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Abstract. By using cutting strips and transformations on outside decompositions of a
skew diagram, we show that the Giambelli-type matrices for a given skew Schur func-
tion are stably equivalent to each other over symmetric functions. As a consequence, the
Jacobi-Trudi matrix and the transpose of the dual Jacobi-Trudi matrix are stably equiva-
lent over symmetric functions. This leads to an affirmative answer to a question proposed
by Kuperberg.
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1. Introduction

In [3] Kuperberg introduced the notion of stable equivalence of matrices over a ring, under
which the cokernel of a Kasteleyn or Kasteleyn-Percus matrix is invariant. Let R be a
commutative ring with unit. Let M be an n x k matrix over R, and let M” denote the
transpose of M. Recall that any matrix M’ is called a stably equivalent form of M if M’
can be obtained from M under the following operations: general row operations,

M — AM
where A is an n X n invertible matrix over R; general column operations,
M — MDB

where B is a k x k invertible matrix over R; and stabilization
110
Mo ( Lo )

This paper is motivated by Kuperberg’s problem [3, Question 15] on the stable equiva-
lence property between the Jacobi-Trudi matrix and the transpose of the dual Jacobi-Trudi

and its inverse.

THE ELECTRONIC JOURNAL OF COMBINATORICS 11(2) (2005), #R23 1



matrix of skew Schur functions over the ring A of symmetric functions. We assume that
the reader is familiar with the notation and terminology of symmetric functions in [5].
Given a partition A, let £(\) denote the length of A\. The Jacobi-Trudi matrix for the skew
Schur function sy, is given by
£(N)

JA/N = (hAi—ltj—i-f-j)i?j:l? (11)
where hj denotes the k-th complete symmetric function, hg = 1 and h, = 0 for k£ < 0.
The dual Jacobi-Trudi matrix for sy, is given by

176%
D= <€A;—u;—z‘+j>4 - (1.2)
2,7=1
where )\ is the partition conjugate to A, e denotes the k-th elementary symmetric func-
tion, eg = 1 and ¢, = 0 for £ < 0.

Theorem 14 of Kuperberg [3] states that the Jacobi-Trudi matrix and the dual Jacobi-
Trudi matrix are stably equivalent over the polynomial ring. He asked whether they
are stably equivalent over the ring of symmetric functions. But we note the the proof
of [3, Thm. 14] actually shows that the Jacobi-Trudi matrix is stably equivalent to
the transpose of the dual Jacobi-Trudi matrix. Consequently, Kuperberg’s problem [3,
Question 15] should be stated as follows:

Kuperberg’s Question: Are J,/, and Df/u stably equivalent over the ring of symmetric
functions?

In this paper, we will provide an affirmative answer to the above question. This paper
is organized as follows. First we review some concepts of outside decompositions for a
given skew diagram. Utilizing the cutting strips for a given edgewise connected skew shape
as introduced by Chen, Yan and Yang [1], we demonstrate how a twist transformation
changes the set of contents of the initial boxes of border strips in an outside decomposition,
and how it changes the set of the contents of the terminal boxes. In Section 3, we
construct the canonical form of the Giambelli-type matrix of the skew Schur function
assuming that the outside decomposition is fixed. Using this canonical form we establish
the stable equivalence property of the Giambelli-type matrix for the edgewise connected
skew diagram. In Section 4, we show that for a general skew diagram the Jacobi-Trudi
matrix and the transpose of its dual form are stably equivalent over the ring of symmetric
functions.

2. Twist transformations

Let A be a partition of n with k parts, i.e., A = (A, A, ..., Ag) where Ay > Ao > ... >
A > 0and Ay + Ao+ ...+ A\, = n. We represent A by its Young diagram: an array of
boxes justified from the top and left corner with k£ rows and A; boxes in row i. A box
(,7) in the diagram is the box in row ¢ from the top and column j from the left. The
content of (4, j), denoted 7((7, j)), is given by j —i. Given two partitions A and pu, we say
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that p C A if p; < A; for all o. If p C A, we define a skew partition A/u, whose Young
diagram is obtained from the Young diagram of A by peeling off the Young diagram of u
from the upper left corner. The conjugate of a skew partition A\/u, which we denote by
N/, is defined to be the transpose of the skew diagram A/pu.

A skew diagram A/p is connected if it can be regarded as a union of an edgewise
connected set of boxes, where two boxes are said to be edgewise connected if they share a
common edge. A border strip is a connected skew diagram with no 2 x 2 block of boxes.
If no two boxes lie in the same row, we call such a border strip a vertical border strip. 1f
no two boxes lie in the same column, we call such a border strip a horizontal border strip.
An outside decomposition of \/u is a partition of the boxes of A\/u into pairwise disjoint
border strips such that every border strip in the decomposition has a starting box on the
left or bottom perimeter of the diagram and an ending box on the right or top perimeter
of the diagram, see Figure 2.1 (d). This concept was used by Hamel and Goulden [2] to
give a lattice path proof for the Giambelli-type determinant formulas for the skew Schur
function.

Recall that a diagonal with content ¢ of A/p is the set of all the boxes in A\/u having
content c. Starting from the lower left corner of the skew diagram A/, we use consecutive
integers 1,2,...,d to number these diagonals. Chen, Yan and Yang [1] obtained the
following characterization of outside decompositions of a skew shape.

Theorem 2.1 ([1, Theorem 2.2]) Suppose that \/u is an edgewise connected skew par-
tition with d non-empty diagonals. Then there is a one-to-one correspondence between the
outside decompositions of N/ and the set of border strips with d bozes.

For each outside decomposition II, the corresponding border strip 7' is called the
cutting strip of II in [1], which is given by the rule: for i = 1,2,...,d — 1, the relative
position between the i-th box and the (i + 1)-st box in T' coincides with the relative
position between the two boxes in the same border strip of II, one of which is on the i-th
diagonal and the other on the (i + 1)-st diagonal, see Figure 2.1.

Notice that the relative position between the i-th box and the (i + 1)-st box of the
border strip imposes an up or right direction to the i-th box according to whether the
(7 + 1)-st box lies above or to the right of the i-th box.

From the cutting strip characterization of outside decompositions, one can obtain any
outside decomposition from another by a sequence of basic transformations of changing
the directions of the boxes on a diagonal, which corresponds to the operation of chang-
ing the direction of a box in the cutting strip. This transformation is called the twist
transformation on border strips.

Let A\/u be an edgewise connected skew shape. Let L be the diagonal of A/ consisting
of the boxes with content 7. Throughout this paper, we will read diagonals from the top
left corner to the bottom right corner. Note that L must be one of the four possible
diagonal types classified by whether the first diagonal box has a box immediately above
it, and whether the last diagonal box has a box immediately to its right. These four types
are depicted by Figure 2.2.
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Figure 2.1 The cutting strip of an outside decomposition

Given an outside decomposition II = (61,6,,...,0,,) of \/u and a strip 6 in II, we
denote the content of the initial box of # and the content of the terminal box of 8 respec-
tively by p(f) and ¢(6). Let ¢ be the cutting strip of II. It is known [1] that 6 can be
regarded as the segment of ¢ with the initial content p(f) and the terminal content ¢(#),

denoted ¢[p(0), q(0)].

Given two skew diagrams [ and J, let I » J be the diagram obtained by gluing the
lower left-hand corner box of diagram J to the right of the upper right-hand corner box
of diagram I, and let I T J be the diagram obtained by gluing the lower left-hand corner
box of diagram J to the top of the upper right-hand corner box of diagram I. Suppose
that the strip 6 has a box in diagonal L. Then 6 can be written as ¢[p(0),i] » ¢[i+1,q(6)]
if L has the right direction, and  can be written as ¢[p(9),i| T ¢[i + 1,¢(0)] if L has the
up direction.

Let w; denote the twist transformation acting on an outside decomposition II by chang-
ing the direction of the diagonal L. Let

Py = {p(gl)vp(02)7"'up(0m)}7 (23)
Qn = {Q(01)7q(02>7"'7q(0m)}'

The following theorem describes the actions of w; on Py and Q1.

Theorem 2.2 Given an outside decomposition 11, let II' be the outside decomposition
obtained from II by applying the twist transformation w;. Then we have

(a) i ¢ Qu,i+1¢ Pu, Py = PnU{i+ 1} and Qu = Qu U {i}, or
(b) i€ Qu,i+1€ Py, Pv="Pa\{i+1} and Qu = Qu \ {i}, or
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Figure 2.2 Four possible types of diagonals of A/u

(c) i€ Qui+1¢Pu Prv=Prand Qu = Qu, or

(d) ZQQH,Z—i—l € P, Py = Py and Qv = Qr1.
Proof. Suppose that L has r boxes. Since the twist transformation w; only changes the
strips which contain a box in L, we may suppose that 6;,,1 <t < r, is the strip in II that
contains the t-th diagonal box in L. Without loss of generality we may assume that the

diagonal boxes have the up direction, since we can reverse the transformation process for
the case when the diagonal boxes have the right direction.

Let ¢’ be the cutting strip corresponding to the outside decomposition IT". Now we
see the changes of Py and @ under the action of the twist transformation w; according
to the type of L:

(a) If L is of Type 1, then we have i ¢ Qp and i + 1 & Py. As illustrated in Figure 2.3,
under the operation of w;, the strip

0i1 - ¢[p(0i1)7 Q(eu)] = ¢[p(0i1)7 Z] T ¢[l + 17 Q(eu)]
breaks into two strips
¢/[p(0i1>7 q(elz)] = ¢[p(9i1)7 Z] > ¢[Z + 17 q(012>] and ¢/[2 + 17 Q((Qh)]
If » > 1 then the last strip

0;, = d[p(0:,), 4(0:,)] = ¢lp(0s,),4] T Sli +1,4(0;,)]
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will be cut off into ¢/[p(6;,), 4], and the other strips
0i. = op(0:,),a(0:,)] = o[p(6:,), ] T oli +1,4(6;,)], 2<t <r—1,
will be twisted into
¢'[p(0:), 4(0i,i1)] = ¢lp(0:,), 1] » Oli +1,q(0i,.,)]-

Thus
PH/:PHU{Z+1} and QH/ :QHU{Z}

i1y 1+ 1]

Figure 2.3 w; acts on a Type 1 diagonal L

(b) If L is of Type 2, then we have i € Qp and i+1 € Py. Let 6; ,, be the unique strip of
IT with the initial content i+ 1. Under the operation of w;, the strip 6;, = ¢[p(6;,), i]
becomes a part of the new strip

¢,[p(6i1)7 q(ew)]
= ¢li+1,q(6;,,,)] becomes a part of the new strip
¢/[p(9ir)7 Q(e’ir+1)] = ¢[p(6ir)7 Z] > ¢[Z + 17 q(eirﬂ)]‘
For 2 <t <r —1, the strips

will be twisted into

¢/[p(0it)7 q(eit+1)] = ¢[p(0it)7 Z] > ¢[l + 17 q(gitJrl)]'

The strip 6

ir+1

Thus
Py =Py \{t+ 1} and Qu = Qu \ {i}.
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(c) If L is of Type 3, then we have i € Q and i + 1 ¢ Pry. Under the operation of w;,
the first strip 6;, = ¢[p(0;,), 1] becomes

¢'[p(0:,), a(63,)] = o[p(6:,), ] » li + 1, q(6:,)]-
If r > 1, the last strip
0i, = $[p(0;,), a(6;,)] = o[p(6:,.),4] T ¢[i +1,4(0;,)]
will be cut off into ¢/[p(6;,), 4], and the other strips
0i, = ¢[p(0i,), q(0:,)] = ¢[p(0;,), 4] T ¢li + 1, q(6;,)],
will be twisted into
¢'[p(0:,), 4(0:..)] = ¢[p(0i,), ] » Sli +1,9(0,,)], 2<t <7 — 1L

Thus
Py = Py and Qv = Q.

(d) If L is of Type 4, then we have i ¢ Q and i+ 1 € Ppi. Let 6; ., be the unique strip
of II with the initial content ¢ + 1. Under the operation wj;, the first strip

0i1 = ¢[p(0i1)7 Q(‘gu)] = ¢[p(0i1)7 Z] T ¢[l + 17 Q(‘911)]
breaks into two strips
¢/[p(0i1)7 q(@w)] = ¢[p(0i1)7 Z] > ¢[Z +1, q(elz)] and ¢/[Z +1, q(gll)]

The strip 0;,_, becomes a part of the new strip

'[p(0,), qo,,,] = lp(0,), 7] » dli +1,4(0;,,,)].

The other strips

will be twisted into

¢/[p(0it)7 q(eitJrl)] = ¢[p(0it)7 Z] > ¢[l + 17 q(gitJrl)]'

Thus
P = P and Qv = Qn-
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3. Giambelli-type matrices for connected shapes

By using the lattice path methodology, Hamel and Goulden [2] give a combinatorial proof
for the Giambelli-type determinant formulas of the skew Schur function. In this section,
we prove the stable equivalence of the Giambelli-type matrices of the Schur function
indexed by an edgewise connected skew partition A/p.

Given an outside decomposition IT = (0y,6,,...,0,,) of A\/u and a strip 6 in II, let ¢
be the cutting strip of II. Recall that the strip 6 coincides with the segment ¢[p(6), ¢(9)]
of ¢. Following the treatment of [1], given any two contents p, ¢ we may define the strip
o[p, q] as follows:

(i) If p < g, then ¢[p, ¢| is the segment of ¢ starting with the box having content p and
ending with the box having content g;

(i) If p = q+ 1, then ¢[p, ¢ is the empty strip ().
(iii) If p > ¢+ 1, then ¢[p, q] is undefined.

Hamel and Goulden proved the following result.

Theorem 3.1 ([2, Theorem 3.1]) The skew Schur function sy, can be evaluated by
the following determinant:

D(IT) = det(s4p(0,),q00,))15=1 (3.5)

where sy = 1 and Syndefined = 0.

Let us denote the Giambelli-type matrix in (3.5) by M(II). Chen, Yan and Yang [1]
have obtained the canonical form of M (II):

C(H) = (S¢[Pi,<1j} )le:lu

where the sequence (pi,pa,...,pm) is the decreasing reordering of (p(6;),p(62),...,
p(0y)) and (q1,q2, ..., qn) is the decreasing reordering of (q(61),q(62),...,q(0)). It is
clear that if sp,, .1 = 0 then s, g;1 =0 and sp,,, ¢ =0for j <j' ' <mand 1 <i’ <i.

Since M(II) and C(II) can be obtained from each other by permutations of rows and
columns, we have

Lemma 3.2 For an outside decomposition Il of the skew diagram \/p, the two matrices
M(II) and C(II) are stably equivalent over the ring A of symmetric functions.

In order to show that the two Giambelli-type matrices M (II) and M (II') are stably
equivalent over A, it suffices to prove that their canonical forms C(II) and C(II') are
stably equivalent. To this end, we need the following lemma, which follows from the
combinatorial definition of Schur functions and is proved, for example, in [4, 6]:
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Lemma 3.3 Let I and J be two skew diagrams. Then
SISy = SrpJg + S11.-
We now come to the main theorem of this paper:

Theorem 3.4 Let II and IT' be two outside decompositions of the edgewise connected skew
diagram \/p. Then the Giambelli-type matrices M(11) and M(I1') are stably equivalent
over the ring A of symmetric functions.

Proof. By Lemma 3.2, we only need to prove that C'(II) and C(II) are stably equivalent
over A. Since any two outside decompositions can be obtained from each other by a
sequence of twist transformations, it suffices to prove the case when II' = w;(II) for any
twist transformation w;. Let ¢ be the cutting strip of II, and let ¢’ be the cutting strip
of II". We will only give the arguments for the case that the box of content i in ¢ has
the up direction. The case that the box of content ¢ in the cutting strip ¢ has the right
direction can be dealt as the case that the box of content ¢ in the cutting strip ¢’ has the
up direction. As in Theorem 2.2, there are four cases:

(a) 1€ Qu,i+1¢ Py, Py =PpU{i+ 1} and Qu = Qn U {i}. Suppose that k and &’
are the two indices such that

pr > 1+ 1 and pri < i+ 1; while ¢ > 7 and qr1q < 7.

Then the canonical matrix C(II) has the following form

Solp1,q1] T Sélp1,q,/] 0 T 0

Solpk,q1] e Sopk,qp] 0 T 0
Skl ldli+lal] "7 SlpkrillélitLay]  Sélpriayid] T Sélprpriam] |
S¢[vai]T¢[i+1vql] T S(Z)[pm,’i]T(Z)[i-i-l,qk/] S¢[vaqk/+1] Y S(b[]?qum]

and the canonical matrix C'(II') has the following form

Solp1.a1] . Solp1.au] 0 0 T 0

Selpr,a1] T Splpr,ap] 0 0 T 0

Sofi+1,q1] . Sfi+1,,] 1 0 T 0
Selppr1,iwoli+la] 7 Sélppiriwdlitlay]  Sélpri1sil  Sélpri1.awi1] T Sélpr1.am]
S(b[pm,i]b(b[i-i-l,qﬂ U S(Z)[pm,i]b(b[i-i-l,qk/] Sd)[]?mvi} S(b[]?qukurﬂ e S(b[]?qum]

For j : 1 < j <K subtracting the (5’4 1)-st column of C(II') multiplied by syt 1,4,]
from the j-th column, then for j : k+2 < j < m+ 1, subtracting the (k+ 1)-st row
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multiplied by sy, , 4 from the j-th row, we get the following matrix due to Lemma

3.3
Slp1.a1] a Slp1,au] 0 0
Solpr,q1] T S¢pr,gqx] 0 0
0 e 0 1 0
—Sglppsrsillolitlal T T SélernillelitLa] O Slpaiiaua]
—Slpmillelitlar] T T SlpmiillelitLay] 0 Sélpm.gui]

0
0

S¢[pk+h‘lm]

S¢[Pm#1m]

By multiplying —1 for the last m — k rows and the last m — k' columns, then
permuting rows and columns, and the inverse operation of stabilization, we find
that the above matrix is stably equivalent to C(II) over the ring A of symmetric

functions. Thus C'(II) and C(IT") are stably equivalent over A.

(b) i € Qm,i+ 1€ Py, Prv =Py \{i+1} and Qv = @Qn \ {¢}. In this case, we only

need to reverse the process of the operations of case (a), where w; is now regarded
as a transformation from the right direction to the up direction. Notice that each
inverse operation is still over the ring A of symmetric functions. Thus C(II) and

C(II') are stably equivalent over A.

indices such that
pr > 1+ 1 and pryy < i+ 1; while g = 1.

Then the canonical matrix C'(II) has the following form

Solp1,q1] T S@[p1,ar_1] 0 0
S¢lpr,a1] T Sk, _1] 0 0
Selprr1,ilToli+1,q1] " Solprg1,ilToli+1,qu 1]  Sélprsisil  Sélprt1,ap 1]
Solpm,ilteli+La] 7 Solpm,il1oli+lan 1] Sélpmsil  Sélpm.qu 4]

and the canonical matrix C'(II') has the following form

Solp1,q1] T Sélp1,qpr 1] 0 0
Sélpr,aq1] T Sk, _1] 0 0
Selprt1ilwoli+Lar] 7 SelpririlwdlitLay_1]  Sélprt1dl  Sélprt1,qraq]
S¢[PM7¢]>¢[i+17QI} T S¢[Pm7i}’¢[i+17qk/_1} S¢[PM7'L'] S¢[PM7Q1€/+1}

THE ELECTRONIC JOURNAL OF COMBINATORICS 11(2) (2005), #R23

0
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S¢[pm7Qm}

0
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S¢[pm,qm)

c) i€ Qn,i+1¢ Py, P = P and Qv = Qn. Suppose that k and &' are the two
(c) i € Qu, ¢ P, pp
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For j: 1 < j <K — 1 subtracting the &’-th column of C(II') multiplied by syt 1,4;]
from the j-th column, and then multiplying —1 for the last m — k rows and the last
m — k" + 1 columns, we obtain the matrix C'(II). This implies that C'(II) and C(II")
are stably equivalent over A.

(d) i € Qu,i+1 € Py, Py = Py and Qv = Q. We omit the proof here since it is
similar to Case (c).

4. Jacobi-Trudi matrices

In this section we will prove that the Jabobi-Trudi matrix and the transpose of the
dual Jacobi-Trudi matrix, for a general skew partition A\/u, are stably equivalent over
the ring A of symmetric functions. Theorem 3.4 states that this is true when \/p is
edgewise connected, where we do not allow the existence of empty strips in the outside
decomposition II. The Jacobi-Trudi matrix .Jy, corresponds to the Giambelli-type matrix
M (IT) when the cutting strip ¢ of IT is a horizontal border strip, and the dual Jacobi-Trudi
matrix D)/, corresponds to the transpose of the matrix M (II) when ¢ is a vertical border
strip.

For a general skew partition A/u, we need to be more careful when dealing with the
empty strip. Let ¢ = —A]+1 and ¢ee = A1 — 1. Let ¢, (or ¢.) be the horizontal (resp.
vertical) border strip starting with the box having content ¢,,;,, and ending with the box
having content ¢q,. Let I, = (01, - ,04)) be the horizontal outside decomposition of
A/, where 6; is a horizontal strip of row i from the (p; + 1)-st box to the A-th box.
When \; = u;, we take 6; to be the empty strip. Clearly, each 6; corresponds to a substrip
énlpi — i+ 1, N — i) of ¢,. Now we see that the Jacobi-Trudi matrix J),, coincides
with the transpose of the Giambelli-type matrix M (II;) defined in (3.5). Similarly, let
I = (07,---,03,) be the vertical outside decomposition of \/u, where 6; is a vertical
strip of column ¢ from the A-th box to the (u; + 1)-st box. When X\, = ul, we take 6/
as the empty strip. Clearly, each 6} corresponds to a substrip ¢¢[—A; + i, —p, + i — 1] of
¢e. Then the dual Jacobi-Trudi matrix D)/, coincides, under permutation of rows and
columns, with the Giambelli-type matrix M(IL.). See the first and last matrices of the
appendix for an example. The following lemma is straightforward.

Lemma 4.1 Let A\/u be a partition with N} = uy. Let p/v be the skew partition obtained
by removing the first column of the skew diagram \/p. Then the Jacobi-Trudi matrices
of N and p/v are stably equivalent over A, and so are the dual Jacobi-Trudi matrices.

Therefore, we may assume that A} # u}. Let II be an outside decomposition of A/,
and let ¢ be the cutting strip of II. For 7 : ¢pin < ¢ < Chae, let w; denote the twist
transformation at the box of content ¢ from the right direction to the up direction. Now
we define the outside decomposition w;(II) by the following rule:
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(a’) If A\/p has both a box with content i and a box with content i + 1, then let w;(II) =
(TTI\TT®) Uew; (TID), where TI® is the outside decomposition of the edgewise connected
region of A/u which has a box with content 4 and w;(I1®") is defined as in Section 2.

(b’) If A/ has a box with content ¢ and but it does not have a box with content i + 1,
then let w;(II) = II.

(¢’) If A/u has neither a box with content i nor a box with content ¢ + 1 while it has
a box with content less than ¢, then let w;(IT) = TTU {¢[i + 1,4]} if ¢[i + 1,4] & II,
otherwise let w;(IT) =TI\ {¢[i + 1,4}

(d’) If A/ has a box with content i + 1 and a box with content less than 7, but it does
not have a box with content ¢, then let w;(II) = II.

The following lemma is a direct verification of the action of w; on outside decomposi-
tions

Lemma 4.2 Let \/u be a skew partition with N} # py. Let II, and I, be the horizontal
outside decomposition and the vertical outside decomposition of \/u respectively. Then

e = Wepao—1(Wemar—2( -+ (Wepsn (1)) - - -))-

We now reach the following conclusion as an answer to Kuperberg’s problem [3, Ques-
tion 15].

Theorem 4.3 For a skew partition A/, the Jacobi-Trudi matriz Jy,, and Df/u are stably
equivalent over the ring of symmetric functions.

Proof. Clearly, J,,, and Df/u are stably equivalent if and only if J/\T/M and D,,, are
stably equivalent. Due to Lemma 3.2, we only need to prove that the canonical matrices
C(II;) and C(IL,) are stably equivalent over A. Due to Lemma 4.1, we only deal with the
case of ] # ). By Lemma 4.2, it suffices to prove that C'(II) and C(w;(II)) are stably
equivalent under any twist transformation w; of the above four cases.

Let P(IT) = {p1,p2,- .-, pm} and Q(II) = {q1,q2, - - ., gm} be strictly decreasing. Now
we see the transformations between the matrices according to the type of w;.

If w; is of type (c’), then the proof is similar to the proof of case (a) and (b) in Theorem
3.4.

For the case of w; being of type (a’), the stably equivalent transformation will be one
of the cases of the proof of Theorem 3.4.

If w; is of type (b’), then i € Q(II). Now the proof is similar to the proof of case (c)
in Theorem 3.4.

If w; is of type (d’), then i + 1 € P(II). Now the proof is similar to that of case (d) in
Theorem 3.4.
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The above proof only gives the stably equivalent transformations from the Jacobi-
Trudi matrix to the dual Jacobi-Trudi matrix. In fact, we can also transform the dual
Jacobi-Trudi matrix into the Jacobi-Trudi matrix since each transformation w; can be
reversed.

Combining all the above cases, we have completed the proof. 1

To illustrate the proof of the above theorem, we take \/u = (6,5,3,1)/(4,4,3), see
the appendix.

Acknowledgments. We are grateful to the referee and Greg Kuperberg for invaluable
comments. This work was supported by the 973 Project on Mathematical Mechanization,
the Ministry of Education, the Ministry of Science and Technology, and the National
Science Foundation of China.

References

[1] W.Y.C. Chen, G.G. Yan, A.L.B. Yang, Transformations of border strips and schur
function determinants, J. Algebraic Combin. 21 (2005), 379-394.

2] A.M. Hamel, 1. P. Goulden, Planar decompositions of tableaux and Schur function
determinants, Furop. J. Combin. 16 (1995), 461-477.

[3] G. Kuperberg, Kasteleyn cokernels, Electron. J. Combin. 9 (2002), #R29.

[4] M.P. Schiitzenberger, La correspondance de Robinson, in Combinatoire et représent-
ation du groupe symétrique (Table Ronde, Strasbourg 1976, D. Foata, ed.), Lecture
Notes in Math., Vol. 579, Springer, 1977, pp. 59-113.

[5] R.P. Stanley, Enumerative Combinatorics, Vol. II, Cambridge University Press, New
York/Cambridge, 1999.

[6] A. Zelevinsky, A generalization of the Littlewood-Richardson rule, J. Algebra 69
(1981), 82-94.

THE ELECTRONIC JOURNAL OF COMBINATORICS 11(2) (2005), #R23 13



Appendix

For the partition \/u = (6,5,3,1)/(4,4,3), we have the following Young diagram:

Note that the Jacobi-Trudi matrix .Jy/, is the transpose of the first Giambelli-type
matrix, and the dual Jacobi-Trudi matrix D)/, is equal to the last Giambelli-type matrix
rotated by 180 degrees. Therefore, the dual Jacobi-Trudi matrix can be obtained from the
last Giambelli-type matrix by permuting rows and columns. Here we use [p, ¢| to denote
the corresponding border strip in the outside decomposition. The dots in the matrix
represent 0.

Cutting strip and Canonijcal form of
outside decomposition Giambelli-type matrix
S9 1
E3-2-10[1[2]3[4]5] s3 51
{[47 5]7 [37 3]7 [17 0]7 [_37 _3]} 55 s3 1
S9g St S4 51
—-0[1[2[3145] s2. 1
3 S3 S1

{14,5], 3,3, [1,0], [~3, —3]} ss sz 1

S81 S61 S31 S1

s 1
—10J1]2]3]4]5] sZ N
:jg S5 S3 1

{[4.5],[3,3) [1,0], [~1,-2], [-3, -3]} stoss s2

S712 Sy12 S912 S12 S

1
0[1]2]3[4]5] 52
1 S3 S1
:ji Sy S3 1
—3 S6 Sqa  s1 1 .
{[4,5),[3,3], [1,0], [0, ~1], [-1, ~2, [-3, —3]} | | o0 Su s s 1

S613  S413  S14 S13 S12 51

Continuing to the twist transformation, we have the following
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Cutting strip and
outside decomposition

Canonical form of
Giambelli-type matrix

112]3]4]5]

{[47 5]7 [37 3]7 [07 _1]7 [_17 _2]7 [_37 _3]}

S9 1
S3 S1
Ss1 S31 1
Ss12 S312 S1 1
Sp14  S314 S13 S12 81

3[4[5]

LLLLL[=]=
|OJ[\DHO o

{4,5],[3,3],[2,1

—

_1]7 [_17 _2]7 [_37 _3]}

So 1

S3 S1

S4 S92 1

Sq12 S912 S12 1

S413 S913 S13 Sq 1
S415 S915 S15 S13  S12 S

| |>—~|L\3c,o =)
N
)

=
—

L)
|OJ[\D

{[4,5],13,3], [2,1], |

)

:_1]a [_17 _2]’ [_37 _3]}

So 1

S3 S1

S31  S12 1

S313 S14  S712 1

S314 S15 S13 S1 1
S316  S17 S15 S13 S12 Sq

LILLL = [=[]
|ww'_0>—tl\:)wn-l>

{[37 5]7 [27 1]7 [07 —

=
|
—_
|
)
|
w
|
=)
——

S§912 1

S914 872 1
So915  S13
S917 S15 S13 S12 Sq

LLLLL[o]=]re]ee] e
|C/J[\DH© DO [QO || Ot

=)
|
—_

{[575]7[374]7[271]7[ ]7[_17_2]7[_37 _3]}

Y

S1 1

S13  S12

S1a s13 1

S16  S15  S12 1

S1 1
S19 S18 S15 S13  S12 S

S17 S16 Sq3
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