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Abstract

Let µ be a partition of k, and T a standard Young tableau of shape µ. McKay,
Morse, and Wilf show that the probability a randomly chosen Young tableau of N
cells contains T as a subtableau is asymptotic to fµ/k! as N goes to infinity, where
fµ is the number of all tableaux of shape µ. We use a random-walk argument to
show that the analogous asymptotic probability for randomly chosen Young tableaux
with at most n rows is proportional to

∏
1≤i<j≤n

(
(µi − i) − (µj − j)

)
; as n goes to

infinity, the probabilities approach fµ/k! as expected. We have a similar formula
for up-down tableaux; the probability approaches fµ/k! if µ has k cells and thus
the up-down tableau is actually a standard tableau, and approaches 0 if µ has fewer
than k cells.

1 Introduction

Let µ be a partition of k, and T a standard Young tableau of shape µ. We say that T is
a subtableau of a larger Young tableau Y if the entries 1 through k of Y form the tableau
T . Let P (N, T ) be the probability that a randomly chosen standard Young tableau of N
cells contains T as a subtableau.

McKay, Morse, and Wilf [12] show that

lim
N→∞

P (N, T ) =
fµ

k!
, (1)

where fµ is the number of standard Young tableaux of shape µ. They apply this result to
problems such as the asymptotic distribution of entries in random large Young tableaux.
Stanley [14] gives an exact formula for P (N, T ), and related asymptotics for the number
of skew tableaux of a given shape. Jaggard [9] gives another proof.
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A Young tableau can be viewed as a walk in the region x1 ≥ x2 ≥ · · · ≥ xn; the
enumeration of walks to µ ∈ Z

n is the classical n-candidate ballot problem. We use the
random-walk view of Young tableaux, a local central limit theorem due to Kuperberg [10]
which relates asymptotics for random walks and Brownian motion, and asymptotics for
the Brownian motion from [6], to find a formula analogous to (1) when the number of
rows of the N -cell tableau is restricted to n. The asymptotic probability is proportional
to ∏

1≤i<j≤n

(
(µi − i) − (µj − j)

)
, (2)

where µi = 0 if µ has fewer than i rows. As n goes to infinity, we show that this approaches
the probability fµ/k! in (1).

We can apply (2) to compute the distributions of the entries of random large Young
tableaux with at most n rows. For example, the probability that the entry 2 is in the top
row of a random large tableau with at most n rows goes to (n + 1)/2n, which approaches
the expected 1/2 as n goes to infinity.

We have similar results for other random walks in the classical Weyl chambers. The
most important case is up-down tableaux, which are the analogue of Young tableaux in
the representation theory of the symplectic group [1, 7, 15]. An up-down tableau [15] of
size k on n rows is a sequence of k partition diagrams each with at most n rows, in which
the first has only one cell, and each subsequent tableau is obtained by either adding or
deleting one cell. Just as the number of standard tableaux of shape µ of size k is the
multiplicity of the representation with highest weight µ in the kth tensor power of the
defining representation of GLn, the number of up-down tableaux of shape µ of size k on
at most n rows is the multiplicity of the representation with highest weight µ in the kth
tensor power of the defining representation of Sp2n [1, 7].

The result for up-down tableaux is not quite the same as for standard tableaux. In a
random up-down tableau of size N with at most n rows, the probability that the tableau
at step k is actually a standard Young tableau (with only upward steps, and thus k cells)
goes to 1 as the number of rows n goes to infinity. The limiting distribution among
these tableaux is the same as in random standard tableaux of size N ; thus the limit still
approaches fµ/k!, where µ is restricted to those shapes which are actually partitions of k.

2 Random walks in Weyl chambers

We will give the necessary definitions and properties of Weyl groups from [8], and of
random walks in Weyl chambers from [7].

A Coxeter group W is a discrete group generated by reflections in R
n. It is determined

by the root system Φ, a set of vectors orthogonal to the hyperplanes of reflection, or by
the positive roots Φ+, choosing only one root for each hyperplane of reflection so that all
the positive roots are on the same side of a given hyperplane. If W stabilizes a lattice, it is
called a Weyl group, and the hyperplanes of reflection partition space into Weyl chambers.

For example, the roots xi − xj in R
n give reflections in the hyperplanes xi = xj , and
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these generate the symmetric group Sn (called An−1 as a Weyl group). The principal
Weyl chamber is x1 > x2 > · · · > xn.

We consider the enumeration of walks which stay inside the Weyl chamber, or equiv-
alently the probability distribution for a random walk which is killed when it hits a wall
of the Weyl chamber. Such a random walk is reflectable [7] if the step set S is symmetric
under the Weyl group W , and the steps and starting point are such that a step which
starts in the interior of the Weyl chamber cannot cross a wall. For example, on the lattice
Z

n, the walk with Weyl group Sn and steps ei in the positive coordinate directions is
reflectable; a step starting at a point with xi > xj can go to a point with xi = xj but not
a point with xi < xj .

The ballot problem can be converted to a reflectable walk problem by translating the
walk to start at η = (−1,−2, . . . ,−n) and end at λ = µ + η; the condition xi ≥ xi+1

before the translation becomes xi ≥ xi+1 + 1 or equivalently xi > xi+1.
Definitions. Let bηλ,k be the number of walks of length k from η to λ with a step set

S which stay in the Weyl chamber. Let cγ,k be the number of walks of length k from the
origin to γ (or equivalently with any start and end with difference γ) with the same step
set S, but unconstrained by a chamber. Similarly, for Brownian motion, let bt(η, λ) be
the density function for n-dimensional Brownian motion started at η to be at λ at time
t, staying within the Weyl chamber through that time. Let ct(γ) be the density function
for n-dimensional Brownian motion to go from the origin to γ at time t, unconstrained
by a chamber.

For reflectable walks, Gessel and Zeilberger [5] and independently Biane [2] related the
number of constrained walks to a signed sum of unconstrained walks of the same length.
The formula is

bηλ,k =
∑
w∈W

sgn(w)cλ−w(η),k. (3)

The proof is analogous to the reflection argument for the Catalan numbers [5]. Every
walk from any w(η) to λ which does touch at least one wall has some last step j at which
it touches a wall; let the wall be the hyperplane perpendicular to αi, choosing the largest
i if there are several choices [13]. Reflect all steps of the walk up to step j across that
hyperplane; the resulting walk is a walk from wαi

w(η) to λ which also touches wall i at
step j. This clearly gives a pairing of walks, and since wαi

has sign −1, these two walks
cancel out in (3). The only walks which do not cancel in these pairs are the walks which
stay within the Weyl chamber, and since w(η) is inside the Weyl chamber only if w is the
identity, this is the desired number of walks.

An analogous result with an analogous proof holds for Brownian motion, which is al-
ways reflectable because it is continuous and symmetric under all reflections. The formula
is [6]

bt(η, λ) =
∑
w∈W

sgn(w)ct(λ − w(η)). (4)

(This theorem is stated in [6] with ct(w(λ)− η) instead of ct(λ−w(η)), reflecting the
Brownian motion after the first time it hits a wall rather than before the last time. The
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two forms are equivalent since Brownian motion is symmetric under the Weyl group, and
we will need to use the theorem in the form (4) later.)

The step sets which give reflectable walks are enumerated in [7]; they turn out to
be precisely the Weyl group images of the minuscule weights [3], those weights with
dot-product 0 or ±1 with every root. The reflectable walks include the weights which
are minuscule for only one of Bn and Cn, which are the same as Weyl groups but have
different root systems. In the Bourbaki numbering [3], the allowed step sets are the Weyl
group images of the following ω̌i, the duals of the fundamental roots.

An : ω̌1, . . . , ω̌n. All compatible.

Bn, Cn : ω̌1, ω̌n. Not compatible.

Dn : ω̌1, ω̌n−1, ω̌n. All compatible.

E6 : ω̌1, ω̌6. Compatible.

E7 : ω̌7.

E8, F4, G2 : None.

Any union of compatible step sets also gives a reflectable random walk.
The classical Weyl groups are An−1 = Sn, Bn = Cn, and Dn. The Weyl group An−1

has roots xi − xj and principal Weyl chamber x1 > x2 > · · · > xn. The Weyl group Bn

has roots xi ± xj and xi. It contains all permutations with any number of sign changes,
and has principal Weyl chamber x1 > x2 > · · · > xn > 0. The Weyl group Dn has
roots xi ± xj . It contains all permutations with an even number of sign changes, and has
principal Weyl chamber x1 > x2 > · · · > xn, xn−1 > −xn.

The group An−1 = Sn acts on the hyperplane H given by
∑

xi = 0, a subspace of R
n.

Thus a random walk on R
n is reflectable if the steps project onto reflectable steps on H ,

and the step set is symmetric under Sn. In particular, the steps ei give a reflectable random
walk; this is the most important case because it is the walk we use for Young tableaux.
The step e1 projects to the fundamental weight ω̌1 = ((n − 1)/n,−1/n, . . . ,−1/n), and
the other steps project to its Sn-images. This step set is not reflectable for Bn or Dn

because it is not symmetric under those Weyl groups.
The walk we use for up-down tableaux has step set ±ei on Z

n, which gives a reflectable
random walk for all three groups. The step e1 is the fundamental weight ω̌1 for Bn and
Dn, and e1 and −e1 project to the fundamental weights ω̌1 and ω̌n−1 for An−1.

3 Asymptotics for random walks and Brownian mo-

tion

We continue throughout the paper to let µ be a partition of k. Let β = (−1,−2, . . . ,−n),
so that the number of Young tableaux of shape µ is the number of walks in the region
x1 > x2 > · · · > xn from β to β + µ. A Young tableau with N cells and at most n rows
corresponds to a walk starting from β of N steps, and the number of Young tableaux
with N cells which contain a specific subtableau of shape µ is thus the number of walks
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starting at β + µ which stay in the Weyl chamber x1 > x2 > · · · > xn for N − k more
steps.

We now view this as a problem in random walks, taking each step randomly in one of
the coordinate directions. The probability that a walk of length N will reach a tableau
of shape µ in k steps is fµ/nk, since each of the fµ tableaux corresponds to one walk.
Applying Bayes’ Theorem,

P (n, N, T ) = P (µ at step k | survive to step N)/fµ

=
P (survive to step N | µ at step k)P (µ at step k)/fµ

P (survive to step N)

=
P (survive to step N | µ at step k)

nkP (survive to step N)
. (5)

The denominator of the last fraction is independent of µ. Thus the probability P (n, N, T )
for tableaux of shape µ is proportional to the probability that a random walk which reaches
µ at step k will survive to step N .

It is more natural to compute the asymptotic for the probability that a random walk
started at µ will survive for N more steps, since this is a more natural problem and
the notation will be simpler; we will replace N in the asymptotic by N − k when we
apply (5) to our specific problem for Young tableaux. We can compute asymptotics for
these probabilities up to a constant factor; we can then eliminate the constant because∑

T P (n, N, T ) = 1 by definition. We will compute the asymptotics for this case, and by
an analogous process for the other classical Weyl groups.

Theorem 1 For any reflectable random walk in any of the classical Weyl chambers, where
the Weyl group has m positive roots, the asymptotic probability that a walk starting at η
will stay in the chamber for some large number N of steps is

CN−m/2
∏

α∈Φ+

α(η), (6)

for a constant C depending on the walk and the chamber. This is the same as the asymp-
totic for Brownian motion (appropriately normalized so that the random walk and the
Brownian motion have the same variance) started at η in the same chamber to remain in
the chamber up to time N .

We conjecture that this theorem also holds for reflectable walks for the exceptional
groups E6 and E7.

We will start with the asymptotics for the corresponding problem in Brownian motion,
the probability that a Brownian motion started at η will stay within the Weyl chamber
up to a large time t. These asymptotics are given by the following lemmas from [6].

Lemma 1 For Brownian motion in any of the classical Weyl chambers in R
n, where the

Weyl group has m positive roots, we have the following asymptotic for the density bt(η, λ)
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for the motion started at η to stay inside the chamber up to time t, with different constants
C for the different chambers:

bt(η, λ) ≈ Ct−m−n/2
∏

α∈Φ+

α(λ)α(η) exp

(−|λ|2 − |η|2
2t

)
. (7)

For |λ| of order O(tε+1/2), this asymptotic is valid to a factor of 1 + O(tε−1/2).

We omit the details of the computation because it is a separate, very long computation
for each classical Weyl group. The computations of the asymptotics in [6] do not generalize
naturally to the exceptional groups, which is part of the reason we can only conjecture
that Theorem 1 holds for E6 and E7; if the asymptotic has the correct form and Lemma 3
below also holds, the rest of the proof goes through unchanged.

Lemma 2 For Brownian motion in any of the classical Weyl chambers, the probability
that the motion started at η will survive to time t is asymptotic to

Ct−m/2
∏

α∈Φ+

α(η), (8)

again with a constant C (different from the constant in Lemma 1) which depends on the
chamber.

This lemma is proved in [6] by integrating the asymptotic from Lemma 1 over the
Weyl chamber. Since we need the same arguments from the proof of Lemma 2 in our
proof of Theorem 1, we will include the full proof of Lemma 2 there.

As examples of these lemmas, for the symmetric group, which has m = n(n − 1)/2
roots, the asymptotic density is

Ct−n2/2
∏
i<j

(λi − λj)(ηi − ηj), (9)

and the asymptotic probability that the motion stays inside the chamber is

Ct−n(n−1)/4
∏
i<j

(ηi − ηj). (10)

We now use a local central limit theorem of Kuperberg [10] to relate these asymptotics
to asymptotics for the random walk. We expect Brownian motion to approximate a
random walk for large time. That is, if the steps in the random walk are all in ~z + L for
some constant ~z and the thinnest possible lattice L, then after N steps, the random walk
must be in N~z + L. Let det L be the determinant of a positive basis for L, which is the
volume of the quotient space R

n/L. We can thus tile R
n with regions of volume det L

such that each region contains one point in N~z +L for each value of N , and thus only one
possible point for the random walk to reach at step N . As N goes to infinity, we expect
that the probability that the random walk is in this region at step N and the probability
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that the corresponding Brownian motion is in this region at time N to converge. The
local central limit theorem gives the rate of convergence, both for single random walks
and for signed sums like those in (3) and (4).

A finite difference operator D is a linear operator on functions from R
n to R defined

by a finite sum

Df(~v) =
∑

i

aif(~v + ~vi).

for some constants ai and vectors ~vi. The degree of D is the minimum degree of a poly-
nomial p such that Dp 6= 0.

We have the following slightly stronger statement of a theorem [10, Theorem 4] which
generalizes a proof in [11, Theorem 1.2.1].

Theorem 2 Let X be a bounded, mean 0 random variable taking values in ~z+L for some
lattice L ∈ R

n, with L the thinnest possible lattice for X. Let κ be the covariance form
of X. Let YN be the sum of N independent copies of X. For any vector ~v, let p(~v) be the
probability for the random walk, and let q(~v) the density for the corresponding Brownian
motion multiplied by the factor det L (since 1/ detL is the density of the support of YN);
that is,

p(~v) = P (YN = ~v), q(~v) =
det L

(2π)n/2
√

det κ
e−κ−1(~v,~v)/2N . (11)

Then for any finite difference operator D of degree d, and any integer b ≥ 0,

D(p − q)(~v)|~v|b = O(N (−n+b−d−2)/2), (12)

uniformly for all ~v ∈ N~z + L.

The statement of this theorem in [10] has a weaker bound,

lim
N→∞

N (n−b+d)/2|~v|bD(p − q)(~v) = 0. (13)

Our statement in Theorem 2 is stronger because it gives a rate of convergence of O(1/N)
in (13). However, the original theorem statement in [11, 1.10–1.15] has the stronger
bound in the cases it covers (the random walk on Z

n with steps in the positive and
negative coordinate directions, b = 0 or b = 2, and d = 0, d = 1, or a restricted case with
d = 2). And as [10] notes, the proof in [11] carries over in its full generality for even b,
and the theorem follows for odd b by taking the geometric mean of the formulas for b− 1
and b + 1. It thus establishes the stronger bound.

To apply Theorem 2 in our cases, let b = 0, and let

Df(λ) =
∑
w∈W

sgn(w)f(λ − w(η)). (14)

This gives the sums we have in (3) and (4).

Lemma 3 The degree of the difference operator D is the number m of positive roots if
the Weyl group W is any of the classical groups.
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As with Lemma 1, we conjecture that this lemma holds for other Weyl groups, but we
need to find the degree of D explicitly for each group and our arguments do not generalize
naturally to the exceptional groups.

We will show that Df = 0 if f is a monomial f(λ) =
∏

i λ
di
i of degree less than m. To

show that the degree of D is actually m, we let f(λ) =
∏

α∈Φ+ α(λ); this polynomial of
degree m has Df(0) = |W |∏α∈Φ+(α(−η)) 6= 0.

For the group An−1, the Weyl group is the symmetric group, and (14) becomes

Df(λ) =
∑
σ∈Sn

sgn(σ)
∏

i

(λi − ησ(i))
di. (15)

This is a determinant
det
n×n

∣∣(λi − ηj)
di

∣∣ . (16)

Expand each term by the binomial theorem to get

det
n×n

∣∣∣∣∣
∑

k

(
di

k

)
(−ηj)

k(λi)
di−k

∣∣∣∣∣ . (17)

Row i of this matrix is a sum of terms for di + 1 different values of k. We can thus write
the single determinant as a sum of

∏
(di + 1) determinants, choosing one value of ki as

the k for each row, ∑
ki≤di

det
n×n

∣∣∣∣
(

di

ki

)
(−ηj)

ki(λi)
di−ki

∣∣∣∣ . (18)

If ki = ki′, then rows i and i′ in the matrix are(
di

ki

)
(−ηj)

ki(λi)
di−ki and

(
di′

ki

)
(−ηj)

ki(λi′)
di′−ki, (19)

which are constant multiples of one another because everything except (−ηj)
ki is constant

across the row. Thus every determinant in (18) is zero unless the ki are all different, and
n different non-negative integers must sum to at least n(n − 1)/2. Since di ≥ ki, the
sum of the di must also be at least n(n − 1)/2. Thus Df = 0 if f is of degree less than
n(n − 1)/2, which is the number m of positive roots for the group An−1.

The argument for the other two groups is similar. For Bn, an element of the Weyl
group can be written as the product of a permutation σ and any number of sign changes,
so (14) becomes

Df(λ) =
∑
σ∈Sn

∑
εi=±1

sgn(σ)
∏

i

εi

∏
i

(λi − εiησ(i))
di. (20)

Combining the εi = ±1 terms into a single term gives

Df(λ) =
∑
σ∈Sn

sgn(σ)
∏

i

[
(λi − ησ(i))

di − (λi + ησ(i))
di

]
. (21)
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Again, this is a determinant, and we expand the terms by the binomial theorem to get

det
n×n

∣∣(λi − ηj)
di − (λi + ηj)

di
∣∣ = det

n×n

∣∣∣∣∣
∑
k odd

−2

(
di

k

)
ηk

j (λi)
di−k

∣∣∣∣∣ . (22)

Again, we write row i as a sum of values for different ki, and write the determinant as a
sum of determinants ∑

odd ki≤di

det
n×n

∣∣∣∣−2

(
di

ki

)
ηki

j (λi)
di−ki

∣∣∣∣ . (23)

If ki = k′
i, then rows i and i′ are constant multiples of one another, just as in (18). Thus

every determinant in (23) is zero unless the ki are all different, and n different positive
odd integers must sum to at least n2. Since di ≥ ki, the sum of the di must also be at
least n2. Thus Df = 0 if f is of degree less than n2, which is the number m of positive
roots for the group Bn.

For Dn, an element of the Weyl group can be written as the product of a permutation
σ and an even number of sign changes, so (14) becomes

Df(λ) =
∑
σ∈Sn

∑
εi=±1

sgn(σ)

(
1 +

∏
i εi

2

) ∏
i

(λi − εiησ(i))
di . (24)

The
∏

i εi/2 terms are the same as for Bn, so they sum to zero if f is of degree less than
n2. The other terms sum to

1

2

∑
σ∈Sn

sgn(σ)
∏

i

[
(λi − ησ(i))

di + (λi + ησ(i))
di

]
. (25)

Yet again, this is a determinant, and we expand the terms by the binomial theorem to
get

1

2
det
n×n

∣∣(λi − ηj)
di + (λi + ηj)

di
∣∣ = det

n×n

∣∣∣∣∣
∑

k even

(
di

k

)
ηk

j (λi)
di−k

∣∣∣∣∣ . (26)

Again, we write row i as a sum of values for different ki, and write the determinant as a
sum of determinants ∑

even ki≤di

det
n×n

∣∣∣∣
(

di

ki

)
ηki

j (λi)
di−ki

∣∣∣∣ . (27)

If ki = k′
i, then rows i and i′ are constant multiples of one another, just as in (18). Thus

every determinant in (27) is zero unless the ki are all different, and n different non-negative
even integers must sum to at least n2 − n. Since di ≥ ki, the sum of the di must also be
at least n2 − n. Thus Df = 0 if f is of degree less than n2 − n, which is the number m
of positive roots for the group Dn. This completes the proof of Lemma 3.

We can apply Theorem 2 directly for the cases with steps ±ei, but for the case with
steps ei, the random variable does not have mean 0. We project the random walk and
Brownian motion onto the hyperplane H given by

∑
xi = 0, so that the steps are the n
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vectors with one coordinate (n−1)/n and all others −1/n; this random walk, now in n−1
dimensions, has mean 0. The starting point projects to ((1 − n)/2, (3 − n)/2, . . . , (n −
3)/2, (n− 1)/2). The lattice L on H is the lattice An−1 of all points in Z

n with
∑

xi = 0;
if n is even, the walk is actually on (Z + 1

2
)n ∩ H , a translation of L.

Since all the walls of the An−1 Weyl chamber are orthogonal to H , the random walk
or Brownian motion projected onto H will hit a wall with the same probability as the
walk or Brownian motion on R

n. We thus compute our probabilities for walks projected
to H . Let ~y = (1/

√
n, · · · , 1/

√
n) be the unit normal vector to H , so that we can write

λ = λH + λ~y~y, where λ is the projection of λ onto H , and similarly for η. The walk on H
now goes from ηH to λH . Note that α(λ) = α(λH) for each root α since α(~y) = 0. Also
note that by orthogonality, |λ|2 = |λH |2 + |λ~y|2.

In order to apply our Brownian motion results, we need the Brownian motion to be
a scaling of standard Brownian motion, and thus we need the covariance form κ to be
a multiple of the identity. We can easily show that it is a multiple of the identity for
any walk with a step set symmetric under the Weyl group. We will also compute det L
and κ explicitly for the most important cases. We need to know κ in order to scale the
Brownian motion appropriately; it turns out that detL cancels out and does not even
affect the constant factor C in Theorem 1.

To see that κ is a multiple of the identity for An−1, consider the basis ~vi = e1 − ei+1,
which is natural but not orthogonal. If n = 2, there is only one dimension and thus κ is a
scalar. If n ≥ 3, then in order to have zero covariance, we need to have E(~v1 ·X)(~v′

2·X) = 0
(and similarly for other pairs), where X is a random step, and ~v′

2 is ~v2 minus its orthogonal
projection onto ~v1. This gives ~v′

2 = 1
2
e1 + 1

2
e2 − e3. Now let σ ∈ Sn switch the first two

coordinates. Then ~v1 · X = −~v1 · σ(X), and ~v′
2 · X = ~v′

2 · σ(X), so E(~v1 · X)(~v′
2 · X) =

−E(~v1 · σ(X))(~v′
2 · σ(X)), and thus the expected value is zero. Thus κ is diagonal, and

by symmetry in the coordinates, it is a multiple of the identity.
For Bn and Dn, it is even easier to show zero covariance, because we can use the

standard basis of R
n. We need E(x1x2) = 0 for a random step X. Bn has the root x1, so

it contains a reflection which changes the sign of x1, and thus of x1x2. Dn for n ≥ 3 has
roots x1 +x3 and x1 −x3; reflecting a step in both roots changes the sign of x1 and x3, so
it also changes the sign of x1x2. Thus, in both cases, we pair steps with opposite values
of x1x2, so E(x1x2) = 0, and thus κ is diagonal and must be a multiple of the identity.
(D2 does not have zero covariance in R

2, but it is the group A1.)
For the walk with steps ei and Weyl group An−1, the covariance form κ is 1/n times

the identity when we consider the walk on R
n, and it remains 1/n times the identity after

projection onto H ; the hyperplane H has n − 1 dimensions but the steps have length√
(n − 1)/n. To find det L, note that a basis for L is e1 − ei+1, and the vector ~y has
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length 1 and is orthogonal to all vectors in L. Thus

det L = det

∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 · · · 0
1 0 −1 · · · 0
...

...
...

. . .
...

1 0 0 · · · −1
1/
√

n 1/
√

n 1/
√

n · · · 1/
√

n

∣∣∣∣∣∣∣∣∣∣∣
. (28)

Adding 1/
√

n times every other row to the last row gives

det L = det

∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 · · · 0
1 0 −1 · · · 0
...

...
...

. . .
...

1 0 0 · · · −1√
n 0 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣
=

√
n. (29)

For the walk with steps ±ei, with any of the Weyl groups, the lattice L is the lattice
Dn ⊂ Z

n of all integer points with
∑

xi even (since the steps are all in e1 + L), so
det L = 2. The covariance form κ is 1/n times the identity since each step has probability
1/n of being in any of the n coordinate directions.

With all of the necessary constants computed, we are now ready to prove Theorem 1
itself. Let N be the number of steps for the random walk. Since the covariance form κ is
a multiple of the identity (1/n for the cases with steps ei or ±ei), we write it as a scalar.
Thus the exponential factor in q(~v) is exp(−|~v|2/(2κN)), corresponding to standard n-
dimensional Brownian motion at time κN . In order to get the random walk and Brownian
motion to have the same variance, we let the time t for standard Brownian motion be
κN ; equivalently, we could consider standard Brownian motion scaled by a factor of

√
κ

at time N .
Theorem 2 says that for sufficiently large N , the random-walk and Brownian-motion

probabilities converge at a rate of O(N (−m−n−2)/2) since D is of degree m; that is, for a
walk in n dimensions with step set S, in the notation of (3) and (4),∣∣∣bηλ,N/|S|N − bκN (η, λ) detL

∣∣∣ = O(N (−m−n−2)/2), (30)

and for a walk restricted to the (n − 1)-dimensional subspace H ,∣∣∣bηHλH ,N/|S|N − bκN (ηH , λH) det L
∣∣∣ = O(N (−m−n−1)/2). (31)

The factor of
√

det κ in Theorem 2 was a normalizing factor to make the integral of
the Brownian motion over R

n equal to 1; it thus becomes part of the bκN term in the
formulas (30) and (31).

We will now prove Lemma 2, computing the probability that Brownian motion stays
within the Weyl chamber by integrating bκN(η, λ) over all λ in the Weyl chamber, and
then relate this Brownian motion integral to the sum for random walks.

the electronic journal of combinatorics 11(2) (2006), #R29 11



The probability that Brownian motion stays within the Weyl chamber for time κN is∫
chamber

bκN(η, λ) dλ. (32)

If the Weyl group is An−1, we can do the n-dimensional integral by first integrating
along ~y; the integrand in that direction is a normal distribution. Intuitively, this is true
because we could apply the reflection argument to the Brownian motion on H instead of
on R

n. Formally, by (4),

bκN (η, λ) =
∑
σ∈Sn

sgn(σ)cκN(λ − σ(η)). (33)

We can factor out the direction ~y from the standard Brownian motion density cκN , writing

cκN(λ − σ(η)) = cκN(λH − σ(ηH))cκN(λ~y~y − σ(η~y~y)), (34)

where the two factors are (n−1)-dimensional and 1-dimensional Brownian motions. And
~y is invariant under permutations, so we have in fact

cκN(λ − σ(η)) = cκN(λH − σ(ηH))cκN(λ~y − η~y). (35)

The factor cκN(λ~y − η~y) is the density of a one-dimensional Brownian motion started at
η~y. It thus integrates to 1 over R, and thus we can remove the innermost integral from
the multiple integral,∫

H ∩ chamber

∫
R

∑
σ∈Sn

sgn(σ)cκN(λH − σ(ηH))cκN(λ~y − η~y) dλ~ydλH =

∫
H ∩ chamber

∑
σ∈Sn

sgn(σ)cκN(λH − σ(ηH)) dλH. (36)

The integrand is in the correct form (4), so we may write this last integral as∫
H ∩ chamber

bκN(ηH , λH)dλH. (37)

By (30), for a walk in n dimensions,∑
λ∈chamber ∩N~z+L

bηλ,N/|S|N (38)

is an approximate Riemann sum for the integral (32) with each term accurate to within
O(N (−m−n−2)/2), uniformly in λ. (The factor of det L in (30) disappears in taking the
Riemann sum, because the Riemann sum is over a partition of the chamber into regions
of volume det L.) Similarly, by (31), for a walk restricted to H ,∑

λH∈chamber ∩N~z+L

bηHλH ,N/|S|N (39)
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is an approximate Riemann sum to the integral (37), with each term accurate to within
O(N (−m−n−1)/2). We cannot directly use the Riemann sums to evaluate the integrals,
because the partition points λ are evenly spaced rather than going to zero, and because
the sums are infinite sums and the sum of the finite errors is not bounded.

For simplicity, we will work out the case (32) in full for the rest of this argument; the
argument for (37) is analogous. We will show that the Riemann sum does give the correct
limit, even when multiplied by the necessary constant Nm/2; that is, we will show

lim
N→∞

[∫
chamber

Nm/2bκN(η, λ) dλ −
∑

λ∈chamber ∩N~z+L

Nm/2bηλ,N

|S|N
]

= 0. (40)

The argument is similar to the proof of Lemma 2 in [6].
Choose any positive ε < 1/2n, and split both the integral and the sum into the regions

|λ| < N1/2+ε and |λ| ≥ N1/2+ε. For |λ| ≥ N1/2+ε, we will show that both the sum and the
integral in (40) go to zero; for |λ| < N1/2+ε, we will be able to use our Riemann sum to
show that they converge to the same limit.

First look at the region |λ| ≥ N1/2+ε. The integrand in (40) is Nm/2 times the
probability that a Brownian motion, started at η, will stay inside the chamber and be at
λ at time κN . Ignoring the chamber, the integrand is certainly bounded by the probability
that an unconstrained Brownian motion started at η will be at λ at time κN . But we are
integrating over the region |λ| ≥ N1/2+ε, and the probability that Brownian motion gets
outside that region goes to zero as N goes to infinity faster than any polynomial in N
because of the exp(−|λ|2/(2κN)) < exp(−N2ε/(2κ)) term.

For the sum, we similarly bound the count of random walks. The summand is a
constant multiple of Nm/2 times the probability that a random walk, starting at η, will
stay inside the Weyl chamber for N steps, and will be at λ. This probability is clearly
bounded by the probability that a random walk, starting at η, will be at λ after N steps.
Summing that over |λ| ≥ N1/2+ε gives the probability that a random walk will be at radius
greater than N1/2+ε after N steps. Again, any polynomial multiple of that probability
goes to 0 as N goes to infinity.

For the region |λ| < N1/2+ε, we make the change of variables ~u = λ/
√

N , so that∏
α∈Φ+ α(λ) = Nm/2

∏
α∈Φ+ α(~u), dλ = Nn/2d~u, and the region |λ| < N1/2+ε is |~u| < N ε.

Thus the integral in (40), which previously had a factor Nm/2, becomes∫
chamber,|~u|<Nε

N (m+n)/2bκN(η,
√

N~u) d~u. (41)

Let g(~u) be the integrand. The limit (30) becomes∣∣N (m+n)/2bη
√

N~u,N/(det L|S|N) − g(~u)
∣∣ = O(1/N). (42)

Applying Lemma 1 to g(~u) after the change of variables, we have

C
∏

α∈Φ+

α(~u)α(η) exp

(
−|~u|2

2κ
− |η|2

2κN

)/
g(~u) = 1 + O(N ε−1/2). (43)
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The only term in the numerator which depends on N is exp((−|η|2)/(2κN)). This term
is 1 + O(1/N), since η is a constant and exp(c/N) is 1 + O(1/N). Thus we can get an
approximate integrand which is independent of N ,

h(~u) = C
∏

α∈Φ+

α(~u)α(η) exp

(−|~u|2
2κ

)
, (44)

with the same degree of accuracy

h(~u)/g(~u) = 1 + O(N ε−1/2). (45)

Since g and h are both positive on the entire chamber, the ratio of their integrals over
the region |~u| < N ε is also 1 + O(N ε−1/2).

In addition, since h decays exponentially, we have∫
chamber,|~u|≥Nε

h(~u) du = o(N c) for all c, (46)

just as we had for g. Thus, in particular, we have

lim
N→∞

∫
chamber

g(~u) du =

∫
chamber

h(~u) du. (47)

The integral of h is

C
∏

α∈Φ+

α(η)

∫
chamber

∏
α∈Φ+

α(~u) exp

(−|~u|2
2κ

)
du, (48)

a constant multiple of
∏

α∈Φ+ α(η), and thus so is the limit of the integral of g. This
proves Lemma 2.

We can now take a Riemann sum. Since h is the product of a polynomial in ~u and a
decreasing exponential, its gradient is bounded. The error in approximationg the integral
of h over a region of volume V by a Riemann sum over partitions into subregions of
diameter at most δ is at most sup(∇h)δV , which is O(δV ). The volume of the region
|~u| < N ε is O(Nnε), and the diameter of the partition in (N~z+L)/

√
N is O(N−1/2). Thus

we have ∑
~u∈chamber ∩ (N~z+L)/

√
N,|~u|<Nε

det L

Nn/2
h(~u) −

∫
chamber,|~u|<Nε

h(~u) d~u = O(Nnε−1/2). (49)

The approximation of g for h within this region is good to within a factor of 1 +
O(N ε−1/2), and both are positive everywhere in the chamber, so the integrals of g and h
agree to within the same factor, as do the sums of values of g and h. Thus we have the
same rate of convergence for the Riemann sum for g,

∑
~u∈chamber ∩ (N~z+L)/

√
N,|~u|<Nε

det L

Nn/2
g(~u) −

∫
chamber,|~u|<Nε

g(~u) d~u = O(Nnε−1/2). (50)
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(It was necessary to go through h because the factor of N (m+n)/2 prevents us from directly
getting a uniform bound on the gradient of g and thus a rate of convergence.)

And we are finally ready to use our approximate Riemann sum. For |~u| < N ε, we
can take a sum over all ~u with (N~z + L)/

√
N inside this region, using (42). We have

at most O
(
N ε

)n
Nn/2 terms inside the region, since the lattice L has dimension n. The

approximate function value in (42) has an error of O(1/N), and this value is multiplied by
the partition size det L/Nn/2 for the Riemann sum. The sum of all errors is the product
of these three factors, which is O(Nnε−1). That is, we have

∑
~u∈chamber ∩ (N~z+L)/

√
N

|~u|<Nε

det L

Nn/2

[
N (m+n)/2bη

√
N~u,N

det L|S|N − g(~u)

]
= O(Nnε−1). (51)

Combining the Riemann sum from (50) with the approximation to the Riemann
sum (51), and then undoing the change of variables, we have

lim
N→∞

[∫
chamber

|λ|<Nε+1/2

Nm/2bκN (η, λ) dλ−
∑

λ∈chamber ∩N~z+L
|λ|<Nε+1/2

Nm/2bηλ,N

|S|N
]

= 0. (52)

This is the |λ| < N ε+1/2 part of (40), and since we have also shown that both sides go to
zero for |λ| ≥ N ε+1/2, we have proved (40).

Since we showed with the proof of Lemma 2 that the asymptotic for the integral is

CN−m/2
∏

α∈Φ+

α(η), (53)

the asymptotic for a random walk to stay within the Weyl chamber is also given by (53),
with the same constant. This proves Theorem 1.

In the case of a walk restricted to the hyperplane H for the Weyl group An−1, the
calculations are almost the same. Throughout the calculations, we use λH rather than λ,
and the integral is over n−1 dimensions, so every term of N−n/2 becomes N−(n−1)/2 and we
need ε < 1/(2(n−1)). We split the integral in (37) into the same regions |λH | < N1/2+ε and
|λH | ≥ N1/2+ε as before; the sum and integral both go to zero on the region |λH| ≥ N1/2+ε.

The change of variables ~uH = ~λH/
√

N still gives
∏

α∈Φ+ α(λH) = Nm/2
∏

α∈Φ+ α(~uH), but
dλH = N (n−1)/2d~uH . The error in (42) is still O(1/N). The error in the Riemann sums (49)
and (50) is O(N (n−1)ε−1/2). When we take the approximate Riemann sum, the partitions
have volume det L/N (−n−1)/2, and there are O(N (−n+1)/2+(n−1)ε) terms, so the error in the
approximate sum is O(N (n−1)ε−1). The limit (52) still holds, and thus so does Theorem 1.

4 Asymptotics for Young tableaux

Now that we have proved Theorem 1, the asymptotics for Young tableaux with at most
n rows follow immediately. Define η = µ + (−1,−2, . . . ,−n), so that a Young tableau of
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shape µ is a walk from (−1,−2, . . . ,−n) to η. For a large N , Theorem 1 (with the N in
the theorem replaced by N − k) shows that the probability that a walk which is at η will
survive for N − k more steps is asymptotic to

C(N − k)−n(n−1)/4
∏

1≤i<j≤n

(ηi − ηj). (54)

Equivalently, the number of tableaux of size N with at most n rows which contain a
specific subtableau of shape µ is asymptotic to

CnN−k(N − k)−n(n−1)/4
∏

1≤i<j≤n

(ηi − ηj). (55)

The constants and terms with N are the same for all tableaux with k entries, so the
probability that a random tableau of size N contains the subtableau T of shape µ as its
subtableau of size k is proportional to the factor which depends on µ,∏

1≤i<j≤n

(ηi − ηj) =
∏

1≤i<j≤n

((µi − i) − (µj − j)), (56)

proving (2).
For example, consider the simplest case, with just two rows. The two tableaux are

T = 1 2 of shape µ = (2, 0) and T ′ = 1
2

of shape µ′ = (1, 1). We thus have η1 = 1, ηi = −i
for i ≥ 2, and η′

1 = 0, η′
2 = −1, η′

i = −i for i ≥ 3.
The terms in the products in (56) for µ and µ′ are equal for i ≥ 3, since µi = µ′

i. We
can thus compute the relative probabilities for T and T ′ by computing the ratio of the
terms for i ≤ 2.

For T , we have

(η1 − η2)
n∏

j=3

(η1 − ηj)(η2 − ηj) = 3
n∏

j=3

(j + 1)(j − 2) =
(n + 1)!(n − 2)!

2
. (57)

For T ′, we have

(η1 − η2)
n∏

j=3

(η1 − ηj)(η2 − ηj) = 1
n∏

j=3

j(j − 1) =
n!(n − 1)!

2
. (58)

Thus we have

lim
N→∞

P (n, N, T )

P (n, N, T ′)
=

(n + 1)!(n − 2)!/2

n!(n − 1)!/2
=

n + 1

n − 1
. (59)

Since T and T ′ are the only two tableaux, the probabilities sum to 1, so

lim
N→∞

P (n, N, T ) =
n + 1

2n
. (60)

Thus the probability that 2 is in the top row of a large random Young tableau with at
most n rows has limit (n+1)/2n. As the number of rows goes to infinity, this approaches
the expected 1/2.
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We will now do the general calculation to see what happens to the probability in (56)
as the number n of rows allowed becomes large compared to the number r of rows in µ.
Let µ = (µ1, . . . , µr) (with µi = 0 allowed for some i), so that

η = (µ1 − 1, µ2 − 2, . . . , µr − r,−(r + 1),−(r + 2), . . . ,−n). (61)

We will now multiply the probability
∏

(ηi − ηj) by factors which depend only on n,
r, and k; it will thus preserve the ratio of probabilities for any two tableaux with at most
r rows. When we know all of the probabilities up to a constant factor, we can find the
constant because the sum of all probabilities must be 1.

We insert these extra factors and define

fn(µ) =
1

nk−r(r−1)/2(n!)r

∏
1≤i<j≤n

(ηi − ηj)
∏

r+1≤i<j≤n

1

j − i
. (62)

To compute the limit limn→∞ fn(µ), we will split the product
∏

(ηi − ηj) into three parts,
according to whether i > r, i ≤ r < j, or j ≤ r.

If both i and j are greater than r, then (ηi − ηj)/(j − i) = 1, so these factors cancel
out in the product.

For a fixed i ≤ r, the terms for j > r are

n∏
j=r+1

(ηi − ηj) =
n∏

j=r+1

(µi + j − i) =
(µi + n − i)!

(µi + r − i)!
. (63)

We rewrite the product of all these terms in that form, and leave the 1 ≤ i < j ≤ r terms
intact, to get

fn(µ) =
1

nk−r(r−1)/2(n!)r

∏
1≤i<j≤r

(
(µi − i) − (µj − j)

) r∏
i=1

(µi + n − i)!

(µi + r − i)!
. (64)

The only terms which depend on n in this product are

1

nk−r(r−1)/2

r∏
i=1

(µi + n − i)!

n!
, (65)

and since
∑

µi = k and
∑

i = r(r − 1)/2, we can write this as

r∏
i=1

(µi + n − i)!

n!nµi−i
. (66)

For each term (µi + n − i)!/n!nµi−i, we cancel out as many factors as possible. If
µi − i ≥ 0, then the entire n! in the denominator cancels out, leaving

(n + 1) · · · (n + µi − i)

nµi−i
. (67)
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The total number of factors in all the numerators is at most
∑

(µi − i) = k, and each
factor n + c can be paired with one n in the denominator of the same term. Thus the
product of all these terms is a product of at most k terms (n + c)/n, which goes to 1 as
n goes to infinity.

Similarly, if µi − i < 0, then the factorial (µi + n − i)! cancels out, leaving

ni−µi

(n + µi − i + 1) · · · (n − 1)
. (68)

The total number of factors in all the denominators is at most
∑r

i=1 i = r(r − 1)/2, and
each factor n − c can be paired with one n in the numerator. Thus the product of all
these terms is a product of at most r(r − 1)/2 terms n/(n− c), which goes to 1 as n goes
to infinity. Thus the limit as n goes to infinity of the product (65) also goes to 1.

We thus have

lim
n→∞

fn(µ) =
∏

1≤i<j≤r

(
(µi − i) − (µj − j)

) r∏
i=1

1

(µi + r − i)!
. (69)

And this value is exactly fµ/k! [4, (4.11)]. Since the computation is valid even if some
µi = 0, we get the same limits by pretending that all tableaux with k cells have k rows,
some of length zero.

Thus the probability that a given tableau of shape µ is a subtableau of a randomly
chosen large tableau with at most n rows approaches fµ/k! as n goes to infinity.

Note that this confirms, but does not quite prove, the result of [12]. If we let P (n, N, T )
be the probability that a randomly chosen tableau with N cells and at most n rows
contains T as a subtableau, then we have proved

lim
n→∞

lim
N→∞

P (n, N, T ) =
fµ

k!
. (70)

The result of [12] would have the limits in the opposite order. If N ≤ n, the restriction
to n rows does not matter, and thus limn→∞ P (n, N, T ) = P (N, T ).

5 Asymptotics for up-down tableaux

We have an analogous result for the other classical Weyl chambers. For Bn, we let
η = µ + (n, n − 1, . . . , 1), so that an up-down tableau of final shape µ corresponds to a
walk from (n, n − 1, . . . , 1) to η with steps ±ei in the chamber x1 > x2 > · · · > xn > 0.
Thus the probability that a random up-down tableau of size N with at most n rows at
all steps will have a particular subtableau µ at step k is proportional to

∏
1≤i<j≤n

(ηi − ηj)(ηi + ηj)

n∏
i=1

ηi. (71)
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We can use the same argument as above to take the limit of these probabilities as
n → ∞. Since the size of the partition µ no longer determines the number of steps k to
reach it, we introduce a new variable k′ =

∑
µi.

Note that k′ depends on the specific tableau chosen, and thus when we compute a
term of (2n)k′

in the asymptotic probability, this will show a dependency on k′. Since
k′ ≤ k, with equality only if our tableau is standard (with upward steps only), this will
show that the probability that the tableau at step k is standard goes to 1 as the number
of rows goes to infinity.

We gather all the necessary factors into one expression. As we did with standard
tableaux, we will multiply by extra factors which depend only on n and r to get an
expression f ′

n(µ) which depends only on n and r and preserves the ratio of probabilities
for any two up-down tableaux with at most r rows. However, k′ depends on µ, not just
on n and r, and thus we cannot multiply by a factor which depends on k′; this accounts
for the dependence of the limit on k′. We define

f ′
n(µ) =

1

n−r(r−1)/2(n!)r+1

∏
r+1≤i<j≤n

1

j − i

∏
1≤i<j≤n

(ηi − ηj)
ηi + ηj

2n + 2 − i − j

n∏
i=1

ηi. (72)

The (ηi − ηj) factors are the same factors as for standard tableaux, since ηi = µi +
(n + 1) − i and it was µi − i for standard tableaux. That is, (69) gives

lim
n→∞

1

nk′−r(r−1)/2(n!)r

∏
1≤i<j≤n

(ηi − ηj)
∏

r+1≤i<j≤n

1

j − i

=
∏

1≤i<j≤r

(
(µi − i) − (µj − j)

) r∏
i=1

1

(µi + r − i)!
. (73)

Note the nk′
in the denominator; we could not introduce this factor into f ′

n(µ), and this
is why the final asymptotic will have a factor of nk′

.
For the ηi terms, we use the remaining factor of 1/n! from f ′

n(µ). We have

1

n!

n∏
i=1

(ηi) =

n∏
i=1

ηi

n + 1 − i
=

r∏
i=1

n + 1 − i + µi

n + 1 − i
, (74)

and this has limit 1 as n goes to infinity.
For the ηi + ηj terms, we use the extra factors of 2n + 2 − i − j in the denominator

of f ′
n(µ); the product of these factors over all i and j again depends only on n. We now

look separately at the terms (ηi + ηj)/(2n + 2 − i − j) for i > r, i ≤ r < j, and j ≤ r. If
r < i < j, then (ηi + ηj)/(2n + 2 − i − j) = 1. For the terms with i fixed and at most r
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but j > r, we have

n∏
j=r+1

ηi + ηj

2n + 2 − i − j
=

n∏
j=r+1

µi + 2n + 2 − i − j

2n + 2 − i − j

=
(µi + 2n + 1 − i − r)!/(µi + n + 1 − i)!

(2n + 1 − i − r)!/(n + 1 − i)!

=
(µi + 2n + 1 − i − r)!

(2n + 1 − i − r)!

(n + 1 − i)!

(µi + n + 1 − i)!
. (75)

After cancelling terms, the first fraction in the final expression is a product of µi terms
between 2n+2− i−r and µi +2n+1− i−r, and the second is the reciprocal of a product
of µi terms between n + 2 − i and µi + n + 1 − i. Thus we can pair these off to get a
product of µi terms of the form (2n + c1)/(n + c2), and as n goes to infinity, each term
approaches 2. There are a total of

∑
µi = k′ such terms, independent of n or r, so as n

goes to infinity, the product approaches 2k′
.

For the terms with i < j ≤ r, we have

∏
1≤i<j≤r

ηi + ηj

2n + 2 − i − j
=

∏
1≤i<j≤r

µi + µj + 2n + 2 − i − j

2n + 2 − i − j
. (76)

There are only r(r− 1)/2 of these terms, and each one approaches 1 as n goes to infinity,
so the product approaches 1. Putting the three factors together, we have

lim
n→∞

∏
1≤i<j≤n

ηi + ηj

2n + 2 − i − j
= 2k′

. (77)

As we multiply these terms together, we have picked up factors of nk′
from the ηi − ηj

terms, and 2k′
from the ηi +ηj terms, in addition to the product terms involving µi. Thus

for this case, we have

lim
n→∞

f ′
n(µ)

(2n)k′ =
∏

1≤i<j≤r

(
(µi − i) − (µj − j)

) r∏
i=1

1

(µi + r − i)!
. (78)

As for the standard tableaux, this limit is independent of our choice of r. However,
the limit is not directly proportional to the limiting probability that a random up-down
tableau contains T of shape µ as a subtableau at step k, because of the extra (2n)k′

term.
In particular, if we have tableaux T and T̂ of shapes µ and µ̂ with different numbers

of cells, so that k′ > k̂′, then the different powers of n in (78) show that

lim
n→∞

f ′
n(µ)

f ′
n(µ̂)

= ∞. (79)

Therefore, the probability goes to 1 that we will have a tableau with the maximum number
of cells k′ = k.
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If k′ = k, we have

lim
n→∞

lim
N→∞

P (n, N, T ) = Ck

∏
1≤i<j≤r

(
(µi − i) − (µj − j)

) r∏
i=1

1

(µi + r − i)!
(80)

with a proportionality constant Ck such that the sum over all tableaux of size k is 1. And
this is the same limit as in (69), so we do have

lim
n→∞

lim
N→∞

P (n, N, T ) =
fµ

k!
(81)

for up-down tableaux as well, provided that T has k cells. We conjecture that this is the
limiting probability for up-down tableaux with an unlimited number of rows, as it is for
standard tableaux.

Let Pk′(n, N, T ) be the probability that T is the subtableau at step k, given that the
subtableau at step k has exactly k′ cells. For any fixed n, we are conditioning on an event
of nonzero probability, so this is meaningful, and the limit in (78), with the (2n)k′

term
now discarded, gives

lim
n→∞

lim
N→∞

Pk′(n, N, T ) = Ck′
∏

1≤i<j≤r

(
(µi − i) − (µj − j)

) r∏
i=1

1

(µi + r − i)!
, (82)

with a proportionality constant Ck′ such that the sum over all tableaux of size k′ is 1.
Again, we have

lim
n→∞

lim
N→∞

Pk′(n, N, T ) =
fµ

k′!
. (83)

This limit is proportional to the number of standard tableaux of shape µ. In fact, it
is also proportional to the number of up-down tableaux of shape µ among all tableaux
with size k and k′ cells, because that value is [15]

f̃µ
k = fµ

(
k

k′

) k−k′
2

−1∏
t=1

(2t − 1), (84)

and every factor except fµ in this expression depends only on k and k′.
For Dn, we let η = µ+(n−1, n−2, . . . , 0). The Dn equivalent of an up-down tableau

is an up-down sequence of Young-like diagrams in which the nth row may have a negative
number of boxes as long as the combined number of boxes in the last two rows is nonzero.
I am not aware of the tableaux being defined as such, although they do again give the
multiplicity of the representation with highest weight µ in the kth tensor power of the
defining representation of SO2n [7]. The probability that a walk which survives for N
steps passes through η after k steps is proportional to∏

1≤i<j≤n

(ηi − ηj)(ηi + ηj). (85)
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The limit as n goes to infinity is less interesting in this case, because the allowed
tableaux are different for each n. The problem with an unlimited number of rows is not
meaningful, as the last row can never be used if the number of rows is unlimited, and
thus the Dn problem reduces to the Bn problem. By essentially the same argument as
for Bn (using factors of 2n − i − j rather than 2n + 2 − i − j in the factors in f ′

n(µ)), we
can show that the limiting probability for Dn as n goes to infinity is the same limit (81)
as for Bn, and if we restrict to tableaux with k′ cells, we get the limit (83).
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