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Abstract

We classify partitions which are of maximal p-weight for all odd primes p. As
a consequence, we show that any non-linear irreducible character of the symmetric
and alternating groups vanishes on some element of prime order.

1 Introduction

A well-known result by Burnside states that any non-linear irreducible character of a finite
group vanishes on some element of the group. Recently this was refined in [5], where it
was shown that such a character always has a zero at an element of prime power order.
Moreover, it had been noticed in [5] that any non-linear irreducible character of a finite
simple group except possibly the alternating groups even vanishes on some element of
prime order. Here we show that this character property also holds for the alternating
and the symmetric groups. Indeed, this vanishing property is a simple consequence of a
combinatorial result on the weights of partitions, which may be of independent interest.
The elements of prime order p which we are going to use in the symmetric group Sn are

those of maximal weight, i.e., they are a product of
⌊

n
p

⌋
p-cycles. (Here b·c denotes the

floor function. Thus bxc is the integral part of x ∈ R.)

Consider a partition λ = (λ1, λ2, . . . , λm) of the integer n. For a given integer r ∈ N,
we denote by wr(λ) the r-weight of λ, i.e., wr(λ) is the maximal number of r-hooks that
can successively be removed from λ. The resulting partition after removing this maximal
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number of r-hooks is then the r-core λ(r) of λ (see [4] or [6] for details). In this paper, we
will only deal with the case where r is a prime number p. We present a classification of

the partitions which have maximal p-weight
⌊

n
p

⌋
for all (odd) primes p.

The relevance of this classification to the question about the vanishing of character values
is easily explained: The irreducible characters of Sn are labelled by the partitions λ of n.
The Murnaghan-Nakayama formula for character values in Sn shows that the irreducible
character labelled by λ vanishes on a p-element of maximal weight, if the p-weight of λ is
not maximal.

Our main result is then the following:

Theorem 1.1 Let λ be a partition of n ∈ N. Then the following holds:
(1) λ is of maximal p-weight for all primes p, if and only if one of the following occurs:

λ = (n) , (1n) or (22) .

(2) λ is of maximal p-weight for all primes p > 2, if and only if λ is one of the partitions
in (1), one of (n−1, 1), (2, 1n−2), where n = 2a+1 for some a ∈ N, or one of the following
occurs:

n = 6 : λ = (3, 2, 1)
n = 8 : λ = (5, 2, 1) or (3, 2, 13)
n = 9 : λ = (6, 3) or (23, 13)
n = 10 : λ = (4, 3, 2, 1)

This combinatorial classification result has the following consequence:

Theorem 1.2 Let n ∈ N. Let χ be any non-linear irreducible character of the symmetric
group Sn or the alternating group An. Then χ vanishes on some element of prime order.
If χ(1) is not a 2-power, then χ is zero on some element of odd prime order.

Remark 1.3 If an irreducible character χ of a finite group G has a zero at an element
of prime order p, then p divides χ(1); thus we can only expect zeros of odd prime order
if χ(1) is not a 2-power. Note that the irreducible characters of Sn and An of prime
power degree have been classified in [1]; from Theorem 1.1 we can immediately recover
the classification of irreducible characters of 2-power degree for these groups.
The converse of the statement above does not hold, even for G = Sn. We denote by [λ]
the irreducible character of Sn associated to the partition λ. Then [5, 2](1) = 14, but [5, 2]
does not vanish on any element of order 2. This is not just an accident for the prime 2:
[8, 13](1) = 120, but [8, 13] has no zero on elements of order 2 or 3.

Theorem 1.2 then allows us to settle the question left open in [5]. Combined with corre-
sponding results on sporadic groups [5, Theorem 3.4] and simple groups of Lie type [5,
Theorem 5.1] we obtain:

Corollary 1.4 Any non-trivial irreducible character of a finite simple group vanishes on
some element of prime order.
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We refer to [4, section 2.5] for the labelling of the irreducible characters of An. Now [4,
6.2.45] gives a simple relation between the p-weight of a partition λ and the defect of
the p-block containing the irreducible character labelled by λ. Therefore the following is
another consequence of Theorem 1.1:

Theorem 1.5 (1) The characters [n], [1n] and [22] are the only irreducible characters of
Sn which are in p-blocks of maximal defect for all primes p.
Apart from [12], [13], [14], [16], [22], the trivial character of Sn is the only irreducible char-
acter which is in the principal p-block for all primes p ≤ n.
(2) The characters {n}, {2, 1}± and {22}± are the only irreducible characters of An which
are in p-blocks of maximal defect for all primes p.
They belong to the principal p-block for all primes p ≤ n, except for the characters {2, 1}±
at p = 2.

The paper is organized as follows. Section 2 contains some results on hook lengths
and on large prime divisors of products of consecutive integers. In section 3 we consider
partitions of maximal weight and modify an algorithm of [1] to suit our purposes better.
The algorithms are used to generate “large” first column hook lengths in the partitions
under consideration. The final section contains the proofs of all the results stated above.

2 Preliminaries

We refer to [4], [6] for details about partitions, Young diagrams and hooks.
Consider a partition λ = (λ1, λ2, . . . , λl) of the integer n. Thus λ1 ≥ λ2 ≥ . . . ≥ λl > 0
and λ1 + λ2 + . . . + λl = n. We call the λi’s the parts of λ and l = l(λ) the length of λ.
Moreover for i ≥ 1, mi = mi(λ) denotes the number of parts equal to i in λ. The Young
diagram of λ consists of n nodes (boxes) with λi nodes in the ith row. We refer to the
nodes in matrix notation, i.e. the (i, j)-node is the jth node in the ith row. The (i, j)-hook
consists of the nodes in the Young diagram to the right of and below the (i, j)-node, and
including this node. The number of nodes in this hook is its hook length, denoted by hij .
For the hook lengths in the first column we write hi = hi1, i = 1, . . . , l; these first column
hook lengths of λ will play an important rôle in our investigation.

We will often make use of the following property of the weight of a partition (see [4,
2.7.37], [6, (3.3)]).

Lemma 2.1 If λ is a partition of p-weight wp(λ) = w, then λ has exactly w hooks of
length divisible by p. In particular, if λ has a hook of length divisible by p, then it has a
hook of length p.

We also recall some elementary results about hook lengths from [1, section 2].

Proposition 2.2 Let λ be a partition of n, l = l(λ). Let 1 ≤ i < j ≤ l. Then

hi + hj ≤ n + 1 + m1 .
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Lemma 2.3 Let λ be a partition of n. Suppose that s = hik and t = hjm where (i, k) 6=
(j, m).

(1) If i 6= j and k 6= m, then s + t ≤ n.

(2) If s + t > n, then either i = j = 1 (both hooks in the first row) or k = m = 1 (both
hooks in the first column).

Corollary 2.4 Let λ be a partition of n. For j ≥ 2, every hook length t > n−hj = n−hj1

is a first column hook length of λ.

We will also need some number-theoretic results. Improving on a result by Sylvester and
Schur, Hanson [2] proved the following:

Theorem 2.5 The product of k consecutive numbers all greater than k contains a prime
divisor greater than 3

2
k, with the only exceptions 3 · 4, 8 · 9 and 6 · 7 · 8 · 9 · 10.

Lemma 2.6 Let 1 < k ≤ 500, k 6= 3 or 4. Then any product of k consecutive integers
larger than 825.000 has a prime divisor q > 2k.

Proof. For k = 2 the result already follows from Theorem 2.5. So we may assume that
k ≥ 5.
Let n ∈ N with n > 825000. Assume that all prime factors in the k consecutive numbers
n − k + 1, . . . , n − 1, n are at most 2k.
With π(x) = #{p prime | p ≤ x}, for x ∈ R+, we obtain

(n

k

)k

<

(
n

k

)
=

∏
p|(n

k)

pbp ≤ nπ(2k)

where pbp is the maximal power of p dividing
(

n
k

)
(this is known to be bounded by n).

Equivalently,
(k − π(2k)) ln(n) < k ln k .

Note that for 5 ≤ k ≤ 500, k > π(2k) (this may be checked directly). Hence, if the
assumption holds then

ln(n) <
k ln(k)

k − π(2k)
.

But one easily checks (e.g., with Maple) that the maximum of the function on the right
hand side in the given region is bounded by 13.622. Hence the statement of the Lemma
holds for all n > 825000 > e13.622. �
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3 Some algorithms for hook lengths

We write Hλ for the multiset of hook lengths of a partition λ, and Fλ for the set of first
column hook lengths of λ, and we let hλ be the product of all the hook lengths of λ.

From now on, λ is always a partition of n, of length l.

The following easy proposition turns out to be very useful.

Proposition 3.1 Let p ≤ n be a prime for which wp(λ) =
⌊

n
p

⌋
. Let µ be the partition

obtained from λ by removing its first column. Set Aλ = {1, . . . , n} \ Fλ. Let Ap
λ and Hp

µ

denote the (multi)sets of elements divisible by p in the corresponding sets. Then their
(multiset) cardinalities are equal:

|Ap
λ| = |Hp

µ| .
Proof. Let F p

λ denote the set of first column hook lengths of λ divisible by p. By
Lemma 2.1 we have

|F p
λ | + |Hp

µ| = wp(λ) =
⌊

n
p

⌋
= |{j ∈ {1, . . . , n} | p|j}|
= |F p

λ ∪ Ap
λ| = |F p

λ | + |Ap
λ|

and hence the stated equality follows. �

Remark. Assume that λ has maximal p-weight for all primes p. Since every “missing”
first column hook length > 1 has at least one prime factor, the sum of the number of
prime factors in all hook lengths of µ should be at least the number of missing first column
hook lengths. Indeed, |Aλ| is the number of missing first column hook lengths and by the
above proposition

|Aλ| ≤
∑

p

|Ap
λ| =

∑
p

|Hp
µ|.

This is particularly useful in the cases where µ is small.

Corollary 3.2 Assume that wp(λ) =
⌊

n
p

⌋
for the prime p ≤ n.

(1) Let µ be obtained from λ by removing the first column. If p - hµ, then p, 2p, . . . ,
⌊

n
p

⌋
p

are first column hook lengths of λ.

(2) If n − l(λ) < p, then p, 2p, . . . ,
⌊

n
p

⌋
p are first column hook lengths of λ.

(3) If n − h2 < p, then p, 2p, . . . ,
⌊

n
p

⌋
p are first column hook lengths of λ.
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Proof. Parts (1) and (2) follow immediately from Proposition 3.1.
(3): By Corollary 2.4, all hooks of length divisible by p are in the first column. With µ
as in (1), p - hµ. Hence any multiple of p less than or equal to n is a first column hook
length, by (1). �

Assume now that λ is partition of n > 4, of maximal p-weight for all primes p > 2.
For all n, we can choose primes p1, p2 such that n

2
≤ p2 < p1 ≤ n [3]. By assumption, λ

must have hooks of length p1, p2, respectively.
Now by Lemma 2.3 these two hooks are either both in the first row or both in the first
column of λ; w.l.o.g. we assume that they are in the first column, i.e., p1, p2 are first
column hook lengths (if necessary, we replace λ by its conjugate partition). Then, again
by Lemma 2.3, any prime q with n

2
< q ≤ n is a first column hook length of λ.

Thus we can deduce the analogue of [1, Proposition 2.12] for our partition λ, i.e.:

Proposition 3.3 Suppose we have sequences of integers s1 < s2 < · · · < sr ≤ n, t1 <
t2 < · · · < tr ≤ n satisfying

(i) si < ti for all i;

(ii) s1 and t1 are primes > n
2
;

(iii) For 1 ≤ i ≤ r − 1, si+1 and ti+1 contain prime factors exceeding 2n − si − ti.

Then s1, . . . , sr, t1, . . . , tr are first column hook lengths of λ.

For n > 3.06 · 108, we know by [1, Theorem 3.1] that we can construct sequences as in
Proposition 3.3 that come close to n, and hence h1 is close to n, namely, n−h1 ≤ 225 (in
fact, if n is sufficiently large, we even obtain n − h1 ≤ 2). Since 225 is too large for our
purposes, we have to reduce the bound for n − h1 further by other means. Alternatively,
one could also try to prove the tight bound n− h1 ≤ 3 for the improved algorithm based
on the following result.

Proposition 3.4 Suppose λ is a partition of n ≥ 5, not a hook, which is of maximal
p-weight for all primes p > 2. Let s1 < s2 < · · · < sr ≤ n be a sequence of integers
satisfying

(i) s1 < s2 are first column hook lengths for λ;

(ii) for 3 ≤ i ≤ r, si has a prime divisor exceeding n − si−2.

Then s1, . . . , sr are first column hook lengths of λ.

Proof. We use induction on i to show that si is a first column hook length. Let i ≥ 3 and
assume that si−2, si−1 are first column hook lengths. Since si−1 > si−2 we have si−2 = hj

for some j > 1. Then apply Corollary 3.2 to deduce that si is a first column hook length. �
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Note that in the algorithm derived from Proposition 3.4 we never encounter the case
where the prime divisor is 2. It is clearly a strengthening of the algorithm derived from
Proposition 3.3, since it may be applied to each of the sequences si and ti. In particular,
any bound for the previous algorithm is also one for this new algorithm.

Example. In the algorithms for constructing sequences according to the propositions
above, we typically start with two “large” primes, which are always first column hook
lengths of our special partition λ (perhaps after conjugating λ). Take n = 16. Choose
s1 = 11, s2 = 13. (Note that we have hooks in λ of this length, and – possibly after
conjugation – they are both first column hook lengths.) Our previous algorithm (based
on Proposition 3.3) comes to a halt here. In the new algorithm of Proposition 3.4 we can
continue as s3 = 14 has a prime factor q = 7 > 5 = n − s1. Then s4 = 15 has a prime
factor q = 5 > 3 = n− s2. As 16 only has the prime factor q = 2 = n− s3, the algorithm
terminates here. So the partitions of 16 of maximal weight for all primes > 2 have (up
to conjugation) first column hook lengths 15,14,13,11; it is easy to check that this only
holds for the partition (116).

Remark 3.5 The algorithm of Proposition 3.4 is very efficient and may quickly be carried
out by hand to check that n−h1 ≤ 3 holds for all n ≤ 100. It was also tested with Maple
up to n = 7.5 · 108; it always gave the bound n − h1 ≤ 3. Indeed, it almost always ends
at n − h1 ≤ 1, except for few exceptional values where it ends on the bound 2 and four
cases where it ends on 3, namely for 10, 50, 100 and 15.856.204.

4 Proofs of the main results

We first give the proof of Theorem 1.1.
Let λ = (λ1, λ2, . . . , λl) be a partition of n, of length l = l(λ). The following notation is
fixed for λ:
m1 is the multiplicity of 1 as a part of λ, k = λ1 − λ2.
h1, h2, . . . , hl are the first column hook lengths of λ, Aλ is the set of its “missing” first
column hook lengths, d = n − h1.
Also, as in the previous section, µ is the partition obtained from λ by removing its first
column, i.e. µ = (λ1 − 1, λ2 − 1, . . .).

Let us assume

(A0) λ 6= (n), (1n).

After possibly replacing λ by its conjugate partition (which has the same p-weight as λ
for all p) we are also going to assume

(A1) l ≥ λ1.
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Lemma 4.1 We have
(1) k = µ1 − µ2 = h1 − h2 − 1.
(2) d = |µ| − µ1 (the depth of µ).
(3) h1(µ) ≤ d + k + 1.
(4) |µ| ≤ 2d + k.
(5) λ1 ≤ h1+1

2
≤ l.

(6) h2 ≥ m1.
(7) If h2 = m1, then λ is a hook partition. Otherwise h2 ≥ m1 + 2.
(8) h2 ≥ k.
(9) If h2 = k, then λ1 = l and λ2 = 1, and hence λ is a hook partition.

Proof. (1) and (2) are trivial. Part (3) follows from the fact that exactly k+1 rim nodes
of the (1,1)-hook of µ are in the first row and at most d rim nodes are outside the first
row.
Since µ2 ≤ d we get µ1 ≤ d + k and thus (4) follows from (3).
Part (5) uses the assumption (A1) and the definition of h1.
We have h2 ≥ m1 since λ 6= (1n) by (A0); thus (6) ´holds.
Part (7) is trivial.
For (8) and (9) note that h2 = λ2+l−2 = λ2+λ1+(l−λ1)−2, hence h2 ≥ k is equivalent to
(l−λ1)+2λ2 ≥ 2. Thus the assertion follows easily from (A1) and the fact that λ2 > 0. �

In addition to (A0), (A1), we now make the assumption

(A2) λ is of maximal p-weight for all primes p > 2.

We consider the products

π1 := (h1 + 1)(h1 + 2) · · ·n, π2 := (h2 + 1)(h1 + 2) · · · (h1 − 1)

having d and k factors, respectively (Lemma 4.1(1)); note that in the case where λ is a
hook, d = 0, so π1 = 1, and thus in this case we will only consider π2. By definition,
the factors h1 + 1, . . . , n and h2 + 1, . . . , h1 − 1 of π1, π2 are in Aλ. Thus Proposition 3.1
implies

Lemma 4.2 If p is an odd prime divisor of π1 or π2, then µ has a hook of length p.

Let us now deal with the “hook case”, i.e., d = 0. Because of (A1), the leg of the hook
is at least as long as its arm.

Proposition 4.3 Suppose that λ = (k + 1, 1n−k−1) with 1 ≤ k ≤ n−1
2

. Then n = 2a + 1
for some a ∈ N and k = 1, i.e., λ = (2, 1n−2).

Proof. By Schur [7] we know that π2 has a prime divisor q > k = n− l. If λ has maximal

q-weight, then by Corollary 3.2(2)
⌊

n
q

⌋
q is a first column hook length of λ. But since

n = h1 >
⌊

n
q

⌋
q > h2, this is a contradiction. So the only critical case is when q = 2 and
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the 2-weight is non-maximal. But when π2 has only the prime divisor q = 2, then we
must have k = 1 and π2 = n − 1 is a 2-power, as was to be shown. �

Hence we may from now on assume

(A3) λ is not a hook partition, i.e., d > 0 and λ2 > 1.

We have some further general relations for the parameters of λ:

Lemma 4.4 We have
(1) k ≤ 2d + 1.

(2) If h1 ≥ n
2

then d ≤ 2k + 1.

(3) |µ| ≤ 4d + 1.

(4) If h1 ≥ n
2

then |µ| ≤ 5k + 2.

Proof. (1) is trivial if k ≤ 1. If k > 1, we may by Lemma 4.1(8) apply Theorem 2.5. It
shows that one of the k factors in π2 has a prime divisor q > 3

2
k, or we have one of the

exceptional cases. But none of these can occur:
(i) h2 = 2, h1 = 5, k = 2. This is not possible, since by Lemma 4.1(5) l ≥ 3 and then
h2 = 2 implies λ2 = 1, a contradiction to (A3).
(ii) h2 = 7, h1 = 10, k = 2. We get that (µ1, µ2) is (3,1) or (4,2). Both of these partitions
are 3-cores, so we get a contradiction to Lemma 4.2.
(iii) h2 = 5, h1 = 11, k = 5. Then Lemma 4.1(9) implies that λ has to be a hook, a
contradiction to (A3).

As q is now a prime divisor of a number in Aλ, there has to be a hook in µ of length
q. (Lemma 4.2.) Thus q ≤ h1(µ). Using Lemma 4.1(3) we obtain the inequality
3
2
k < q ≤ h1(µ) ≤ d + k + 1, implying 1

2
k < d + 1. Thus certainly k ≤ 2d + 1. Part (2) is

proved in analogy with (1) by applying Theorem 2.5 to the d factors of π1. Note that by
assumption d ≤ h1. Then (3) and (4) follow from (1) and (2), using Lemma 4.1(4). �

We use these relations together with results from [1] and the previous section to reduce
d = n − h1 for partitions λ satisfying our assumptions:

Proposition 4.5 We have d ≤ 4.

Proof. When n ≤ 5 · 108, it was already remarked before that with the new algorithm
in the previous section we even get down to d ≤ 3. (We might also use [1] where it was
checked that in this range the old algorithm gets down to a bound d ≤ 4.)

Hence we may now assume that n > 5 · 108.
Then we obtain d ≤ 225 using [1, Theorem 3.1] (note that any bound for the old algorithm
is also a bound for the new one).

We assume that 5 ≤ d ≤ 225, and we want to arrive at a contradiction. By Lemma
4.4(1) we have k ≤ 451; Lemma 4.4 also implies that the defining factors of π1 and π2

are greater than 106. Indeed, these factors are bounded below by h2 = n − (d + k + 1) ≥
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n− (225+451+1) = n−677. We may thus apply Lemma 2.6 and get that π1 has a prime
divisor q > 2d. Thus µ must have a hook of length q, by Lemma 4.2. This hook has to be
in the first row as there are only d < q nodes in µ below the first row. By Lemma 4.1(3)
we have

2d < q ≤ h1(µ) ≤ d + k + 1 ,

and thus d ≤ k.
We may also apply Lemma 2.6 to π2 and get a prime divisor q′ > 2k ≥ 2d in one of the k
factors in π2. Hence µ must have a hook of length divisible by q′ in its first row. Moreover,
if q = q′, then µ must have two q-divisible hook lengths in its first row, by Proposition
3.1. We get

2k < q′ ≤ h1(µ) ≤ d + 1 + k

and thus k ≤ d. Hence d = k. As both q and q′ are at least 2d + 1, one of the two hook
lengths is at least 2d + 2. Thus we obtain

2d + 2 ≤ h1(µ) ≤ d + 1 + k ,

implying d + 1 ≤ k, a contradiction. �

To finish the proof of Theorem 1.1, we now have to consider the cases where 1 ≤ d ≤ 4.
Here we will see the exceptional cases coming up. First we deal with the case d = 1:

Proposition 4.6 Suppose that λ = (k + 2, 2, 1n−k−4) with k ≥ 0. Then n = 4 and
λ = (22), n = 6 and λ = (3, 2, 1) or n = 8 and λ = (3, 2, 13).

Proof. By Lemma 4.4(1) , k ≤ 3, and by (A1), n − k − 2 ≥ k + 2, hence n ≥ 2k + 4.
Here, µ = (k + 1, 1) and π1 = n.
If k = 0, then π2 = 1 and we use the next missing first column hook length, i.e.,
π3 = n − k − 3 = n − 3. As hµ = 2, both n and n − 3 have to be 2-powers, hence n = 4,
and thus λ = (22). If k = 1, then hµ = 3, and hence π1π2π3 = n(n − 2)(n − 4) = 2a3b

for some a, b ∈ N. This is only possible for n = 6 and n = 8, and in these cases
we have λ = (3, 2, 1) and λ = (3, 2, 13), respectively. If k = 2, then hµ = 8, and so
π1π2π3 = n(n − 2)(n− 3)(n − 5) has to be a 2-power, which is impossible. If k = 3, then
hµ = 2 · 3 · 5; as π3 = (n− 2)(n− 3)(n− 4) is divisible by 3 and has a prime divisor q ≥ 5
by Theorem 2.5, then both π1 = n and π2 = n − 6 ≥ 4 have to be 2-powers, which is
impossible. �

Next we deal with the case d = 2:

Proposition 4.7 Suppose that λ = (k+3, 3, 1n−k−6) or λ = (k+2, 22, 1n−k−6) with k ≥ 0.
Then n = 9 and λ = (23, 13).
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Proof. Lemma 4.4(1) shows that k ≤ 5. We have µ = (k + 2, 2) or µ = (k + 1, 12),
respectively. We have Aλ = {n, n − 1; n − 3, . . . , n − k − 2;
n − k − 4, n− k− 5} and Aλ = {n, n− 1; n− 3, . . . , n − k − 2; n− k− 5}, respectively. In
particular, the difference between the largest and smallest element is k +5 ≤ 10. One can
easily check that at most two elements in Aλ are powers of 2 and thus we have at least
k + 2 (respectively k + 1) elements of Aλ divisible by odd primes. Thus µ must have at
least k + 2 (respectively k + 1) hook lengths divisible by an odd prime. The former is not
possible at all and the latter only for k = 0. Here hµ = 6 and thus n(n− 1)(n− 5) = 2a3b

for some a, b ∈ N. This yields n = 9, and then λ = (23, 13). �

Now we discuss the case d = 3:

Proposition 4.8 Suppose λ is one of (k + 4, 4, 1n−k−8), (k + 3, 3, 2, 1n−k−8) or (k +
2, 23, 1n−k−8) with k ≥ 0. Then n = 10 and λ = (4, 3, 2, 1).

Proof. Lemma 4.4(1) shows that k ≤ 7. We have µ = (k + 3, 3), µ = (k + 2, 2, 1) or
µ = (k + 1, 13), respectively. Moreover, the difference between the largest missing first
column hook length n and the smallest one n − k − 7 is e = k + 7 ≤ 14. At most three
elements in Aλ are powers of 2, since otherwise n = 16, k = 7, a contradiction to (A1).
Thus we have at least |µ|−3 odd prime factors in the elements of Aλ. As the hook lengths
in µ are at most 11, no hook length has two different odd prime divisors. Thus µ must
have at least |µ| − 3 hook lengths divisible by an odd prime. This eliminates all possibil-
ities for µ except (3, 2, 1), (2, 13) and (14); note that in all of these cases the elements in
Aλ are not divisible by primes > 5. As π1 = n(n − 1)(n − 2) has a prime divisor q ≥ 5
by Theorem 2.5, µ = (14) cannot occur. For µ = (2, 13) we have hµ = 2 · 3 · 5, hence as
π1 is divisible by 3 and 5, the other elements n − 4 and n − 8 in Aλ have to be 2-powers;
but this is impossible. If µ = (3, 2, 1), then Aλ = {n, n − 1, n − 2, n − 4, n − 6, n − 8}. A
parity consideration shows that this is only possible for n = 10. �

Proposition 4.9 The case d = 4 is not possible.

Proof. By Remark 3.5 we may assume that n is large so that we may apply Lemma
2.6 to π2, if k 6= 0, 1, 3, 4. We conclude as before that µ must have a hook divisible by a
prime q > 2k so that 2k < q ≤ h1(µ) ≤ d + k + 1 yielding k ≤ d = 4. We thus have in
any case k ≤ 4 and hence |µ| ≤ 12 by Lemma 4.1. Applying Theorem 2.5 to π1 we see
that µ must have a hook of length 7 or 11. If also k = 4 then Theorem 2.5 applied to π2

shows that µ has another hook of length 7 or 11. But these both have to be in the first
row of µ, and this is easily seen not to be possible. If k = 2, 3 then Theorem 2.5 shows
that µ has another hook of length divisible by 5. This is only possible for µ = (7, 4),
µ = (6, 4) or µ = (5, 3, 1). If k ≤ 1 then h1(µ) ≤ 6, a contradiction. As π1 is divisible
by 3, but µ = (5, 3, 1) is a 3-core, this is excluded. For the other two possibilities, apply
Theorem 2.5 to π3 = (n− k− 6)(n− k− 7)(n− k− 8)(n− k− 9) to see that µ must have
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a further hook of length divisible by 7 or 11, which is not possible. �

Now the proof of Theorem 1.1 is complete, and with this result at hand, we may now
prove Theorem 1.2 and Theorem 1.5.

Proof of Theorem 1.2. First, take a non-linear irreducible character χ of Sn; thus,
χ = [λ], where λ is a partition of n different from (n), (1n). As [22] is zero on transpositions,
and [22](1) = 2, we may now assume that λ 6= (22). Hence by Theorem 1.1(1) there exists

a prime p, such that wp(λ) < w =
⌊

n
p

⌋
. By the Murnaghan-Nakayama formula (see [4,

2.4.7] or [8, 7.17.3]), the character then vanishes on a product of w p-cycles. Indeed, by
Theorem 1.1(2) we may choose p > 2 except for the partitions occurring in this case; we
deal with these below to check the final assertion.
Now consider a non-linear irreducible character of An, labelled by λ, hence λ 6= (n), (1n),
(2, 1),(22). If λ is not of maximal p-weight for some p > 2, then χ vanishes on the same
element σ of order p as [λ] (note that σ ∈ An). Thus, the only critical characters are
the ones labelled by the exceptional partitions listed in Theorem 1.1(2), which are of
non-maximal p-weight only for p = 2. Of course, it suffices to consider one of a pair of
conjugate partitions.
Now, if n = 2a + 1, a > 1, then (n − 1, 1) is of 2-weight 2a−1 − 1, and the character
[n − 1, 1] and its irreducible restriction to An vanish on a product of 2a−1 transpositions
(which is an element of An); note that [n− 1, 1] is of 2-power degree 2a . The irreducible
characters of A6 (and S6) labelled by (3, 2, 1) are zero on elements of cycle type (22, 12)
(these characters are of degree 8 and 16, respectively). The character [5, 2, 1] and its
irreducible restriction to A8 is zero on elements of cycle type (22, 14) (its degree is 64),
and [6, 3] and its irreducible restriction to A9 is zero on elements of cycle types (24, 1) and
(32, 13). Finally, the irreducible characters of A10 (and S10) labelled by (4, 3, 2, 1) are zero
on elements of cycle types (24, 12), (22, 16) and (32, 14). �

Proof of Theorem 1.5. (1). The first assertion is immediate from Theorem 1.1. The
second follows from the first, using that for n 6∈ {1, 2, 3, 4, 6} there exist primes p such
that n

2
< p < n − 1 to see that (1n) is not in the principal p-block.

(2) This follows similarly as (1). �
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