = QΠ.

Proof. Suppose that L has r boxes. Since the twist transformation ωi only changes the
strips which contain a box in L, we may suppose that θit , 1 ≤ t ≤ r, is the strip in Π that
contains the t-th diagonal box in L. Without loss of generality we may assume that the
diagonal boxes have the up direction, since we can reverse the transformation process for
the case when the diagonal boxes have the right direction.

Let φ′ be the cutting strip corresponding to the outside decomposition Π′. Now we
see the changes of PΠ and QΠ under the action of the twist transformation ωi according
to the type of L:

(a) If L is of Type 1, then we have i 6∈ QΠ and i + 1 6∈ PΠ. As illustrated in Figure 2.3,
under the operation of ωi, the strip

θi1 = φ[p(θi1), q(θi1)] = φ[p(θi1), i] ↑ φ[i + 1, q(θi1)]

breaks into two strips

φ′[p(θi1), q(θi2)] = φ[p(θi1), i] I φ[i + 1, q(θi2)] and φ′[i + 1, q(θi1)].

If r > 1 then the last strip

θir = φ[p(θir), q(θir)] = φ[p(θir), i] ↑ φ[i + 1, q(θir)]
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will be cut off into φ′[p(θir), i], and the other strips

θit = φ[p(θit), q(θit)] = φ[p(θit), i] ↑ φ[i + 1, q(θit)], 2 ≤ t ≤ r − 1,

will be twisted into

φ′[p(θit), q(θit+1)] = φ[p(θit), i] I φ[i + 1, q(θit+1)].

Thus
PΠ′ = PΠ ∪ {i + 1} and QΠ′ = QΠ ∪ {i}.

6
6

6
6

i

i + 1

. . .

. . .
-

-
-

. . .
. . .

r

r

i

i + 1

L ωi(L)

Figure 2.3 ωi acts on a Type 1 diagonal L

(b) If L is of Type 2, then we have i ∈ QΠ and i+1 ∈ PΠ. Let θir+1 be the unique strip of
Π with the initial content i+1. Under the operation of ωi, the strip θi1 = φ[p(θi1), i]
becomes a part of the new strip

φ′[p(θi1), q(θi2)].

The strip θir+1 = φ[i + 1, q(θir+1)] becomes a part of the new strip

φ′[p(θir), q(θir+1)] = φ[p(θir), i] I φ[i + 1, q(θir+1)].

For 2 ≤ t ≤ r − 1, the strips

θit = φ[p(θit), q(θit)] = φ[p(θit), i] ↑ φ[i + 1, q(θit)]

will be twisted into

φ′[p(θit), q(θit+1)] = φ[p(θit), i] I φ[i + 1, q(θit+1)].

Thus
PΠ′ = PΠ \ {i + 1} and QΠ′ = QΠ \ {i}.
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(c) If L is of Type 3, then we have i ∈ QΠ and i + 1 6∈ PΠ. Under the operation of ωi,
the first strip θi1 = φ[p(θi1), i] becomes

φ′[p(θi1), q(θi2)] = φ[p(θi1), i] I φ[i + 1, q(θi2)].

If r > 1, the last strip

θir = φ[p(θir), q(θir)] = φ[p(θir), i] ↑ φ[i + 1, q(θir)]

will be cut off into φ′[p(θir), i], and the other strips

θit = φ[p(θit), q(θit)] = φ[p(θit), i] ↑ φ[i + 1, q(θit)],

will be twisted into

φ′[p(θit), q(θit+1)] = φ[p(θit), i] I φ[i + 1, q(θit+1)], 2 ≤ t ≤ r − 1.

Thus
PΠ′ = PΠ and QΠ′ = QΠ.

(d) If L is of Type 4, then we have i 6∈ QΠ and i + 1 ∈ PΠ. Let θir+1 be the unique strip
of Π with the initial content i + 1. Under the operation ωi, the first strip

θi1 = φ[p(θi1), q(θi1)] = φ[p(θi1), i] ↑ φ[i + 1, q(θi1)]

breaks into two strips

φ′[p(θi1), q(θi2)] = φ[p(θi1), i] I φ[i + 1, q(θi2)] and φ′[i + 1, q(θi1)].

The strip θir+1 becomes a part of the new strip

φ′[p(θr), qθr+1] = φ[p(θr), r] I φ[i + 1, q(θir+1)].

The other strips

θit = φ[p(θit), q(θit)] = φ[p(θit), i] ↑ φ[i + 1, q(θit)], 2 ≤ t ≤ r − 1,

will be twisted into

φ′[p(θit), q(θit+1)] = φ[p(θit), i] I φ[i + 1, q(θit+1)].

Thus
PΠ′ = PΠ and QΠ′ = QΠ.
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3. Giambelli-type matrices for connected shapes

By using the lattice path methodology, Hamel and Goulden [2] give a combinatorial proof
for the Giambelli-type determinant formulas of the skew Schur function. In this section,
we prove the stable equivalence of the Giambelli-type matrices of the Schur function
indexed by an edgewise connected skew partition λ/µ.

Given an outside decomposition Π = (θ1, θ2, . . . , θm) of λ/µ and a strip θ in Π, let φ
be the cutting strip of Π. Recall that the strip θ coincides with the segment φ[p(θ), q(θ)]
of φ. Following the treatment of [1], given any two contents p, q we may define the strip
φ[p, q] as follows:

(i) If p ≤ q, then φ[p, q] is the segment of φ starting with the box having content p and
ending with the box having content q;

(ii) If p = q + 1, then φ[p, q] is the empty strip ∅.
(iii) If p > q + 1, then φ[p, q] is undefined.

Hamel and Goulden proved the following result.

Theorem 3.1 ([2, Theorem 3.1]) The skew Schur function sλ/µ can be evaluated by
the following determinant:

D(Π) = det(sφ[p(θi),q(θj)])
m
i,j=1 (3.5)

where s∅ = 1 and sundefined = 0.

Let us denote the Giambelli-type matrix in (3.5) by M(Π). Chen, Yan and Yang [1]
have obtained the canonical form of M(Π):

C(Π) = (sφ[pi,qj ])
m
i,j=1,

where the sequence (p1, p2, . . . , pm) is the decreasing reordering of (p(θ1), p(θ2), . . . ,
p(θm)) and (q1, q2, . . . , qm) is the decreasing reordering of (q(θ1), q(θ2), . . . , q(θm)). It is
clear that if s[pi,qj ] = 0 then s[pi, qj ′ ] = 0 and s[pi ′ , qj ] = 0 for j ≤ j ′ ≤ m and 1 ≤ i ′ ≤ i.

Since M(Π) and C(Π) can be obtained from each other by permutations of rows and
columns, we have

Lemma 3.2 For an outside decomposition Π of the skew diagram λ/µ, the two matrices
M(Π) and C(Π) are stably equivalent over the ring Λ of symmetric functions.

In order to show that the two Giambelli-type matrices M(Π) and M(Π′) are stably
equivalent over Λ, it suffices to prove that their canonical forms C(Π) and C(Π′) are
stably equivalent. To this end, we need the following lemma, which follows from the
combinatorial definition of Schur functions and is proved, for example, in [4, 6]:
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Lemma 3.3 Let I and J be two skew diagrams. Then

sIsJ = sIIJ + sI↑J .

We now come to the main theorem of this paper:

Theorem 3.4 Let Π and Π′ be two outside decompositions of the edgewise connected skew
diagram λ/µ. Then the Giambelli-type matrices M(Π) and M(Π′) are stably equivalent
over the ring Λ of symmetric functions.

Proof. By Lemma 3.2, we only need to prove that C(Π) and C(Π′) are stably equivalent
over Λ. Since any two outside decompositions can be obtained from each other by a
sequence of twist transformations, it suffices to prove the case when Π′ = ωi(Π) for any
twist transformation ωi. Let φ be the cutting strip of Π, and let φ′ be the cutting strip
of Π′. We will only give the arguments for the case that the box of content i in φ has
the up direction. The case that the box of content i in the cutting strip φ has the right
direction can be dealt as the case that the box of content i in the cutting strip φ′ has the
up direction. As in Theorem 2.2, there are four cases:

(a) i 6∈ QΠ, i + 1 6∈ PΠ, PΠ′ = PΠ ∪ {i + 1} and QΠ′ = QΠ ∪ {i}. Suppose that k and k′

are the two indices such that

pk > i + 1 and pk+1 < i + 1; while qk′ > i and qk′+1 < i.

Then the canonical matrix C(Π) has the following form




sφ[p1,q1] · · · sφ[p1,qk′ ] 0 · · · 0
...

...
...

...
...

...
sφ[pk,q1] · · · sφ[pk,qk′ ] 0 · · · 0

sφ[pk+1,i]↑φ[i+1,q1] · · · sφ[pk+1,i]↑φ[i+1,qk′ ] sφ[pk+1,qk′+1]
· · · sφ[pk+1,qm]

...
...

...
...

...
...

sφ[pm,i]↑φ[i+1,q1] · · · sφ[pm,i]↑φ[i+1,qk′ ] sφ[pm,qk′+1]
· · · sφ[pm,qm]




,

and the canonical matrix C(Π′) has the following form




sφ[p1,q1] · · · sφ[p1,qk′ ] 0 0 · · · 0
...

...
...

...
...

...
...

sφ[pk,q1] · · · sφ[pk,qk′ ] 0 0 · · · 0
sφ[i+1,q1] · · · sφ[i+1,qk′ ] 1 0 · · · 0

sφ[pk+1,i]Iφ[i+1,q1] · · · sφ[pk+1,i]Iφ[i+1,qk′ ] sφ[pk+1,i] sφ[pk+1,qk′+1]
· · · sφ[pk+1,qm]

...
...

...
...

...
...

...
sφ[pm,i]Iφ[i+1,q1] · · · sφ[pm,i]Iφ[i+1,qk′ ] sφ[pm,i] sφ[pm,qk′+1]

· · · sφ[pm,qm]




.

For j : 1 ≤ j ≤ k′ subtracting the (k′ +1)-st column of C(Π′) multiplied by sφ[i+1,qj]

from the j-th column, then for j : k + 2 ≤ j ≤ m + 1, subtracting the (k + 1)-st row
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multiplied by sφ[pj−1,i] from the j-th row, we get the following matrix due to Lemma
3.3



sφ[p1,q1] · · · sφ[p1,qk′ ] 0 0 · · · 0
...

...
...

...
...

...
...

sφ[pk,q1] · · · sφ[pk,qk′ ] 0 0 · · · 0
0 · · · 0 1 0 · · · 0

−sφ[pk+1,i]↑φ[i+1,q1] · · · −sφ[pk+1,i]↑φ[i+1,qk′ ] 0 sφ[pk+1,qk′+1]
· · · sφ[pk+1,qm]

...
...

...
...

...
...

...
−sφ[pm,i]↑φ[i+1,q1] · · · −sφ[pm,i]↑φ[i+1,qk′ ] 0 sφ[pm,qk′+1]

· · · sφ[pm,qm]




.

By multiplying −1 for the last m − k rows and the last m − k′ columns, then
permuting rows and columns, and the inverse operation of stabilization, we find
that the above matrix is stably equivalent to C(Π) over the ring Λ of symmetric
functions. Thus C(Π) and C(Π′) are stably equivalent over Λ.

(b) i ∈ QΠ, i + 1 ∈ PΠ, PΠ′ = PΠ \ {i + 1} and QΠ′ = QΠ \ {i}. In this case, we only
need to reverse the process of the operations of case (a), where ωi is now regarded
as a transformation from the right direction to the up direction. Notice that each
inverse operation is still over the ring Λ of symmetric functions. Thus C(Π) and
C(Π′) are stably equivalent over Λ.

(c) i ∈ QΠ, i + 1 6∈ PΠ, PΠ′ = PΠ and QΠ′ = QΠ. Suppose that k and k′ are the two
indices such that

pk > i + 1 and pk+1 < i + 1; while qk′ = i.

Then the canonical matrix C(Π) has the following form



sφ[p1,q1] · · · sφ[p1,qk′−1]
0 0 · · · 0

...
...

...
...

...
...

...
sφ[pk,q1] · · · sφ[pk,qk′−1]

0 0 · · · 0

sφ[pk+1,i]↑φ[i+1,q1] · · · sφ[pk+1,i]↑φ[i+1,qk′−1]
sφ[pk+1,i] sφ[pk+1,qk′+1] · · · sφ[pk+1,qm]

...
...

...
...

...
...

...
sφ[pm,i]↑φ[i+1,q1] · · · sφ[pm,i]↑φ[i+1,qk′−1] sφ[pm,i] sφ[pm,qk′+1]

· · · sφ[pm,qm]




,

and the canonical matrix C(Π′) has the following form



sφ[p1,q1] · · · sφ[p1,qk′−1]
0 0 · · · 0

...
...

...
...

...
...

...
sφ[pk,q1] · · · sφ[pk,qk′−1] 0 0 · · · 0

sφ[pk+1,i]Iφ[i+1,q1] · · · sφ[pk+1,i]Iφ[i+1,qk′−1]
sφ[pk+1,i] sφ[pk+1,qk′+1]

· · · sφ[pk+1,qm]

...
...

...
...

...
...

...
sφ[pm,i]Iφ[i+1,q1] · · · sφ[pm,i]Iφ[i+1,qk′−1]

sφ[pm,i] sφ[pm,qk′+1] · · · sφ[pm,qm]




.
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For j : 1 ≤ j ≤ k′ − 1 subtracting the k′-th column of C(Π′) multiplied by sφ[i+1,qj]

from the j-th column, and then multiplying −1 for the last m− k rows and the last
m− k′ + 1 columns, we obtain the matrix C(Π). This implies that C(Π) and C(Π′)
are stably equivalent over Λ.

(d) i 6∈ QΠ, i + 1 ∈ PΠ, PΠ′ = PΠ and QΠ′ = QΠ. We omit the proof here since it is
similar to Case (c).

4. Jacobi-Trudi matrices

In this section we will prove that the Jabobi-Trudi matrix and the transpose of the
dual Jacobi-Trudi matrix, for a general skew partition λ/µ, are stably equivalent over
the ring Λ of symmetric functions. Theorem 3.4 states that this is true when λ/µ is
edgewise connected, where we do not allow the existence of empty strips in the outside
decomposition Π. The Jacobi-Trudi matrix Jλ/µ corresponds to the Giambelli-type matrix
M(Π) when the cutting strip φ of Π is a horizontal border strip, and the dual Jacobi-Trudi
matrix Dλ/µ corresponds to the transpose of the matrix M(Π) when φ is a vertical border
strip.

For a general skew partition λ/µ, we need to be more careful when dealing with the
empty strip. Let cmin = −λ′

1 +1 and cmax = λ1−1. Let φh (or φe) be the horizontal (resp.
vertical) border strip starting with the box having content cmin and ending with the box
having content cmax. Let Πh = (θ1, · · · , θ`(λ)) be the horizontal outside decomposition of
λ/µ, where θi is a horizontal strip of row i from the (µi + 1)-st box to the λi-th box.
When λi = µi, we take θi to be the empty strip. Clearly, each θi corresponds to a substrip
φh[µi − i + 1, λi − i] of φh. Now we see that the Jacobi-Trudi matrix Jλ/µ coincides
with the transpose of the Giambelli-type matrix M(Πh) defined in (3.5). Similarly, let
Πe = (θ′1, · · · , θ′λ1

) be the vertical outside decomposition of λ/µ, where θ′i is a vertical
strip of column i from the λ′

i-th box to the (µ′
i + 1)-st box. When λ′

i = µ′
i, we take θ′i

as the empty strip. Clearly, each θ′i corresponds to a substrip φe[−λ′
i + i,−µ′

i + i − 1] of
φe. Then the dual Jacobi-Trudi matrix Dλ/µ coincides, under permutation of rows and
columns, with the Giambelli-type matrix M(Πe). See the first and last matrices of the
appendix for an example. The following lemma is straightforward.

Lemma 4.1 Let λ/µ be a partition with λ′
1 = µ′

1. Let ρ/ν be the skew partition obtained
by removing the first column of the skew diagram λ/µ. Then the Jacobi-Trudi matrices
of λ/µ and ρ/ν are stably equivalent over Λ, and so are the dual Jacobi-Trudi matrices.

Therefore, we may assume that λ′
1 6= µ′

1. Let Π be an outside decomposition of λ/µ,
and let φ be the cutting strip of Π. For i : cmin ≤ i ≤ cmax, let ωi denote the twist
transformation at the box of content i from the right direction to the up direction. Now
we define the outside decomposition ωi(Π) by the following rule:
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(a’) If λ/µ has both a box with content i and a box with content i+1, then let ωi(Π) =
(Π\Π(i))∪ωi(Π

(i)), where Π(i) is the outside decomposition of the edgewise connected
region of λ/µ which has a box with content i and ωi(Π

(i)) is defined as in Section 2.

(b’) If λ/µ has a box with content i and but it does not have a box with content i + 1,
then let ωi(Π) = Π.

(c’) If λ/µ has neither a box with content i nor a box with content i + 1 while it has
a box with content less than i, then let ωi(Π) = Π ∪ {φ[i + 1, i]} if φ[i + 1, i] 6∈ Π,
otherwise let ωi(Π) = Π \ {φ[i + 1, i]}.

(d’) If λ/µ has a box with content i + 1 and a box with content less than i, but it does
not have a box with content i, then let ωi(Π) = Π.

The following lemma is a direct verification of the action of ωi on outside decomposi-
tions

Lemma 4.2 Let λ/µ be a skew partition with λ′
1 6= µ′

1. Let Πh and Πe be the horizontal
outside decomposition and the vertical outside decomposition of λ/µ respectively. Then

Πe = ωcmax−1(ωcmax−2(· · · (ωcmin
(Πh)) · · · )).

We now reach the following conclusion as an answer to Kuperberg’s problem [3, Ques-
tion 15].

Theorem 4.3 For a skew partition λ/µ, the Jacobi-Trudi matrix Jλ/µ and DT
λ/µ are stably

equivalent over the ring of symmetric functions.

Proof. Clearly, Jλ/µ and DT
λ/µ are stably equivalent if and only if JT

λ/µ and Dλ/µ are
stably equivalent. Due to Lemma 3.2, we only need to prove that the canonical matrices
C(Πh) and C(Πe) are stably equivalent over Λ. Due to Lemma 4.1, we only deal with the
case of λ′

1 6= µ′
1. By Lemma 4.2, it suffices to prove that C(Π) and C(ωi(Π)) are stably

equivalent under any twist transformation ωi of the above four cases.

Let P (Π) = {p1, p2, . . . , pm} and Q(Π) = {q1, q2, . . . , qm} be strictly decreasing. Now
we see the transformations between the matrices according to the type of ωi.

If ωi is of type (c’), then the proof is similar to the proof of case (a) and (b) in Theorem
3.4.

For the case of ωi being of type (a’), the stably equivalent transformation will be one
of the cases of the proof of Theorem 3.4.

If ωi is of type (b’), then i ∈ Q(Π). Now the proof is similar to the proof of case (c)
in Theorem 3.4.

If ωi is of type (d’), then i + 1 ∈ P (Π). Now the proof is similar to that of case (d) in
Theorem 3.4.
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The above proof only gives the stably equivalent transformations from the Jacobi-
Trudi matrix to the dual Jacobi-Trudi matrix. In fact, we can also transform the dual
Jacobi-Trudi matrix into the Jacobi-Trudi matrix since each transformation ωi can be
reversed.

Combining all the above cases, we have completed the proof.

To illustrate the proof of the above theorem, we take λ/µ = (6, 5, 3, 1)/(4, 4, 3), see
the appendix.
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Appendix

For the partition λ/µ = (6, 5, 3, 1)/(4, 4, 3), we have the following Young diagram:

Note that the Jacobi-Trudi matrix Jλ/µ is the transpose of the first Giambelli-type
matrix, and the dual Jacobi-Trudi matrix Dλ/µ is equal to the last Giambelli-type matrix
rotated by 180 degrees. Therefore, the dual Jacobi-Trudi matrix can be obtained from the
last Giambelli-type matrix by permuting rows and columns. Here we use [p, q] to denote
the corresponding border strip in the outside decomposition. The dots in the matrix
represent 0.

Cutting strip and
outside decomposition

Canonical form of
Giambelli-type matrix

−3−2−1 0 1 2 3 4 5

{[4, 5], [3, 3], [1, 0], [−3,−3]}




s2 1 · ·
s3 s1 · ·
s5 s3 1 ·
s9 s7 s4 s1




−2−1 0 1 2 3 4 5
−3

{[4, 5], [3, 3], [1, 0], [−3,−3]}




s2 1 · ·
s3 s1 · ·
s5 s3 1 ·
s81 s61 s31 s1




−1 0 1 2 3 4 5
−2
−3

{[4, 5], [3, 3], [1, 0], [−1,−2], [−3,−3]}




s2 1 · · ·
s3 s1 · · ·
s5 s3 1 · ·
s7 s5 s2 1 ·

s712 s512 s212 s12 s1




0 1 2 3 4 5
−1
−2
−3

{[4, 5], [3, 3], [1, 0], [0,−1], [−1,−2], [−3,−3]}




s2 1 · · · ·
s3 s1 · · · ·
s5 s3 1 · · ·
s6 s4 s1 1 · ·
s61 s41 s12 s1 1 ·
s613 s413 s14 s13 s12 s1




Continuing to the twist transformation, we have the following
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Cutting strip and
outside decomposition

Canonical form of
Giambelli-type matrix

1 2 3 4 5
0
−1
−2
−3

{[4, 5], [3, 3], [0,−1], [−1,−2], [−3,−3]}




s2 1 · · ·
s3 s1 · · ·
s51 s31 1 · ·
s512 s312 s1 1 ·
s514 s314 s13 s12 s1




2 3 4 5
1
0
−1
−2
−3

{[4, 5], [3, 3], [2, 1], [0,−1], [−1,−2], [−3,−3]}




s2 1 · · · ·
s3 s1 · · · ·
s4 s2 1 · · ·

s412 s212 s12 1 · ·
s413 s213 s13 s1 1 ·
s415 s215 s15 s13 s12 s1




3 4 5
2
1
0
−1
−2
−3

{[4, 5], [3, 3], [2, 1], [0,−1], [−1,−2], [−3,−3]}




s2 1 · · · ·
s3 s1 · · · ·
s31 s12 1 · · ·
s313 s14 s12 1 · ·
s314 s15 s13 s1 1 ·
s316 s17 s15 s13 s12 s1




4 5
3
2
1
0
−1
−2
−3

{[3, 5], [2, 1], [0,−1], [−1,−2], [−3,−3]}




s21 · · · ·
s212 1 · · ·
s214 s12 1 · ·
s215 s13 s1 1 ·
s217 s15 s13 s12 s1




5
4
3
2
1
0
−1
−2
−3

{[5, 5], [3, 4], [2, 1], [0,−1], [−1,−2], [−3,−3]}




s1 1 · · · ·
s13 s12 · · · ·
s14 s13 1 · · ·
s16 s15 s12 1 · ·
s17 s16 s13 s1 1 ·
s19 s18 s15 s13 s12 s1



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