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Abstract

We use the theory of hyperplane arrangements to construct natural bases for
the homology of partition lattices of types A, B and D. This extends and explains
the “splitting basis” for the homology of the partition lattice given in [20], thus
answering a question asked by R. Stanley.

More explicitly, the following general technique is presented and utilized. Let
A be a central and essential hyperplane arrangement in Rd. Let R1, . . . , Rk be
the bounded regions of a generic hyperplane section of A. We show that there
are induced polytopal cycles ρRi in the homology of the proper part LA of the
intersection lattice such that {ρRi}i=1,...,k is a basis for H̃d−2(LA). This geometric
method for constructing combinatorial homology bases is applied to the Coxeter
arrangements of types A, B and D, and to some interpolating arrangements.

1 Introduction

In [20] Wachs constructs a basis for the homology of the partition lattice Πn via a certain
natural “splitting” procedure for permutations. This basis has very favorable properties
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with respect to the representation of the symmetric group Sn on H̃n−3(Πn, C), a represen-
tation that had earlier been studied by Stanley [19], Hanlon [14] and many others. It also
is the shelling basis for a certain EL-shelling of the partition lattice given in [20, Section
6]. This basis has connections to the free Lie algebra as well; see [21].

We now give a brief description of the splitting basis of [20]. For each ω ∈ Sn, let
Πω be the subposet of Πn consisting of partitions obtained by splitting ω. In Figure 1
the subposet Π3124 of Π4 is shown. Each poset Πω is isomorphic to the face lattice of an
(n − 2)-dimensional simplex. Therefore ∆(Πω), the order complex of the proper part of
Πω, is an (n−3)-sphere embedded in ∆(Πn), and hence it determines a fundamental cycle
ρω ∈ H̃n−3(Πn). In [20] it is shown that a certain subset of {ρω|ω ∈ Sn} forms a basis for
H̃n−3(Πn); namely, the set of all ρω such that ω fixes n.

3124

3 - 1 2 4
3 1 - 2 4

3 1 2 - 4

3 - 1 - 2 4 3 - 1 2 - 4 3 1 - 2 - 4

3 - 1 - 2 - 4

Figure 1

The partition lattice is the intersection lattice of the type A Coxeter arrangement. The
original motivation for this paper was to explain and generalize to other Coxeter groups,
the splitting basis for Πn. Taking a geometric point of view we give such an explanation,
which then leads to the construction of “splitting bases” also for the intersection lattices
of Coxeter arrangements of types B and D and of some interpolating arrangements. Our
technique is general in that it gives a way to construct a basis for the homology of the
intersection lattice of any real hyperplane arrangement.

The intersection lattice of the type B Coxeter arrangement is isomorphic to the signed
partition lattice ΠB

n . Its elements are signed partitions of {0, 1, . . . , n}; that is, partitions
of {0, 1, . . . , n} in which any element but the smallest one of each nonzero block can be
barred. In the zero block (i.e., the one containing zero) no elements are barred.

For each element ω of the hyperoctahedral group Bn, we form a subposet Πω of ΠB
n

consisting of all signed partitions obtained by splitting the signed permutation ω. In
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Figure 2 the subposet Π2̄31 of ΠB
3 is shown. Just as for type A, it is clear that each

subposet Πω determines a fundamental cycle ρω in H̃n−2(ΠB
n ). It is not clear, however,

that the elements ρω, ω ∈ Bn, generate H̃n−2(ΠB
n ); nor is it clear how one would select

cycles ρω that form a basis for H̃n−2(ΠB
n ). Our geometric technique enables us to identify

a basis whose elements are those ρω for which the right-to-left maxima of ω are unbarred.

0 2 - 3 1 0 2 3 - 1

0 - 2 - 3 1 0 2 - 3 - 1

0 - 2 - 3 - 1

Figure 2

0231

0 - 2 3 - 1

0 - 2 3 1

We will now give a somewhat more detailed description of the contents of the paper.
The proper setting for our discussion is that of real hyperplane arrangements, or (even
more generally) oriented matroids.

Let A be an arrangement of linear hyperplanes in Rd. We assume that A is essen-
tial, meaning that

⋂A :=
⋂

H∈A H = {0}. The intersection lattice LA is the family of
intersections of subarrangements A′ ⊆ A, ordered by reverse inclusion. It is a geometric
lattice, so it is known from a theorem of Folkman [12] that H̃d−2(LA) ∼= Z|µL(0̂,1̂)| and

H̃i(LA) = 0 for all i 6= d − 2, where LA = LA − {0̂, 1̂}. In fact, the order complex ∆(LA)
has the homotopy type of a wedge of (d − 2)-spheres.

There are many copies of the Boolean lattice 2[d] (or equivalently, the face lattice of
the (d− 1)-simplex) embedded in every geometric lattice of length d. Each such Boolean
subposet determines a fundamental cycle in homology. In [3] Björner gives a combina-
torial method for constructing homology bases using such Boolean cycles. This method,
which in its simplest version is based on the so called “broken circuit” construction from
matroid theory, is applicable to all geometric lattices (not only to intersection lattices
of hyperplane arrangements). Although the cycles in the splitting basis are Boolean, the
basis does not arise from the broken circuit construction. It turns out that the splitting
basis does arise from the geometric construction in this paper.

There is a natural way to associate polytopal cycles in the intersection lattice LA
with regions of the arrangement A. These cycles are not necessarily Boolean. They are
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fundamental cycles determined by face lattices of convex (d − 1)-polytopes embedded in
LA. We show that these cycles generate the homology of LA. Moreover, we present a way
of identifying those regions whose corresponding cycles form a basis. Here is a short and
non-technical statement of the method.

Let H be an affine hyperplane in Rd which is generic with respect to A. The induced
affine arrangement AH = {H ∩ K | K ∈ A} in H ∼= Rd−1 will have certain regions that
are bounded. Each bounded region R is a convex (d − 1)-polytope in H and it is easy
to see that a copy of its face lattice sits embedded in LA. Briefly, every face F of R
is the intersection of the maximal faces containing it, and so F can be mapped to the
intersection of the linear spans (in Rd) of these maximal faces, which is an element of

LA. Thus, we have a cycle ρR ∈ H̃d−2(LA) for each bounded region R. A main result
(Theorem 4.2) is that these cycles ρR, indexed by the bounded regions of AH , form a

basis for H̃d−2(LA).
The regions of a Coxeter arrangement are simplicial cones that correspond bijectively

to the elements of the Coxeter group. When the geometric method is applied to the inter-
section lattice of any Coxeter arrangement, the cycles in the resulting basis are Boolean
and are indexed by the elements of the Coxeter group that correspond to the bounded
regions of a generic affine slice. For type A, when the generic affine hyperplane H is
chosen appropriately one gets the splitting basis consisting of cycles ρω indexed by the
permutations ω that fix n. In Figure 3 the intersection of the Coxeter arrangement A3

with H is shown. The bounded regions are labeled by their corresponding permutation.

x1=x2

x2=x3

1234

2134

1324

x1=x3

3124

23143214

x2=x4x3=x4

x1=x4

Figure 3

For type B, when the generic affine hyperplane H is chosen appropriately, one gets
the type B splitting basis consisting of cycles ρω indexed by signed permutations ω whose
right-to-left maxima are unbarred. The hyperplane arrangement B3 intersected with a
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cube is shown in Figure 4. The regions that have bounded intersection with H are the
ones that are labeled. The labels are the signed permutations whose right-to-left maxima
are unbarred.
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231

312
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_312
_
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213

_

213
- -

123
- -

  
123
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213
_

_

x1

x2

x3

Figure 4

All arguments in the paper are combinatorial in nature, which means that they can
be carried out for oriented matroids. So the construction of bases is applicable to geo-
metric lattices of orientable matroids. Geometrically this means that we can allow some
topological deformation of the hyperplane arrangements.

Major parts of this work (Sections 3, 4 and 6) were carried out at the Hebrew University
in 1993 during the Jerusalem Combinatorics Conference. The rest was added in 1998. It
has been brought to our attention that some of the material in Sections 3 and 4 shows
similarities with work of others (see e.g. Proposition 5.6 of Damon [10] and parts of
Ziegler [25], [26]); however, there is no substantial overlap or direct duplication.

2 A lemma on shellable posets

The concept of a shellable complex and a shellable poset will be considered known. See [6]
for the definition and basic properties. In particular, we will make use of the shelling basis
for homology and cohomology [6, Section 4]. A facet F will be called a full restriction facet
with respect to a shelling if R(F ) = F , where R(·) is the restriction operator induced by
the shelling. (Remark: Such facets were called homology facets in [6, Section 4].)

Our notation for posets is that of [6, Section 5]. For instance, if P is a bounded poset
with top element 1̂ and bottom element 0̂ then P denotes the proper part of P , which is
defined to be P r {0̂, 1̂}; and if P is an arbitrary poset then P̂ = P ] {0̂, 1̂}. Also, define
P<x := {y ∈ P |y < x} and P≤x := {y ∈ P |y ≤ x}.

The following simple lemma is a useful devise for identifying bases for homology of
simplicial complexes. It is used implicitly in [20, proof of Theorem 2.2] and variations of
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it are used in [7, 8, 13]. For any element ρ of the chain complex of a simplicial complex
∆ and face F of ∆, we denote the coefficient of F in ρ by 〈ρ, F 〉.
Lemma 2.1. Let ∆ be a d-dimensional simplicial complex for which H̃d(∆) has rank t. If
ρ1, ρ2, . . . , ρt are d-cycles and F1, F2, . . . , Ft are facets such that the matrix (〈ρi, Fj〉)i,j∈[t]

is invertible over Z, then ρ1, ρ2, . . . , ρt is a basis for H̃d(∆).

Proof. Let
∑t

i=1 aiρi = 0. Then

(a1, . . . , at)(〈ρi, Fj〉)i,j∈[t] = (0, . . . , 0).

Since (〈ρi, Fj〉)i,j∈[t] is invertible, ai = 0 for all i. Hence ρ1, ρ2, . . . , ρt are independent over
Q as well as Z. It follows that ρ1, ρ2, . . . , ρt forms a basis over Q.

To see that ρ1, ρ2, . . . , ρt spans H̃d(∆), let ρ be a d-cycle. Then ρ =
∑t

i=1 ciρi where
ci ∈ Q. We have

(c1, . . . , ct)(〈ρi, Fj〉)i,j∈[t] = (〈ρ, F1〉, . . . , 〈ρ, Ft〉)
It follows that

(c1, . . . , ct) = (〈ρ, F1〉, . . . , 〈ρ, Ft〉)(〈ρi, Fj〉)−1
i,j∈[t] ∈ Zt.

Hence ρ is in the Z-span of ρ1, ρ2, . . . , ρt.

Suppose that Ω is a shelling order of the maximal chains of a pure shellable poset P
of length r. Let M be the set of maximal elements of P . Recall the following two facts:

(i) For each m ∈ M , a shelling order Ω<m is induced on the maximal chains of P<m by
restricting Ω to the chains containing m [2, Prop 4.2].

(ii) A shelling order ΩPrM is induced on the maximal chains of P r M as follows. Map
each maximal chain c in P r M to its Ω-earliest extension ϕ(c) = c∪ {m}, m ∈ M .
Note that ϕ is injective. Now say that c precedes c′ in ΩPrM if and only if ϕ(c)
precedes ϕ(c′) [2, Th. 4.1].

Let F(P<m) and F(P r M) denote the sets of full restriction facets induced by Ω<m

and ΩPrM . Recall from [6, Section 4] that the shelling Ω<m induces a basis B(P<m) :=

{ρF}F∈F(P<m) of H̃r(P<m) which is characterized by the property that 〈ρF , F ′〉 = δF,F ′ for
all F, F ′ ∈ F(P<m).

Lemma 2.2. Let P be a pure poset of length r and M the set of its maximal elements.
Suppose that P is shellable and acyclic. Then

(i) F(P r M) =
⊎

m∈M F(P<m),

(ii)
⊎

m∈M B(P<m) is a basis for H̃r−1(P r M).
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Proof of (i). We claim that

c ∈ F(P<m) =⇒ ϕ(c) = c ∪ {m} and c ∈ F(P r M). (1)

Let c ∈ F(P<m). This means that c r {x} is contained in an Ω<m-earlier maximal chain
of P<m, for every x ∈ c. If ϕ(c) = c ∪ {m′} with m′ 6= m then it would follow that
c ∪ {m} is a full restriction facet of P , contradicting the assumption that P is acyclic.
Hence ϕ(c) = c ∪ {m}. We can also conclude that c ∈ F(P r M).

It follows from (1) that the sets F(P<m), m ∈ M , are disjoint and that

F(P r M) ⊇
⊎

m∈M

F(P<m).

The reverse inclusion will be a consequence of the following computations using the Möbius
function µ(0̂, x) of P̂ . Since P is acyclic we have that∑

x∈ bPr{1̂}
µ(0̂, x) = −µ(0̂, 1̂) = −χ̃(P ) = 0.

Hence,

|F(P r M)| = (−1)r
∑

x∈ bPr{1̂}rM

µ(0̂, x)

= (−1)r−1
∑
m∈M

µ(0̂, m) =
∑
m∈M

|F(P<m)|.

Proof of (ii). For the homology basis of H̃r(P r M) we will use Lemma 2.1. Order
F(P r M) by ΩPrM , and for each c ∈ F(P r M) = ]m∈MF(P<m), let mc be defined by
ϕ(c) = c ∪ {mc}. By (1), c ∈ F(P<mc). Let ρc be the element of B(P<mc) corresponding
to c. So, ρc is the (r − 1)-cycle in P<mc with coefficient +1 at c and coefficient 0 at all
c′ ∈ F(P<mc) r {c}.

Suppose that ρc has nonzero coefficient at some chain c′ 6= c. Since c′ must come
before c in Ω<m (the cycle ρc has support on a subset of the chains in P<m that were
present at the stage during the shelling Ω<m when c was introduced), it follows that
ϕ(c′) precedes ϕ(c) in Ω, and hence that c′ precedes c in ΩPrM . Hence the matrix
(〈ρc, c

′〉)c,c′∈F(PrM) is lower triangular with 1’s on the diagonal. It now follows from

Lemma 2.1 that
⊎

m∈M B(P<m) = {ρc}c∈F(PrM) is a basis for H̃r (P r M).

3 Affine hyperplane arrangements

Let A = {H1, . . . , Ht} be an arrangement of affine (or linear) hyperplanes in Rd. Each
hyperplane Hi divides Rd into three components: Hi itself and the two connected com-
ponents of Rd r Hi. For x, y ∈ Rd, say that x ≡ y if x and y are in the same component
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with respect to Hi, for all i = 1, . . . , t. This equivalence relation partitions Rd into open
cells.

Let PA denote the poset of cells (equivalence classes under ≡), ordered by inclusion
of their closures. PA is called the face poset of A. It is a finite pure poset with at most
d + 1 rank levels corresponding to the dimensions of the cells. The maximal elements of
PA are the regions of Rd r

⋃A. See Ziegler [25] for a detailed discussion of these facts.
Assume in what follows that the face poset PA has length d. We will make use of the

following technical properties of the order complex of PA.

Proposition 3.1 ([25, Section 3]).

(i) PA is shellable.

(ii) PA is homeomorphic to the d-ball.

(iii) Let R be a region of Rd r
⋃A. Then

(PA)<R
∼=

{
(d − 1)-sphere if R is bounded

(d − 1)-ball otherwise.

If R is a bounded region then its closure cl(R) is a convex d-polytope, and the open
interval (PA)<R is the proper part of the face lattice of cl(R). The order complex of
(PA)<R, being a simplicial (d − 1)-sphere, supports a unique (up to sign) fundamental
(d − 1)-cycle τR.

Let PA = {σ ∈ PA | dim σ < d}. Equivalently, PA is the poset PA with its maximal
elements (the regions) removed. Also, let B = {bounded regions}.
Proposition 3.2.

(i) PA has the homotopy type of a wedge of (d − 1)-spheres.

(ii) {τR}R∈B is a basis for H̃d−1(PA).

Proof. Part (i) follows from the fact that shellability is preserved by rank-selection [2, Th.
4.1], and that a shellable pure (d−1)-complex has the stated homotopy type. Since {τR} is

(due to uniqueness) the shelling basis for H̃d−1((PA)<R) when R ∈ B, and H̃d−1((PA)<R) =
0 when R 6∈ B, part (ii) follows from Lemma 2.2.

Remark 3.3. From Proposition 3.2 one can deduce the fact that the union of all hy-
perplanes of an affine arrangement is homotopy equivalent to a wedge of (d− 1)-spheres,
the number of spheres being equal to the number of bounded regions of the complement.
Furthermore, the boundaries of the bounded regions induce spherical cycles that form a
basis for H̃d−1(R

d r
⋃A).
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Let LA denote the intersection semilattice of A. Its elements are the nonempty in-
tersections

⋂A′ of subfamilies A′ ⊆ A, and the order relation is reverse inclusion. LA is
a pure poset of length d. Its unique minimal element is Rd (corresponding to A′ = ∅),
which (according to convention) will be denoted by 0̂. The minimal elements of LA r {0̂}
are the hyperplanes Hi ∈ A, and the maximal elements are the single points of Rd ob-
tainable as intersections of subfamilies A′ ⊆ A. LA is a geometric semilattice in the sense
of [22].

For each cell σ ∈ PA, let z(σ) be the affine span of σ. The subspace z(σ) can also be
described as follows. By definition, σ is the intersection of certain hyperplanes in A (call
the set of these hyperplanes Aσ) and certain halfspaces determined by other hyperplanes
in A. Then, z(σ) =

⋂Aσ. This shows that dimσ = dim z(σ) and that z(σ) ∈ LA. The
map

z : PA → LA

is clearly order-reversing, and it restricts to an order-reversing map

z : PA → LA r {0̂}.

In various versions, the following result appears in several places in the literature; see
the discussion following Lemma 3.2 of [26].

Proposition 3.4. The map z : PA → LA r {0̂} induces homotopy equivalence of order
complexes.

Proof. We will use the Quillen fiber lemma [18]. This reduces the question to checking
that every fiber z−1((LA)≥x) is contractible, x ∈ LA r {0̂}. But by Proposition 3.1 (ii)
such a fiber is homeomorphic to a dim(x)-ball, so we are done.

The simplicial map z induces a homomorphism

z∗ : H̃d−1(PA) → H̃d−1(LA r {0̂}),

which (as a consequence of Proposition 3.4) is an isomorphism. The following is an
immediate consequence of Propositions 3.2 and 3.4.

Theorem 3.5. {z∗(τR)}R∈B is a basis of H̃d−1(LA r {0̂}).
Recall that τR is the fundamental cycle of the proper part of the face lattice of the

convex polytope cl(R), for each bounded region R. Since the map z is injective on each
lower interval (PA)<R it follows that the cycles z∗(τR) are also “polytopal”, arising from
copies of the proper part of the dual face lattice of cl(R) embedded in LA.

Remark 3.6. It is a consequence of Theorem 3.5 that

rank H̃d−1(LA r {0̂}) = card B.
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This enumerative corollary is equivalent to the following result of Zaslavsky [23]:

card B =
∣∣∣ ∑

x∈LA

µ
(
0̂, x

) ∣∣∣.
Indeed, we have that

rank H̃d−1

(
LA r {0̂}) =

∣∣µLA∪{1̂}
(
0̂, 1̂

) ∣∣,
since LA∪{1̂} is the intersection lattice of a central arrangement and is hence a geometric
lattice. Since

µLA∪{1̂}
(
0̂, 1̂

)
= −

∑
x∈LA

µ
(
0̂, x

)
,

the results are equivalent.

Remark 3.7. Our work in this section has the purpose to provide a short but exact
route to the results of the following section, in particular to Theorem 4.2. In the process,
a natural method for constructing bases for geometric semilattices that are intersection
lattices of real affine hyperplane arrangements is given by Theorem 3.5. For general
geometric semilattices, a method for constructing bases which generalizes the broken
circuit construction of [3] is given by Ziegler [26]. This construction does not reduce to
the construction given by Theorem 3.5 in the case that the geometric semilattice is the
intersection lattice of a real affine hyperplane arrangement.

4 Central hyperplane arrangements

Let A be an essential arrangement of linear hyperplanes in Rd. As before, let LA denote
the set of intersections

⋂A′ of subfamilies A′ ⊆ A (such intersections are necessarily
nonempty in this case) partially ordered by reverse inclusion. The finite lattice LA is
called the intersection lattice of A. It is a geometric lattice of length d.

Now, let H be an affine hyperplane in Rd which is generic with respect to A. Genericity
here means that dim(H ∩ X) = dim(X) − 1 for all X ∈ LA. Equivalently, 0 6∈ H and
H ∩ X 6= ∅ for all 1-dimensional subspaces X ∈ LA.

Let AH = {H ∩ K | K ∈ A}. This is an affine hyperplane arrangement induced in
H ∼= Rd−1. We denote by LAH

its intersection semilattice.

Lemma 4.1. LAH
∼= LA r {1̂}.

Proof. The top element 1̂ of LA is the 0-dimensional subspace {0} of Rd. Thus X 7→
H ∩ X defines an order-preserving map LA r {1̂} → LAH

, which is easily seen to be an
isomorphism.

The connected components of Rd r ∪A are pointed open convex polyhedral cones,
that we call regions. Although none of these regions is bounded (since A is central), each

region R, nevertheless, induces a cycle ρR in H̃d−2(LA) as follows. Let PR denote the face
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lattice of the closed cone cl(R). That is, PR is the lower interval (PA)≤R. Clearly PR is
isomorphic to the face lattice of the convex polytope cl(R ∩ M), where M is any affine
hyperplane such that R ∩ M is nonempty and bounded. The map z : PA → LA defined
in Section 3 clearly embeds a copy of the dual of PR in LA. Hence the image z(PR) is a
subposet of LA whose proper part is (d− 2)-spherical (meaning that its order complex is
homeomorphic to Sd−2). Let ρR be the fundamental cycle (uniquely defined up to sign)
of the proper part of the subposet z(PR).

Theorem 4.2. Let A be a central and essential hyperplane arrangement in Rd and let
H be an affine hyperplane, generic with respect to A. Then the collection of cycles ρR

corresponding to regions R such that R ∩ H is nonempty and bounded, form a basis of
H̃d−2(LA).

Proof. This follows immediately from Theorem 3.5 and the fact that LA ∼= LAH
r {0̂}

(Lemma 4.1).

In order to apply Theorem 4.2 to the examples given in subsequent sections we will
need to choose an appropriate generic affine hyperplane and determine the regions whose
affine slices are bounded. The following lemma provides a useful way of doing this.

Lemma 4.3. Let A be a central and essential hyperplane arrangement in Rd. Suppose v
is a nonzero element of Rd such that the affine hyperplane Hv through v and normal to
v, is generic with respect to A. Then for any region R of A, R ∩ Hv is nonempty and
bounded if and only if v · x > 0 for all x ∈ R.

Proof. (⇒) Suppose R ∩ Hv is nonempty and bounded. It is not difficult to see that if
an affine slice of a cone is nonempty and bounded, then the cone is a cone over the affine
slice. Hence R is a cone over R ∩ Hv. That is, every element of R is a positive scalar
multiple of an element of R ∩ Hv. It follows that since v · x > 0 for all x ∈ Hv, v · x > 0
for all x ∈ R.

(⇐) Suppose R ∩ Hv is empty or unbounded. If the former holds then v · x ≤ 0 for
all x ∈ R. Indeed, if v · x > 0 for some x ∈ R then v·v

v·xx ∈ R ∩ Hv.
We now assume R ∩ Hv is unbounded. Then there is a sequence of points x1,x2 . . .

in R∩Hv whose distance from the origin goes to infinity. Let ei be the unit vector in the
direction of the vector xi. Each ei is in the intersection of R and the unit sphere centered
at the origin. Hence, by passing to a subsequence if necessary, we can assume that the
sequence of ei’s converge to a unit vector e in the closure of R. Since the cosine of the
angle between ei and v is ‖v‖

‖xi‖ , the cosine of the angles approach 0. Hence the cosine of
the angle between e and v is 0, or equivalently v · e = 0.

Since e is in the closure of R, either e ∈ R or there is a unique face F of R such that
e is in the interior of F . If e ∈ R we are done. So suppose e is in the interior of the face
F . If v · x = 0 for all x ∈ F then the linear span of F is an intersection of hyperplanes
contained in the linear hyperplane with normal vector v. This contradicts the genericity
of Hv. It follows that v · x 6= 0 for some x ∈ F . If v · x < 0 then there is a point y ∈ R
that is close enough to x so that v ·y < 0 and we are done. If v ·x > 0 then consider the
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point e − ax where a > 0. We have v · (e − ax) = −a(v · x) < 0. By choosing a to be
small enough, we insure that the point e − ax is close enough to e to be in F , since e is
in the interior of F . Hence we have a point in F whose dot product with v is negative,
putting us back in the previous case.

Remark 4.4. Theorem 4.2 can be extended to a geometric construction of bases for the
Whitney homology (or equivalently the Orlik-Solomon algebra, see e.g. [4, Sect. 10])
of the intersection lattice of a real central hyperplane arrangement. This involves the
definition of a vector v being totally generic with respect to the arrangement. Since we
will not pursue this direction we omit further mention of it.

5 Oriented matroids

The arguments and results of the previous two sections can be generalized to oriented
matroids. This generalization will be outlined in this section. The treatment here will
be sketchy and can be skipped with no loss of continuity. The basics of oriented matroid
theory will be assumed to be known. We refer to [5] for all definitions and notation.

Let (L, E, g) be an affine oriented matroid of rank r and with affine face lattice
L+ = {X ∈ L | Xg = +}, cf. [5, Section 4.5]. The maximal elements of L+ are the
topes, corresponding to regions in the realizable case. Let L++ be the bounded complex
(a subcomplex of L+), and let B++ be the set of bounded topes, i.e., B++ = {X ∈ L++ |
rank(X) = r − 1}.

We have from [5, Th. 4.5.7] that L+ is a shellable ball. Furthermore, if T ∈ B++ then
the order complex of the open interval (0, T ) in L+ is homeomorphic to Sr−2 [5, Cor. 4.3.7].

Therefore, each T ∈ B++ induces a spherical fundamental cycle τT in H̃r−2(L+), where

L+ = L+ r {topes}.
Proposition 5.1.

(i) L+ has the homotopy type of a wedge of |B++| copies of the (r − 2)-sphere.

(ii) {τT}T∈B++ is a basis of H̃r−2(L+).

Proof. The proof of Proposition 3.2 generalizes.

Now, let L be the intersection lattice (or “lattice of flats”) of the oriented matroid L,
and let z : L → L be the “zero map” [5, Prop. 4.1.13]. Furthermore, let Lg := {x ∈
L | x 6≥ g} = L r [g, 1̂]. This is a geometric semilattice. The zero map restricts to an

order-reversing surjection z : L+ → Lg, and further to a surjection z : L+ → Lg r {0̂}.
Proposition 5.2. The map z : L+ → Lg r {0̂} induces homotopy equivalence of order
complexes.

Proof. The proof of Proposition 3.4 generalizes. Here one uses that the Quillen fibers
z−1((Lg)≥x), x 6= 0̂, are balls by [5, Th. 4.5.7], and hence contractible.
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The restriction of z to an open interval (0, T ) in L+, with T ∈ B++, gives an isomor-
phism of (0, T ) onto its image in Lg. This image is a subposet of Lg r {0̂} homeomorphic

to the (r − 2)-sphere. Let ρT ∈ H̃r−2(L
g r {0̂}) be the corresponding fundamental cycle.

Theorem 5.3.

(i) Lg r {0̂} has the homotopy type of |B++| copies of the (r − 2)-sphere.

(ii) {ρT}T∈B++ is a basis of H̃r−2(L
g r {0̂}).

Proof. This follows from Propositions 5.1 and 5.2, since

z∗ : H̃r−2(L+) → H̃r−2(L
g r {0̂})

is an isomorphism and z∗(τT ) = ρT .

The treatment of affine oriented matroids so far parallels that of affine hyperplane
arrangements in Section 3. We will now move on to the oriented matroid version of the
material in Section 4.

Let L ⊆ {+,−, 0}E be an oriented matroid of rank r, and let z : L → L be the zero
map to the corresponding intersection lattice L. Let Lg ⊆ {+,−, 0}E]g be an extension
of L by a generic element g 6∈ E. Genericity here means that g 6∈ span A for every A ⊆ E
with rank(A) < r, cf. [5, Sect. 7.1].

Consider the affine oriented matroid (Lg, E ] g, g) and let Lg be its intersection semi-
lattice. We have that z(Lg) = Lg and z(L+

g ) = (Lg)
g.

Lemma 5.4. (Lg)
g ∼= L r {1̂}.

Proof. This analog of Lemma 4.1 is clear. It is basically a reformulation of the definition
of genericity.

Let B++ be the bounded topes of Lg (with respect to g). Because of the isomorphism

(Lg)
g r {0̂} ∼= L := L r {0̂, 1̂},

we get cycles ρT ∈ H̃r−2(L) as before.

Theorem 5.5.

(i) L has the homotopy type of a wedge of |B++| copies of the (r − 2)-sphere.

(ii) {ρT}T∈B++ is a basis for H̃r−2(L).

Proof. This follows from Theorem 5.3 and Lemma 5.4.

The theorem gives a geometric method for constructing a basis for the homology of
the geometric lattice of any orientable matroid. Note that to define the set B++, and
hence the basis, we must make a generic extension of L. Different extensions will yield
different bases.
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6 Type A: The braid arrangement

The hyperplane arrangement An−1 = {Hij : 1 ≤ i < j ≤ n} in Rn, where Hij = {x ∈ Rn :
xi = xj}, is known as the braid arrangement or the type A Coxeter arrangement. The
orthogonal reflection σij across the hyperplane Hij acts on (x1, . . . , xn) ∈ Rn by switching
its ith and jth coordinates. These reflections generate the symmetric group Sn acting on
Rn by permuting coordinates.

The braid arrangement is not essential. To make it essential let

K = {x ∈ Rn : x1 + · · ·+ xn = 0}
and define

A′
n−1 = {H ′

ij = K ∩ Hij : 1 ≤ i < j ≤ n}.
Then A′

n−1 is an essential central hyperplane arrangement in the (n−1)-dimensional space
K. It is clear that the intersection lattices LAn−1 and LA′

n−1
are isomorphic. They are

also isomorphic to the partition lattice Πn. Indeed, for each π ∈ Πn, let `π be the linear
subspace of Rn consisting of all points (x1, . . . , xn) such that xi = xj whenever i and j
are in the same block of π. The map π 7→ `π ∩ K is an isomorphism from Πn to LA′

n−1
.

Let γ denote the inverse of this isomorphism.
The arrangement A′

n−1 has n! regions which are all simplicial cones and are in a natural
one-to-one correspondence with the elements of the associated Coxeter group Sn. Under
this correspondence a permutation ω ∈ Sn corresponds to the region

Rω = {x ∈ K : xω(1) < xω(2) < · · · < xω(n)}.

Consider the cycle ρRω ∈ H̃n−3(LA′
n−1

) whose general construction was given in Section 4.

We now give a simple explicit description of the image of ρRω in H̃n−3(Πn) under the
isomorphism γ.

To split a permutation ω ∈ Sn at positions i1 < · · · < ik in [n − 1] is to form the
partition with k + 1 blocks,

{ω(1), . . . , ω(i1)}, {ω(i1 + 1), . . . , ω(i2)}, . . . , {ω(ik + 1), . . . , ω(n)}. (2)

(To split ω at the empty set of positions is to form the partition with one block.) Let Πω

denote the induced subposet of Πn consisting of all partitions obtained by splitting the
permutation ω. Clearly Πω is isomorphic to the lattice of subsets of [n − 1]. Hence Πω is
spherical.

Proposition 6.1. For all ω ∈ Sn, the image γ(ρRω) is the fundamental cycle of Πω.

Proof. Recall the map z : PA′
n−1

→ LA′
n−1

that takes cells to their affine span (defined
in Section 3). We show that γ restricts to an isomorphism from the subposet z(PRω) of
LA′

n−1
to Πω. Observe that elements of the face lattice PRω are sets of the form

{x ∈ K : xω(1) = · · · = xω(i1) < xω(i1+1) = · · · = xω(i2) < · · ·
· · · < xω(ik+1) = · · · = xω(n)},
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where 1 ≤ i1 < · · · < ik ≤ n − 1. The linear span of such a set is the subspace

{x ∈ K : xω(1) = · · · = xω(i1), xω(i1+1) = · · · = xω(i2), . . . (3)

. . . , xω(ik+1) = · · · = xω(n)}.

Hence z(PRω) is the poset of subspaces of the form given in (3) ordered by reverse inclusion.
Clearly γ takes the subspace given in (3) to the partition given in (2).

We now choose a vector v in K that satisfies the hypothesis of Lemma 4.3 and use
Lemma 4.3 to describe the permutations ω ∈ Sn for which the regions Rω ∩ Hv are
bounded.

Proposition 6.2. Let v = (−1,−1, . . . ,−1, n − 1) ∈ K. Then the affine hyperplane
Hv ∩K is generic with respect to the arrangement A′

n−1 of K. Moreover, for all ω ∈ Sn,
Rω ∩ Hv is bounded if and only if ω(n) = n.

Proof. Recall that genericity is equivalent to the condition that for all 1-dimensional
subspaces X ∈ LA′

n−1
, Hv ∩ X 6= ∅. The 1-dimensional intersections of hyperplanes in

A′
n−1 have the form

X = {x ∈ K : xi1 = xi2 = · · · = xik , xik+1
= xik+2

= · · · = xin−1 = xn},

where 1 ≤ k ≤ n − 1 and {{i1, i2, . . . , ik}, {ik+1, . . . , in−1, n}} is a partition of [n]. Let
x ∈ Rn be defined by

xij =

{
− (n−k)(n−1)

k
j = 1, . . . k

n − 1 j = k + 1, . . . , n − 1

and xn = n − 1. One can easily check that x ∈ Hv ∩ X. Hence Hv ∩ K is generic.
To prove that Rω ∩Hv is bounded if and only if ω(n) = n, we apply Lemma 4.3. Note

that for all x ∈ K,
v · x = nxn.

Suppose ω(n) = n. For all x ∈ Rω, we have xω(1) < · · · < xω(n) and
∑n

i=1 xi = 0. Hence
xω(n) > 0. It follows that v · x = nxω(n) > 0 for all x ∈ Rω. By Lemma 4.3 Rω ∩ Hv is
bounded. Now suppose ω(n) 6= n. Clearly there exists an x ∈ Rω such that xω(i) < 0 for
all i = 1, . . . , n− 1. For such an x, we have v · x = nxn < 0. We conclude by Lemma 4.3
that Rω ∩ Hv is not bounded.

Theorem 6.3 (Splitting basis [20]). For ω ∈ Sn, let ρω be the fundamental cycle of
Πω. Then

{ρω : ω ∈ Sn and ω(n) = n}
is a basis for H̃n−3(Πn).

Proof. This follows from Theorem 4.2 and Propositions 6.1 and 6.2.
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7 Type B

The type B Coxeter arrangement is the hyperplane arrangement

Bn = {xi = xj : 1 ≤ i < j ≤ n} ∪ {xi = −xj : 1 ≤ i < j ≤ n} ∪
{xi = 0 : 1 ≤ i ≤ n}.

The orthogonal reflections across the hyperplanes generate the hyperoctahedral group Bn.
We will view the elements of Bn as signed permutations, that is, words consisting of n
distinct letters from [n] where any of the letters can have a bar placed above it. It will also
be convenient to express elements of Bn as pairs (ω, ε) where ω ∈ Sn and ε ∈ {−1, 1}n. If
εi = 1 then ω(i) does not have a bar over it and if ε(i) = −1 then ω(i) has a bar over it.
For example, the signed permutation 3̄542̄1 can be expressed as (35421,−1 1 1 − 1 1). A
signed permutation (ω, ε) maps (x1, . . . , xn) ∈ Rn to (ε1xω(1), . . . , εnxω(n)).

The arrangement Bn is essential and has 2nn! regions which are all simplicial cones
and are in a natural one-to-one correspondence with the elements of the hyperoctahedral
group Bn. Under this correspondence a signed permutation (ω, ε) ∈ Bn corresponds to
the region

Rω,ε = {x ∈ Rn : 0 < ε1xω(1) < ε2xω(2) < · · · < εnxω(n)}.
The intersection lattice LBn is isomorphic to the signed partition lattice ΠB

n which is
defined as follows. Let π be a partition of the set {0, 1, . . . , n}. The block containing 0 is
called the zero block. To bar an element of a block of π is to place a bar above the element
and to unbar a barred element is to remove the bar. A signed partition is a partition of
the set {0, 1, . . . , n} in which any of the nonminimal elements of any of the nonzero blocks
are barred. For example,

057 | 12̄9 | 34̄6̄8

is a signed partition of {0, 1, . . . , 9}. It will be convenient to sometimes express a barred
letter ā of a signed partition as (a,−1) and an unbarred letter as (a, 1).

To bar a block b in a signed partition is to bar all unbarred elements in b and to unbar
all barred elements in b. We denote this by b̄. To unbar a block b is to unbar all barred
elements of b. We denote this by b̃. For example,

34̄6̄8 = 3̄468̄ and 3̃4̄6̄8 = 3468.

Let ΠB
n be the poset of signed partitions of {0, 1, . . . , n} with order relation defined by

π ≤ τ if for each block b of π, either b is contained in a nonzero block of τ , b̄ is contained
in a nonzero block of τ or b̃ is contained in the zero block of τ . For example

057 | 12̄9 | 34̄6̄8 < 057 | 12̄934̄6̄8,

057 | 12̄9 | 34̄6̄8 < 057 | 12̄93̄468̄

and
057 | 12̄9 | 34̄6̄8 < 0573468 | 12̄9.
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The poset ΠB
n is an example of a Dowling lattice [11].

For each signed partition π ∈ ΠB
n , let `π be the linear subspace of Rn consisting of all

points (x1, x2, . . . , xn) such that

• xi = xj whenever i and j are in the same block of π and both are barred or both
are unbarred,

• xi = −xj whenever i and j are in the same block of π and one is barred and the
other is unbarred,

• xi = 0 whenever i is in the zero block.

The map π 7→ `π is an isomorphism from ΠB
n to LBn . Let γ be the inverse of this

isomorphism.
The cycle ρRω,ε ∈ H̃n−2(LBn) maps under γ to the fundamental cycle of a spherical

subposet of ΠB
n , which we now describe. To split a signed permutation (ω, ε) at positions

i1 < · · · < ik in {0, 1, . . . , n − 1} is to form the signed partition with blocks b0, b1, . . . , bk

where b0 = {0, ω(1), . . . , ω(i1)} (here ω(0) = 0), and for all j = 1, . . . , k,

{(ω(ij + 1), εij+1), . . . , (ω(ij+1), εij+1
)}

is either bj or b̄j (here ik+1 = n). For example, if we split the signed permutation

3̄561̄874̄2

at positions 2, 5 we get the signed partition

035 | 6̄18̄ | 74̄2.

For each signed permutation (ω, ε) ∈ Bn, let Πω,ε be the induced subposet of ΠB
n

consisting of all signed partitions obtained by splitting the signed permutation (ω, ε).
Just as for type A, Πω,ε is spherical because Πω,ε is isomorphic to the lattice of subsets of
[n].

Proposition 7.1. For all (ω, ε) ∈ Bn, the image γ(ρRω,ε) is the fundamental cycle of

Πω,ε.

Proof. Let z : PBn → LBn be the map that takes cells to their affine span (cf. Section 3).
We show that γ restricts to an isomorphism from the subposet z(PRω,ε) of LBn to Πω,ε.
Observe that elements of the face lattice PRω,ε are sets of the form

{x ∈ Rn | 0 = xω(1) = · · · = xω(i1) < εi1+1xω(i1+1) = · · · = εi2xω(i2) < . . .

· · · < εik+1xω(ik+1) = · · · = εnxω(n)},
where 0 ≤ i1 < · · · < ik ≤ n − 1. The linear span of such a set is the subspace

(4)

{x ∈ Rn | 0 = xω(1) = · · · = xω(i1), εi1+1xω(i1+1) = · · · = εi2xω(i2), . . .

. . . , εik+1xω(ik+1) = · · · = εnxω(n)}.
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Hence z(PRω,ε) is the poset of subspaces of the form given in (4) ordered by reverse
inclusion. Clearly γ takes the subspace given in (4) to the signed partition obtained by
splitting (ω, ε) at positions i1, i2, . . . , ik.

Let (ω, ε) ∈ Bn. We say that ω(i) is a right-to-left maximum of (ω, ε) if ω(i) > ω(j)
for all j > i.

Proposition 7.2. Let v = (1, 2, 22, . . . , 2n−1). Then the affine hyperplane Hv is generic
with respect to the arrangement Bn. Moreover, for all (ω, ε) ∈ Bn, Rω,ε ∩ Hv is bounded
if and only if all right-to-left maxima of (ω, ε) are unbarred.

Proof. The 1-dimensional intersections of hyperplanes in Bn have the form

X = {x ∈ Rn | 0 = xi1 = xi2 = · · · = xik , εk+1xik+1
= · · · = εnxin}

where 0 ≤ k ≤ n − 1, {{0, i1, . . . , ik}, {ik+1, . . . , in}} is a partition of {0, 1, . . . , n} and
εi = ±1, for i = k + 1, . . . , n. Let y ∈ Rn be defined by

yij =

{
0 j = 1, . . . k

εj j = k + 1, . . . , n.

One can easily check that

4n − 1

3
∑n

t=k+1 εt2it−1
y ∈ Hv ∩ X.

Hence Hv∩X 6= ∅ for all 1−dimensional spaces X in LBn , which means that Hv is generic.
Now suppose (ω, ε) ∈ Bn and Rω,ε is bounded. Assume that ω(m) is a right-to-left

maximum that is barred. We will reach a contradiction of Lemma 4.3 by producing a
vector y in the closure of Rω,ε such that v · y < 0. Let y ∈ Rn be such that

yω(i) =

{
0 if 1 ≤ i < m

εi if m ≤ i ≤ n.

Clearly y ∈ cl(Rω,ε). We have

v · y =

n∑
j=m

2ω(j)−1εj

≤ −2ω(m)−1 +
n∑

j=m+1

2ω(j)−1.

Since ω(m) > ω(j) for all j > m, we have

n∑
j=m+1

2ω(j)−1 ≤
ω(m)−1∑

i=1

2i−1 = 2ω(m)−1 − 1.
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Combining this with the previous inequality yields v · y ≤ −1.
Now suppose (ω, ε) ∈ Bn and all right-to-left maxima of (ω, ε) are unbarred. Let

m1 < m2 < · · · < mk be the positions of the right-to-left maxima. Let x ∈ Rω,ε. Then

v · x =

n∑
i=1

2ω(i)−1xω(i)

=

k∑
j=1

mj∑
i=mj−1+1

2ω(i)−1xω(i),

where m0 = 0. We have
ω(i) < ω(mj)

for all i = mj−1 + 1, . . . , mj − 1, since ω(mj) is a right-to-left maximum and ω(i) is not.
Also,

0 < εixω(i) < xω(mj )

for all i = mj−1 + 1, . . . , mj − 1, since ω(mj) is unbarred. Consequently

mj∑
i=mj−1+1

2ω(i)−1xω(i) ≥ 2ω(mj )−1xω(mj ) −
mj−1∑

i = mj−1 + 1
εi < 0

2ω(i)−1εixω(i)

≥ 2ω(mj )−1xω(mj ) −
mj−1∑

i = mj−1 + 1
εi < 0

2ω(i)−1xω(mj )

= xω(mj ) (2ω(mj)−1 −
mj−1∑

i = mj−1 + 1
εi < 0

2ω(i)−1)

≥ xω(mj ) (2ω(mj)−1 − (2ω(mj)−1 − 1))

> 0.

Thus we have shown that v · x > 0. By Lemma 4.3, Rω,ε ∩ Hv is bounded.

Theorem 7.3 (type B splitting basis). For (ω, ε) ∈ Bn, let ρω,ε be the fundamental
cycle of the spherical poset Πω,ε. Then

{ρω,ε | (ω, ε) ∈ Bn and all right-to-left maxima of (ω, ε) are unbarred}
is a basis for H̃n−2(ΠB

n ).

Proof. This follows from Theorem 4.2 and Propositions 7.1 and 7.2.

Corollary 7.4 (Dowling [11]). The rank of H̃n−2(ΠB
n ) is

1 · 3 · 5 · · · (2n − 1).
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Proof. One can construct a signed permutation by inserting (barred or unbarred) elements
n, n − 1, . . . , 1 one at a time from largest to smallest. To construct a signed permutation
in which the right-to-left maxima are unbarred, first we insert n into the empty word.
There is only one way to do this since n must be unbarred. Now suppose we have inserted
n, n − 1, . . . , n − j + 1. If we insert n − j at the end of the partially constructed word,
n−j will be a right-to-left maximum in the final word and must be unbarred. If we insert
n − j in any of the other j positions n − j will not be a right-to-left maximum and can
therefore be barred or unbarred. Hence there are 2j + 1 ways to insert n − j, for each
j = 0, 1, . . . , n − 1.

Remark 7.5. The posets Πn and ΠB
n are examples of Dowling lattices. Gottlieb and

Wachs [13, Section 9] have constructed splitting bases for general Dowling lattices. The
splitting basis for Πn is a special case of this Dowling lattice construction. For ΠB

n , the
Dowling lattice construction produces the basis consisting of cycles ρω,ε where (ω, ε) ∈ Bn

is such that all left-to-right (rather than right-to-left) maxima of (ω, ε) are unbarred.
Although this basis is similar in appearance to the type B splitting basis given here,
one can show that it cannot be obtained from our geometric construction. (Consider the
intersection of B3 with the cube as in Figure 4. The union of the closure of the regions
corresponding to the signed permutations whose left-to-right maxima are unbarred, is not
simply connected. Hence these regions cannot be the bounded regions of a generic slice.)
However by using techniques similar to that of [13], one can get a variation of the Dowling
lattice splitting basis which does reduce to the type B splitting basis given here.

Although the only Dowling lattices that are intersection lattices of real hyperplane
arrangements are the partition lattice and the signed partition lattice, there are other
Dowling lattices that are intersection lattices of complex hyperplane arrangements (cf.
[13, Section 8]). It would be interesting to find a geometric interpretation of the above
mentioned variation of the splitting basis for such Dowling lattices.

Remark 7.6. The splitting basis of type A is used in [20] and [21] to obtain information
about the representation of the symmetric group on the homology of the partition lattice.
Unfortunately, the splitting basis of type B (or D) does not appear to reveal much about
the representation of the Coxeter group on homology. See [15], [1] and [13] for work on
the representation of Bn on the homology of the signed partition lattice.

8 Type D

The type D Coxeter arrangement is the hyperplane arrangement

Dn = {xi = xj | 1 ≤ i < j ≤ n} ∪ {xi = −xj | 1 ≤ i < j ≤ n}.

The orthogonal reflections across the hyperplanes generate the Coxeter group Dn, which
is the subgroup of Bn consisting of all signed permutations that have an even number of
bars. Clearly Dn is a subarrangement of Bn and its intersection lattice is isomorphic to
ΠD

n , the join-sublattice of ΠB
n consisting of all signed partitions whose zero block does not
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have size 2. This isomorphism is denoted by γ : LDn → ΠD
n and is the restriction of the

isomorphism γ : LBn → ΠB
n defined in the previous section.

The arrangement Dn is essential and has 2n−1n! regions which are simplicial cones
in one-to-one correspondence with the elements of Dn. Under this correspondence the
signed permutation (ω, ε) corresponds to the region

R̃ω,ε = {x ∈ Rn | |xω(1)| < ε2xω(2) < · · · < εnxω(n)}.

Note that the hyperplane xw(1) = 0 divides the region R̃ω,ε into the regions Rω,ε and Rω,ε′,
where ε′i = εi for i = 2, 3, . . . , n and ε′1 = −ε1.

For each signed permutation (ω, ε) ∈ Dn, let Π̃ω,ε be the induced subposet of ΠD
n

consisting of all signed partitions obtained by splitting either the signed permutation
(ω, ε) or the signed permutation (ω, ε′) at all positions in a subset of {0, 1, . . . , n − 1}
whose smallest element is not 1. Although it is not as evident as for types A and B, this
induced subposet is also a subset lattice.

Proposition 8.1. The induced subposet Π̃ω,ε of ΠD
n is isomorphic to the lattice of subsets

of [n].

Proof. Define the map f : 2{0,1,...,n−1} → Π̃ω,ε by letting f(S) be the signed partition
obtained by splitting (ω, ε) at all positions in S if 1 is not the smallest element of S, and
by splitting (ω, ε′) at all positions in S − {1} ∪ {0} otherwise. We leave it to the reader

to check that this map is an isomorphism from the dual of 2{0,1,...,n−1} to Π̃ω,ε.

Proposition 8.2. For all (ω, ε) ∈ Dn, the image γ(ρ eRω,ε
) is the fundamental cycle of

Π̃ω,ε.

Proof. We show that γ restricts to an isomorphism from the subposet z(P eRω,ε
) of LDn to

Π̃ω,ε. The elements of P eRω,ε
are sets that have one of the following forms:

{x ∈ Rn | 0 = xω(1) = · · · = xω(i1) < εi1+1xω(i1+1) = · · · = εi2xω(i2) < · · ·
· · · < εik+1xω(ik+1) = · · · = εnxω(n)},

{x ∈ Rn | 0 < xω(1) = ε2xω(2) = · · · = εi1xω(i1) < εi1+1xω(i1+1) = · · · = εi2xω(i2)

< · · · < εik+1xω(ik+1) = · · · = εnxω(n)},

{x ∈ Rn | 0 < −xω(1) = ε2xω(2) = · · · = εi1xω(i1) < εi1+1xω(i1+1) = · · · = εi2xω(i2)

< · · · < εik+1xω(ik+1) = · · · = εnxω(n)},

{x ∈ Rn | 0 < |xω(1)| < ε2xω(2) = · · · = εi1xω(i1) < εi1+1xω(i1+1) = · · · = εi2xω(i2)

< · · · < εik+1xω(ik+1) = · · · = εnxω(n)},
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where 2 ≤ i1 < · · · < ik < n.
The linear span of the cells are the respective subspaces:

{x ∈ Rn | 0 = xω(1) = · · · = xω(i1), εi1+1xω(i1+1) = · · · = εi2xω(i2), . . .

. . . , εik+1xω(ik+1) = · · · = εnxω(n)},

{x ∈ Rn | xω(1) = ε2xω(2) = · · · = εi1xω(i1), εi1+1xω(i1+1) = · · · = εi2xω(i2), . . .

. . . , εik+1xω(ik+1) = · · · = εnxω(n)},

{x ∈ Rn | −xω(1) = ε2xω(2) = · · · = εi1xω(i1), εi1+1xω(i1+1) = · · · = εi2xω(i2), . . .

. . . , εik+1xω(ik+1) = · · · = εnxω(n)},

{x ∈ Rn | ε2xω(2) = · · · = εi1xω(i1), εi1+1xω(i1+1) = · · · = εi2xω(i2), . . .

. . . , εik+1xω(ik+1) = · · · = εnxω(n)},

where 2 ≤ i1 < · · · < ik < n.
Clearly the images of such subspaces under γ are precisely the elements of Π̃ω,ε.

Proposition 8.3. Let v = (1, 2, 22, . . . , 2n−1). Then the affine hyperplane Hv is generic

with respect to the arrangement Dn. Moreover, for all (ω, ε) ∈ Dn, R̃ω,ε ∩ Hv is bounded
if and only if ω(1) 6= n and all right-to-left maxima of (ω, ε) are unbarred.

Proof. Since by Proposition 7.2, Hv is generic with respect to the arrangement Bn, it is
generic with respect to any subarrangement of Bn; in particular it is generic with respect
to Dn.

Since the hyperplane xω(1) = 0 divides R̃ω,ε into the regions Rω,ε and Rω,ε′, the region

R̃ω,ε ∩ Hv is bounded if and only if both Rω,ε ∩ Hv and Rω,ε′ ∩ Hv are bounded. By
Proposition 7.2, both regions are bounded if and only if all right-to-left maxima of both
(ω, ε) and (ω, ε′) are unbarred. This happens if and only if ω(1) is not a right-to-left
maximum, i.e., ω(1) 6= n, and all right-to-left maxima of (ω, ε) are unbarred.

Theorem 8.4 (type D splitting basis). For each (ω, ε) ∈ Dn, let ρ̃ω,ε be the funda-

mental cycle of Π̃ω,ε. Then

{ρ̃ω,ε | (ω, ε) ∈ Dn, ω(1) 6= n and all right-to-left maxima of

(ω, ε) are unbarred}
is a basis for H̃n−2(ΠD

n ).

Proof. This follows from Theorem 4.2 and Propositions 8.2 and 8.3.

The following corollary is well-known in the theory of Coxeter arrangements.
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Corollary 8.5. The rank of H̃n−2(ΠD
n ) is

1 · 3 · 5 · · · (2n − 3) · (n − 1).

Proof. We construct a signed permutation (ω, ε) ∈ Dn with all right-to-left maxima un-
barred and ω(1) 6= n by first choosing ω(1) in n−1 ways and then choosing the signed per-
mutation (ω(2)ω(3) . . .ω(n), ε2ε3 · · · εn) so that every right-to-left maximum is unbarred.
By the proof of Corollary 7.4, this signed permutation on n − 1 letters can be chosen in
1 · 3 · · · (2n− 3) ways. If the number of bars in (ω(2)ω(3) . . . ω(n), ε2ε3 · · · εn) is even then
ω(1) must be unbarred; otherwise ω(1) must be barred.

9 Interpolating partition lattices

We now consider a family of posets which interpolates between the type D partition lattice
and the type B partition lattice. For T ⊆ [n], let ΠDB

n (T ) be the join-sublattice of ΠB
n

consisting of all signed partitions whose zero block is not {0, a} for a ∈ [n] \ T . Clearly
ΠDB

n (∅) = ΠD
n and ΠDB

n ([n]) = ΠB
n . The lattice ΠDB

n (T ) is the intersection lattice of the
hyperplane arrangement

DBn(T ) = {xi = xj | 1 ≤ i < j ≤ n} ∪ {xi = −xj | 1 ≤ i < j ≤ n}
∪ {xi = 0 | i ∈ T}.

These interpolating arrangements were introduced by Zaslavsky [24]. The following the-
orem generalizes Theorems 7.3 and 8.4.

Theorem 9.1. For each (ω, ε) ∈ Bn, let ρω,ε be the fundamental cycle of Πω,ε, and if

(ω, ε) ∈ Dn let ρ̃ω,ε be the fundamental cycle of Π̃ω,ε. The set

{ρω,ε | (ω, ε) ∈ Bn, ω(1) ∈ T and all right-to-left maxima of

(ω, ε) are unbarred}
∪

{ρ̃ω,ε | (ω, ε) ∈ Dn, ω(1) /∈ T ∪ {n} and all right-to-left maxima of

(ω, ε) are unbarred}

forms a basis for H̃n−2(ΠDB
n (T )).

Proof. There are two types of regions of the hyperplane arrangement DBn(T ), namely Rω,ε

for (ω, ε) ∈ Bn and ω(1) ∈ T , and R̃ω,ε for (ω, ε) ∈ Dn and ω(1) /∈ T . By Propositions 7.1
and 8.2, ρω,ε and ρ̃ω,ε are the respective images (up to sign) of ρRω,ε and ρ eRω,ε

, under the
isomorphism γ.

We proceed as in the proof of Theorem 8.4. For v = (1, 2, . . . , 2n−1), Hv is generic
with respect to the arrangement DBn(T ). Hence the result now follows from Theorem 4.2,
Propositions 7.2 and 8.3.
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Corollary 9.2 (Jambu and Terao [16]). The rank of H̃n−2(ΠDB
n (T )) is

1 · 3 · 5 · · · (2n − 3) · (|T | + n − 1).

Proof. Suppose n ∈ T . Then the number of signed permutations (ω, ε) ∈ Bn such that
ω(1) ∈ T and all right-to-left maxima are unbarred is (2|T | − 1) · 1 · 3 · · · (2n − 3). The
number of signed permutations (ω, ε) ∈ Dn such that ω(1) /∈ T ∪ {n} and all right-to-left
maxima are unbarred is (n − |T |) · 1 · 3 · · · (2n − 3).

Now suppose n /∈ T . Then the number of signed permutations (ω, ε) ∈ Bn such that
ω(1) ∈ T and all right-to-left maxima are unbarred is 2|T | · 1 · 3 · · · (2n− 3). The number
of signed permutations (ω, ε) ∈ Dn such that ω(1) /∈ T ∪{n} and all right-to-left maxima
are unbarred is (n−|T |−1) ·1 ·3 · · ·(2n−3). In either case, the total number of elements
in the basis is (|T | + n − 1) · 1 · 3 · · · (2n − 3).

Józefiak and Sagan [17] have studied other families of hyperplane arrangements which
interpolate between Coxeter arrangements. One can apply our results to these arrange-
ments. The family of arrangements that interpolate between An−2 and An−1 are par-
ticularly amenable to our approach. For T ⊆ [n − 1], let An(T ) be the arrangement in
Rn,

An(T ) = {xi = xj | 1 ≤ i < j ≤ n − 1} ∪ {xn = xi | i ∈ T}.
Let Πn(T ) be the induced subposet of Πn consisting of all partitions π such that the

block of π containing n is either a singleton or has nonempty intersection with T . This
is the intersection lattice of An(T ). The following theorem generalizes Theorem 6.3 by
providing a splitting basis for the homology of Πn(T ). Recall that in Section 6 we defined
ρω to be the fundamental cycle of Πω, for each ω ∈ Sn.

Theorem 9.3. For ∅ 6= T ⊆ [n − 1], the set

{ρω | ω ∈ Sn, ω(n) = n and ω(n − 1) ∈ T}

forms a basis for H̃n−3(Πn(T )).

Proof. The proof, which is similar to that of Theorem 9.1, uses results from Section 6 and
is left to the reader.

Remark 9.4. There are easier and more direct ways to prove Theorem 9.3. For instance,
one can restrict the second EL-labeling for Πn given in the proof of Theorem 6.2 of [20],
to Πn(T ). The induced shelling basis is precisely the basis given in Theorem 9.3.

Corollary 9.5 (Józefiak and Sagan [17]). For ∅ 6= T ⊆ [n − 1], the rank of

H̃n−3(Πn(T )) is (n − 2)! · |T |.
In [19], Stanley showed that the restriction to Sn−1 of the representation of Sn on

H̃n−3(Πn, C) is the regular representation. In [20], it was observed that the splitting basis

for H̃n−3(Πn) makes this fact transparent. Indeed, the permutations that fix n permute
the basis cycles ρω. A similar phenomenon occurs for Πn(T ).
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Corollary 9.6. For ∅ 6= T ⊆ [n−1], the representation of ST×S[n−1]\T on H̃n−3(Πn(T ), C)
is isomorphic to the direct sum of

(
n−2
|T |−1

)
copies of the regular representation of ST ×

S[n−1]\T .

Proof. If ω ∈ Sn satisfies ω(n) = n and ω(n − 1) ∈ T then so does σω for all σ ∈
ST × S[n−1]\T × S{n}. In fact, the elements of T occupy the same set of positions in σω as

in ω. Since σρω = ρσω, we see that ST × S[n−1]\T acts on H̃n−3(Πn(T ), C) by permuting
basis cycles. Also, the orbit of ρω is determined by the set of positions that elements of
T occupy in ω. Hence the number of orbits is

(
n−2
|T |−1

)
.

Remark 9.7. John Shareshian [personal communication] has found an alternative proof
of Corollary 9.6 which involves computing the Möbius function of the σ-invariant subposet
of Πn(T ) for σ ∈ ST × S[n−1]\T by means of Crapo’s complementation formula [9].

Remark 9.8. Another class of partition posets with a splitting basis is the class of d-
divisible partition lattices [20], or the more general restricted block size partition lattices
considered in [7] and [8]. These are not geometric lattices in general; but they are in-
tersection lattices of subspace arrangements and they are shellable. The cycles in the
basis are polytopal. The symmetric group acts on these lattices and the splitting basis
reveals much information about the representation of the symmetric group on homology.
It would be interesting to find a geometric explanation for this spitting basis. One might
also consider restricted block size partition subposets of Πn(T ).
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