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Abstract

A locally finite face-to-face tiling T of euclidean d-space E
d is monotypic if each

tile of T is a convex polytope combinatorially equivalent to a given polytope, the
combinatorial prototile of T . The paper describes a local characterization of combi-
natorial tile-transitivity of monotypic tilings in E

d; the result is the Local Theorem
for Monotypic Tilings. The characterization is expressed in terms of combinatorial
symmetry properties of large enough neighborhood complexes of tiles. The theorem
sits between the Local Theorem for Tilings, which describes a local characteriza-
tion of isohedrality (tile-transitivity) of monohedral tilings (with a single isometric
prototile) in E

d, and the Extension Theorem, which gives a criterion for a finite
monohedral complex of polytopes to be extendable to a global isohedral tiling of
space.
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1 Introduction

The local characterization of a global property of a spatial structure is usually a chal-
lenging problem. In the context of monohedral tilings in euclidean d-space E

d, certain
global symmetry properties can be detected locally. The Local Theorem for Tilings says
that a tiling in E

d is isohedral if and only if the large enough neighborhoods of tiles
satisfy certain conditions; see Theorem 4.1 for a precise statement, as well as Section 4
for general comments. This result is closely related to the Local Theorem for Delone
Sets, which locally characterizes those sets among the uniformly discrete sets in E

d that
are orbits under a crystallographic group. The two theorems were obtained by Delone,
Dolbilin, Shtogrin and Galiulin well over 25 years ago (see [5]), although a proof of the
Local Theorem for Tilings did not appear in print until Dolbilin & Schattschneider [8];
see also Dolbilin, Lagarias and Senechal [9] for generalizations of the Local Theorem for
Delone Sets.

In this paper we describe a local characterization of combinatorial tile-transitivity of
monotypic tilings in E

d; the result is the Local Theorem for Monotypic Tilings (see Theo-
rem 3.1) proved in Section 3. This characterization is expressed in terms of combinatorial
symmetry properties of large enough neighborhood complexes (coronas) of tiles. How-
ever, unlike in the original Local Theorem for Tilings, where the symmetries are induced
by global isometries of the ambient space, the combinatorial symmetries are (at least, a
priori) only defined on the neighborhood complexes (that is, locally).

In a sense, the new theorem sits between the Local Theorem for Tilings and the so-
called Extension Theorem; the latter, in turn, is based on the Local Theorem for Tilings
and Alexandrov’s theorem in [1], and gives a criterion for a finite monohedral complex of
polytopes to be extendable to a global isohedral tiling of space. See [6, 7] for a discussion
and applications of the Extension Theorem. In the Extension Theorem, we begin with
a finite monohedral complex, not with a global tiling, and then proceed by extending
this finite complex to a global tiling by means of globally operating isometries of space.
However, in the Local Theorem for Monotypic Tilings, we already have a global tiling
and now must patch together global combinatorial isomorphisms from a given set of
local isomorphisms. Note that the term “Extension Theorem” was used in Grünbaum &
Shephard [15] to refer to a different, albeit related, theorem.

2 Basic notions and facts

A tiling T of euclidean d-space E
d is a countable family of closed subsets of E

d, the tiles
of T , which cover E

d without gaps and overlaps (see Grünbaum & Shephard [15]). All
tilings are taken to be locally finite, meaning that each point of E

d has a neighborhood
that meets only finitely many tiles. We shall assume that the tiles of T are convex d-
polytopes. (For a combinatorial analogue of the Local Theorem for Tilings it actually
suffices to require the tiles to be homeomorphic images of convex polytopes; however, it
is convenient to assume convexity. We shall elaborate on this in Remark 3.10.) A tiling
T by convex d-polytopes is said to be face-to-face if the intersection of any two tiles is a
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face of each tile, possibly the empty face. For a face-to-face tiling T , the set of all faces
of tiles, ordered by inclusion, becomes a lattice when the entire space is adjoined as an
improper maximal face of rank d + 1 (see Stanley [22]); this is the face-lattice of T and is
often identified with T (the improper face is usually ignored).

Our main interest is in locally finite face-to-face tilings which are monotypic. Let T be
a convex d-polytope. Recall that a tiling T of E

d is monotypic of type T if each tile of T is
a convex d-polytope combinatorially equivalent to T (see [3, 16, 20, 21]). The polytope T
is the combinatorial prototile of T , and T is said to admit the tiling T . Monotypic tilings
are combinatorial analogues of monohedral tilings, these being tilings in which each tile
is congruent to a single tile.

A locally finite face-to-face tiling T of E
d is combinatorially tile-transitive if its com-

binatorial automorphism group Γ (T ) is transitive on the tiles. Such a tiling T must
necessarily be monotypic. We mention in passing that combinatorial tile-transitivity is
equivalent to topological tile-transitivity. (Recall that T is topologically tile-transitive if
for any two tiles P, Q of T there is a homeomorphism of E

d that maps T onto T and P
onto Q.) In fact, since the tiles are convex polytopes, each combinatorial automorphism
of T can be realized by a homeomorphism of E

d; moreover, this can be done in such a
manner that the entire group Γ (T ) is realized by a group of homeomorphisms of E

d. In
other words, there is a group of homeomorphisms of E

d which is isomorphic to Γ (T ) and
has the same action on the face-lattice of T as Γ (T ).

We frequently make use of the following lemma. Let C be a subcomplex of T such
that every maximal face of C is a tile of T ; that is, every flag (maximal set of mutually
incident faces) of C is also a flag of T (again we omit the improper face of T of rank
d + 1). Recall that C is flag-connected if any two flags Φ and Ψ of C can be joined by a
finite sequence of flags

Φ = Φ0, Φ1, . . . , Φn = Ψ

of C such that Φj−1 and Φj differ by at most one face (that is, Φj−1 and Φj are adjacent
flags), for each j = 1, . . . , n; see, for example, [17, Sect.2A].

Lemma 2.1 Let C be a subcomplex of T such that every maximal face of C is a tile of
T . Let C be flag-connected, and let Φ be a flag of C. Then every isomorphism α between
C and a subcomplex of T is uniquely determined by its effect on Φ.

Proof: Since every face of C is contained in a flag of C and every flag of C is also a flag
of T , it suffices to consider the action of α on the flags. Now let Ψ be a flag of C, and let
Φ = Φ0, Φ1, . . . , Φn = Ψ be a sequence of flags of C such that Φj−1 and Φj are adjacent
for each j. Every isomorphism α preserves adjacency of flags; that is, α takes a pair of
adjacent flags to a pair of adjacent flags. In particular, if Φj−1 and Φj differ in their
i-faces, then α(Φj−1) and α(Φj) also differ in their i-faces and hence α(Φj) is uniquely
determined by α(Φj−1). It follows that α(Ψ) is uniquely determined by α(Φ). This proves
the lemma. 2

In a locally finite face-to-face tiling T , any two tiles P and Q of T can be joined by a
finite sequence of tiles

P = P0, P1, . . . , Pn−1, Pn = Q (2.1)
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of T such that Pj−1∩Pj is a face of Pj−1 and Pj of dimension at least d−2, for j = 1, . . . , n;
we call n the length of the sequence.

Definition 2.2 The minimum length of a sequence of tiles joining P and Q as in (2.1)
is called the distance of P and Q in T and is denoted by d(P, Q). (Note that consecutive
tiles in any such sequence are supposed to intersect in faces of dimension at least d − 2.)

Specifically we are interested in sequences of tiles

P = P0, P1, . . . , Pn−1, Pn = Q

of T , in which Pj−1 and Pj share a facet for j = 1, . . . , n. Any two tiles P and Q of T
can be joined by such a sequence. In fact, the following more general statement is true;
we include a proof for completeness.

Lemma 2.3 Let T be a locally finite face-to-face tiling of Ed (or spherical or hyperbolic
d-space) by convex d-polytopes, let P and Q be tiles of T , and let F be a face of P . Then
F is a face of Q if and only if there exists a sequence of tiles

P = P0, P1, . . . , Pn−1, Pn = Q

of T , each containing F , such that Pj−1 and Pj share a facet for j = 1, . . . , n.

Proof: One direction of the lemma is obvious. We prove the other direction for any
locally finite face-to-face tiling T of a spherical, euclidean or hyperbolic d-space Xd. Note
that the case d = 1 is trivial. Now let d ≥ 2 and assume inductively that the statement
already holds for tilings of Xj with j ≤ d − 1. Let T be a locally finite face-to-face tiling
of Xd, let P and Q be tiles of T , and let F be a face of P and Q of dimension k (say).
Consider the star st(F ) of F in T , that is, the subcomplex of T consisting of the tiles of
T which contain F , and their faces. Let x be a relative interior point of F , and let S be
a small (d − 1)-sphere centered at x such that S only intersects those faces of T which
contain F . Then S ∩F is a great (k−1)-sphere of S. Let S ′ be a great (d−k−1)-sphere
of S complementary to S ∩ F in S. Then st(F ) induces a locally finite face-to-face tiling
T ′ on S ′ by spherical (d− k − 1)-polytopes, such that the tiles of T ′ are the intersections
of S ′ with the tiles in st(F ), and the faces of the tiles in T ′ correspond to the faces of
st(F ) containing F . In particular, P ′ := P ∩ S ′ and Q′ := Q ∩ S ′ are tiles of T ′. By
the inductive hypothesis for T ′ (applied with the empty face in place of F ), there is a
sequence of tiles

P ′ = P ′
0, P

′
1, . . . , P

′
n−1, P

′
n = Q′

of T ′ such that P ′
j−1 and P ′

j have a facet in common for j = 1, . . . , n. Now, if P =
P0, P1, . . . , Pn−1, Pn = Q is the corresponding sequence of tiles contained in st(F ), then
each tile Pj contains F and any two consecutive tiles Pj−1 and Pj meet again along a
facet. This completes the proof. 2

Before we move on, observe that there are variants of the distance function of Defini-
tion 2.2 for the tiles of T . They are obtained by requiring that any two consecutive tiles
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in (2.1) intersect in a face of dimension at least l, for a given l ≤ d− 1; the corresponding
number dl(P, Q) is generally distinct from d(P, Q) if l 6= d− 2. In what follows we always
take l = d − 2; this corresponds to the original distance function d(., .) of Definition 2.2.
(For arbitrary tilings which are not necessarily face-to-face, still another variant requires
that any two consecutive tiles in (2.1) have non-empty intersection. However, we will not
further discuss this here.)

Let P be a tile of T , and let k ≥ 0 be an integer. The kth corona of P , denoted by
Ck(P ), is the subcomplex of T consisting of the tiles Q of T with d(P, Q) ≤ k, and their
faces. In particular, the 0th corona C0(P ) is the face-lattice of P (consisting of P and its
faces), and the 1st corona C1(P ) is the set of faces of tiles that intersect P in a face of
dimension at least d− 2. More generally, if k ≥ 1, then the kth corona Ck(P ) is the set of
faces of tiles that intersect a tile in Ck−1(P ) in a face of dimension at least d − 2. Note
that, by definition, a corona is a complex, not a set of tiles or a union of tiles; this differs
from the use of the term in other articles, for example, in [8]. The term “corona” was
introduced in [11] (but was used in a slightly different meaning).

It is possible for different tiles P and Q in a tiling to have the same corona, that is,
Ck(P ) = Ck(Q) for some k (and hence Cj(P ) = Cj(Q) for each j ≥ k). Figure 1 depicts a
patch of a plane tiling by triangles, in which two tiles P and Q have the same 1st corona
(see [19]).
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Figure 1: The tiles P and Q have the same 1st corona. It consists of the dotted tiles as
well as P and Q, and their vertices and edges.

Therefore, in our considerations, it is important to distinguish coronas by their tile of
reference. Accordingly, a centered kth corona is a pair (P, Ck(P )) consisting of a tile P
of T , the center of the centered kth corona, and its kth corona Ck(P ) in T . We usually
drop the center P from the notation when it is clear from the context, that is, we simply
denote (P, Ck(P )) by Ck(P ).

Two centered kth coronas Ck(P ) and Ck(P
′) of T are isomorphic if there exists an
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isomorphism of complexes α : Ck(P ) → Ck(P
′) with α(P ) = P ′; such a map α is called

an isomorphism of centered kth coronas. In this situation, since α maps P to P ′, it also
preserves distances from the centers and thus restricts to an isomorphism α : Cj(P ) →
Cj(P

′) of centered jth coronas for each j ≤ k. Similarly, any automorphism α of the whole
tiling T that maps P to P ′ restricts to an isomorphism α : Cj(P ) → Cj(P

′) of centered
jth coronas for each j ≥ 0.

If Ck(P ) is a centered kth corona, we denote by Γ (Ck(P )) its group of automorphisms;
once again, by definition, each such automorphism fixes the center P . (In other words, this
group is the stabilizer of the center in the full automorphism group of the corresponding
“non-centered” corona.)

The automorphism groups of centered coronas at increasing levels k are related. In
particular, if P is a tile of T , then we have the following infinite chain of subgroup
relationships,

ΓP (T ) ⊆ . . . ⊆ Γ (Ck(P )) ⊆ Γ (Ck−1(P )) ⊆ . . . ⊆ Γ (C1(P )) ⊆ Γ (C0(P )) = Γ (P ), (2.2)

with the stabilizer ΓP (T ) of P in Γ (T ) on the left and the combinatorial automorphism
group Γ (P ) of P on the right. In fact, if k ≥ 1, then every automorphism of Ck(P ) restricts
to an automorphism of Ck−1(P ) and is uniquely determined by its effect on Ck−1(P ); note
that, since Ck−1(P ) contains a flag and Ck(P ) is flag-connected, the latter follows from
Lemma 2.1. Similarly, if k ≥ 0, then every automorphism of T that fixes P restricts to an
automorphism of Ck(P ) and is uniquely determined by this restriction. Note that Γ (P )
is a finite group, so there can only be a finite number of proper ascents in (2.2).

3 The Local Theorem for Monotypic Tilings

The following Local Theorem for Monotypic Tilings is a combinatorial analogue of the
Local Theorem for Tilings (see Section 4).

Theorem 3.1 Let T be a locally finite face-to-face tiling of E
d by convex polytopes. Then

T is combinatorially tile-transitive if and only if there exists a positive integer k with the
following properties:

1. Any two centered kth coronas of T are isomorphic (as centered coronas).

2. Γ (Ck(P )) = Γ (Ck−1(P )) for each tile P of T .

Moreover, in this case, Γ (Ck(P )) = ΓP (T ).

Before proceeding with the proof, we illustrate by way of an example that the second
condition of Theorem 3.1 is essential and cannot be ignored. Consider plane tilings T by
quadrilaterals, in which each tile has one vertex of valence 3 and three vertices of valence
5; that is, T is a homogeneous tiling of type [3 . 53] (see [15]). It follows from the results of
Grünbaum & Shephard [13, Thm.4.8, Fig.4.4] that such tilings T cannot be combinatori-
ally tile-transitive (that is, T cannot be homeohedral). Clearly, the 1-st coronas of T are
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mutually isomorphic; that is, T satisfies the first condition of Theorem 3.1 with k = 1.
However, T fails to satisfy the second condition with k = 1, so Theorem 3.1 will not allow
the conclusion that T is combinatorially tile-transitive. In fact, the automorphism groups
of the 0-th corona and the 1-st corona of a tile P are not the same. The 0-th corona of P
consists of P and its faces, and its automorphism group is the dihedral group of order 8.
On the other hand, every automorphism of the centered 1-st corona of P must necessarily
fix the 3-valent vertex of P ; however, there are only two such automorphisms. Note that
[13] also discusses more general classes of tilings with similar properties.

Proof of Theorem 3.1: First note that, because of the first condition, the second could be
replaced by the weaker condition requiring only that the two consecutive groups coincide
for at least one tile, not all tiles, P .

Now suppose that Γ (T ) is combinatorially tile-transitive. If P and P ′ are tiles of T ,
then every element γ ∈ Γ (T ) that maps P to P ′ necessarily induces an isomorphism of
centered coronas between the centered kth coronas of P and P ′, for each k ≥ 0; thus the
first condition is met for every integer k ≥ 0. Moreover, we have

Γ (Cj(P
′)) = γΓ (Cj(P ))γ−1

for each j ≥ 0, so that an integer k that satisfies the second condition for P will also
satisfy it for P ′; thus k will not depend on the tile. But if P is a tile of T , then it
is a polytope with a finite group Γ (P ), so an infinite chain of subgroups of Γ (P ) must
necessarily stutter. Hence, in the infinite chain of (2.2), there must be a pair of consecutive
subgroups, Γ (Ck(P )) and Γ (Ck−1(P )) for some positive integer k (say), which coincide.
This proves that the two conditions of the theorem are necessary.

The proof of sufficiency is more complicated. Let k be a positive integer satisfying the
two conditions of the theorem. We shall describe how a local isomorphism of centered kth

coronas can be extended step by step to an isomorphism of the whole tiling T , thereby
becoming a global isomorphism. More specifically, let P and P ′ be tiles of T . Then, by
the first condition of the theorem, there exists an isomorphism of centered kth coronas α :
Ck(P ) → Ck(P

′); in particular, α(P ) = P ′. We will prove that α induces an automorphism
of T which moves P to P ′.

We break the sufficiency proof into a series of lemmas which accomplish the following
steps.

1. Every isomorphism of two centered (k − 1)st coronas of T extends uniquely to an
isomorphism of the corresponding two centered kth coronas (see Lemma 3.2).

2. Every isomorphism of two centered kth coronas α extends uniquely to neighboring
centered kth coronas (see Lemma 3.3). More precisely, if α : Ck(P ) → Ck(P

′) is given
and Q is a tile with d(P, Q) = 1, then there exists a unique isomorphism of centered
kth coronas β : Ck(Q) → Ck(Q

′) such that α and β coincide on both Ck−1(P ) and
Ck−1(Q); necessarily, Q′ = α(Q).

3. Every isomorphism of two centered kth coronas α extends uniquely along sequences
of tiles in which any two consecutive tiles share a facet (see Lemmas 3.4 and 3.5).
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More precisely, if P = P0, P1, . . . , Pn−1, Pn = Q is such a sequence connecting two
tiles P and Q, then α : Ck(P ) → Ck(P

′) induces uniquely an isomorphism of centered
kth coronas β : Ck(Q) → Ck(Q

′) determined by a sequence of isomorphisms of
centered kth coronas α = β0, β1, . . . , βn−1, βn = β, with βi : Ck(Pi) → Ck(P

′
i ) for

some P ′
i . In particular, β does not depend on the original sequence of tiles chosen

to connect P and Q.

4. Every isomorphism of two centered kth coronas α induces a global automorphism of
T (see Lemmas 3.5 and 3.6). More precisely, if α : Ck(P ) → Ck(P

′) is extended in
this fashion along sequences of tiles throughout T , then each resulting isomorphism
of centered kth coronas β : Ck(Q) → Ck(Q

′) restricts faithfully to a local mapping
αQ between the face lattices of Q and Q′, and all these local mappings fit together
coherently to determine an extension of α to a global automorphism of T .

For the following lemmas bear in mind that k is always a positive integer satisfying
the two conditions of the theorem.

Lemma 3.2 Let P, P ′ be tiles of T , and let ᾱ : Ck−1(P ) → Ck−1(P
′) be an isomorphism

of centered (k − 1)st coronas. Then there exists a unique isomorphism of centered kth

coronas α : Ck(P ) → Ck(P
′) which extends ᾱ, that is, α|Ck−1(P ) = ᾱ.

Proof: First observe that every automorphism of the (k − 1)st corona Ck−1(P ) extends
uniquely to an automorphism of the kth corona Ck(P ). In fact, Γ (Ck(P )) = Γ (Ck−1(P ))
and Ck(P ) is flag-connected, so every element γ̄ ∈ Γ (Ck−1(P )) uniquely determines an
element γ ∈ Γ(Ck(P )) such that γ|Ck−1(P ) = γ̄ (see Lemma 2.1).

Now let α : Ck(P ) → Ck(P
′) be any isomorphism of centered kth coronas; by assump-

tion such isomorphisms exist. Then α restricts to an isomorphism of centered (k − 1)st

coronas, and
γ̄ := α−1|Ck−1(P ′) ᾱ : Ck−1(P ) → Ck−1(P )

is an automorphism of Ck−1(P ). In particular,

α|Ck−1(P ) γ̄ = ᾱ.

If γ is the extension of γ̄ to Ck(P ), then the isomorphism of centered kth coronas αγ :
Ck(P ) → Ck(P

′) satisfies

(αγ)|Ck−1(P ) = α|Ck−1(P ) γ̄ = ᾱ.

Thus αγ is an extension of ᾱ, and is unique, by the uniqueness of γ. Now the lemma is
immediate if we replace the original α by αγ. 2

Lemma 3.3 Let P, P ′ be tiles of T , let α : Ck(P ) → Ck(P
′) be an isomorphism of centered

kth coronas, and let Q be a tile with d(P, Q) = 1. Then there exists a unique isomorphism
of centered kth coronas β : Ck(Q) → Ck(Q

′), with Q′ = α(Q), such that

α|Ck−1(Q) = β|Ck−1(Q) and α|Ck−1(P ) = β|Ck−1(P ).
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Proof: First observe that the lemma only claims that α and β agree on the centered
(k − 1)st coronas Ck−1(P ) and Ck−1(Q), but not also on the (larger) intersection of the
corresponding kth coronas Ck(P ) and Ck(Q). (However, the latter will follow once the
theorem has been proved.)

Let Q′ := α(Q). Clearly, d(P ′, Q′) = 1. Then the restricted mapping α|Ck−1(Q) is an
isomorphism of centered (k−1)st coronas between Ck−1(Q) and Ck−1(Q

′). By Lemma 3.2,
it has a unique extension to an isomorphism of centered kth coronas β : Ck(Q) → Ck(Q

′),
so in particular we have α|Ck−1(Q) = β|Ck−1(Q).

We now prove that the relationship between α and β is symmetric. In fact, if k ≥ 2,
then Ck−2(P ) ⊆ Ck−1(Q), so we can directly appeal to Lemma 2.1 using that α|Ck−2(P ) =
β|Ck−2(P ). However, the argument is more complicated if k = 1. First we make the
following general observation, which is valid for any k ≥ 1.

If G, H are tiles of T contained in Ck(P ) ∩ Ck(Q) such that G ∩ H is a facet and
α|C0(G) = β|C0(G), then also

α|C0(H) = β|C0(H). (3.1)

Notice that α(H), β(H) each must meet α(G) = β(G) in the common facet α(G ∩ H) =
β(G∩H), so they must actually be the same tiles; but since α and β already coincide on
each face of G ∩ H , this then implies that α|C0(H) = β|C0(H).

We now complete the argument as follows. Since d(P, Q) = 1, the tiles P and Q
intersect in a face of dimension at least d − 2. If P ∩ Q is a facet and again k = 1, then
the above argument (applied with G = Q and H = P ) shows that α and β coincide on
C0(P ) = Ck−1(P ), as claimed. On the other hand, if P ∩ Q is a (d − 2)-face, then there
exists a sequence of tiles

Q = Q0, Q1, . . . , Qm−1, Qm = P,

each containing P ∩ Q, such that Qj−1 ∩ Qj is a common facet of Qj−1 and Qj for
j = 1, . . . , m. We now apply the same argument as before to the pairs of consecutive tiles
in this sequence, beginning with Q = Q0, Q1, and successively moving from Qj−1, Qj to
Qj , Qj+1 until we reach Qm−1, Qm = P . Then, at this final stage, we can conclude that α
and β coincide on C0(P ) = Ck−1(P ). 2

In summary, we now know that every isomorphism of centered kth coronas extends
uniquely to neighboring centered kth coronas, in the sense that each new mapping agrees
with the original isomorphism on at least the two corresponding centered (k−1)st coronas.

We now exploit the simply-connectedness of the underlying space to further extend
such isomorphisms. Once again, let P and P ′ be tiles of T , and let α : Ck(P ) → Ck(P

′)
be an isomorphism of centered kth coronas. Let Q be any tile of T , not necessarily with
d(P, Q) = 1. We shall extend α along finite sequences of tiles

P = P0, P1, . . . , Pn−1, Pn = Q, (3.2)

where Pj−1∩Pj is a facet of Pj−1 and Pj , and hence d(Pj−1, Pj) = 1, for each j = 1, . . . , n.
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Lemma 3.4 Let P = P0, P1, . . . , Pn−1, Pn = Q be a finite sequence of tiles as in (3.2), let
P ′ be a tile of T , and let α : Ck(P ) → Ck(P

′) be an isomorphism of centered kth coronas.
Then α admits a unique extension along the sequence to an isomorphism of centered kth

coronas
β : Ck(Q) → Ck(Q

′),

with Q′ a tile.

Proof: We repeatedly apply Lemma 3.3 using that any two consecutive tiles in the se-
quence are at distance 1. Then we obtain a sequence of isomorphisms of centered kth

coronas
α =: β0, β1, . . . , βn−1, βn =: β,

where βj : Ck(Pj) −→ Ck(P
′
j) for j = 0, 1, . . . , n, with P ′

0 = P ′ and P ′
j = βj−1(Pj) for

j ≥ 1. In particular, β is an isomorphism between the centered kth corona of Q and the
centered kth corona of Q′ := P ′

n. At each stage j, the extension of βj−1 to βj is unique,
hence β is uniquely determined by α and the given sequence of tiles. 2

In the next lemma we show that the extension β of α as in Lemma 3.4 does not actually
depend on the sequence of tiles joining P to Q. Suppose we have two such sequences of
tiles,

P = P0, P1, . . . , Pn−1, Pn = Q

and
P = R0, R1, . . . , Rm−1, Rm = Q

(say), where again consecutive tiles in a sequence intersect in facets. Consider the dual
edge graph G of T ; this is a graph in E

d whose nodes are the barycenters of the tiles in T
and whose arcs (“edges”) connect the barycenters of tiles that share a common facet. The
sequences of tiles which join P and Q and in which consecutive tiles meet along facets all
correspond to paths along the edges of G that start at the barycenter of P and end at the
barycenter of Q. Now, since the underlying space E

d is simply-connected, the two paths
associated with the two sequences joining P and Q are homotopic and can be moved into
each other by a homotopy that passes only over (d−2)-faces of T (that is, it never passes
over faces of dimension less than d−2). Each time the homotopy passes over a (d−2)-face
F (say), the corresponding sequence of tiles changes in such a way that its string of tiles
containing F is replaced by a new (complementary) string of tiles containing F , such that
the two strings together completely surround F in T and begin with the same tiles and
end with the same tiles. Therefore it suffices to show that the extension of α to the kth

corona of Q does not depend on local changes (standard elementary moves) of this kind
in a sequence.

Lemma 3.5 Let P , P ′, Q, Q′ be tiles of T , let α : Ck(P ) → Ck(P
′) and β : Ck(Q) →

Ck(Q
′) be isomorphisms of centered kth coronas, and let β be obtained as in Lemma 3.4

by extending α along a sequence of tiles connecting P and Q as in (3.2). Then β does not
depend on the particular choice of sequence of tiles.
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Proof: Let F be a (d − 2)-face of T . We consider sequences with tiles from st(F ) (the
star of F ), where again any two consecutive tiles in a sequence meet in a facet. First we
explain why it is sufficient to consider closed sequences of tiles and their corresponding
sequences of isomorphisms.

Clearly, if R is a tile in st(F ), then any two sequences of tiles which connect R to
another tile S in st(F ) with tiles from st(F ), yield, in an obvious way, a “closed” sequence
of tiles from st(F ) which begins and ends at R and contains S, and vice versa. A similar
statement is also true for sequences of isomorphisms of centered kth coronas. In fact, if
R, S are tiles in st(F ) and σ : Ck(S) → Ck(S

′) is an isomorphism of centered kth coronas,
then any two sequences of isomorphisms of centered kth coronas which extend σ to Ck(R)
along two sequences of tiles which connect S to R in st(F ), determine a sequence of
isomorphisms of centered kth coronas which begins and ends with isomorphisms defined
on Ck(R), and contains σ, and vice versa. Here we are using the fact, established in
Lemma 3.3, that the relationship of one isomorphism being the extension of another to a
neighboring corona is symmetric. Our task is to show that this new sequence of isomor-
phisms is in fact “closed”, meaning that it begins and ends with the same isomorphism
on Ck(R).

Now let R = R0, R1, . . . , Rl−1, Rl = R be a closed sequence of tiles from st(F ), let
γ : Ck(R) → Ck(R

′) be an isomorphism of centered kth coronas, and let

γ =: γ0, γ1, . . . , γl−1, γl =: δ

be the corresponding sequence of isomorphisms of centered kth coronas which extends γ
along the sequence of tiles, where γj : Ck(Rj) −→ Ck(R

′
j) for j = 0, 1, . . . , l, with R′

0 = R′

and R′
j = βj−1(Rj) for j ≥ 1. We need to show that δ = γ.

Once again we appeal to the symmetry in Lemma 3.3. For each j ≥ 1, the isomor-
phisms γj−1 and γj agree on the (k − 1)st centered coronas Ck−1(Rj−1) and Ck−1(Rj). In
particular, when k ≥ 2, the (k − 2)nd corona Ck−2(R) is contained in Ck−1(Rj) for each
j ≥ 0, so the isomorphisms γj certainly all agree on Ck−2(R); in this case, δ and γ also
agree on Ck−2(R), and hence δ = γ by Lemma 2.1. However, this argument does not
apply if k = 1. For general k we can argue as follows.

We prove by induction on j that

γj|C0(Ri) = γ0|C0(Ri) (0 ≤ i ≤ j). (3.3)

In particular, when j = l, we see that δ and γ agree on C0(R), and hence δ = γ by
Lemma 2.1.

To begin the induction, first notice that the property holds for j = 1. Suppose j ≥ 2.
For the inductive step we may now assume the following: γj−1 and γ0 agree on each C0(Ri)
with 0 ≤ i ≤ j − 1; γj and γ1 agree on each C0(Ri) with 1 ≤ i ≤ j; and γj−1 and γ1 agree
on each C0(Ri) with 1 ≤ i ≤ j − 1. Here the second and third properties are obtained
from the inductive hypothesis for j − 1 and j − 2, respectively, applied with γ1 as start
of the sequence (in place of γ0). These three assumptions already imply that γj and γ0

agree on each C0(Ri) with 1 ≤ i ≤ j − 1, so only the two cases i = 0 and i = j need
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checking. Now, when i = 0, observe that γj(R0) and γ0(R0) each is a tile adjacent to the
tile γj(R1) = γ0(R1) along the common facet γj(R0 ∩ R1) = γ0(R0 ∩ R1). However, γj

and γ0 are isomorphisms of centered kth coronas, so their images of R0 and R1 certainly
are distinct. Hence we must have γj(R0) = γ0(R0). On the other hand, we know that γj

and γ0 agree on the face-lattice of the (d − 1)-polytope R0 ∩ R1, so γj and γ0 must also
agree on the face-lattice C0(R0) of R0. This settles the case i = 0. The case i = j can
be dealt with in a similar way using the inductive assumption and the adjacency of Rj to
Rj−1 along the common facet Rj−1 ∩ Rj . This completes the proof by induction.

In conclusion, the above considerations prove that a single elementary move in a
sequence of tiles does not affect the extension. Therefore, the extension of α to β along a
sequence of tiles as in (3.2) does not depend on the actual sequence. This completes the
proof. 2

At this stage it is convenient to concentrate on the action of isomorphisms on the
0th coronas of tiles, that is, on the face-lattices of tiles. In particular, if an isomorphism
of centered kth coronas α : Ck(P ) → Ck(P

′) is extended along sequences of tiles which
connect P to other tiles Q as in (3.2), then the resulting isomorphisms of centered kth

coronas β : Ck(Q) → Ck(Q
′) restrict faithfully to isomorphisms

αQ : C0(Q) → C0(Q
′), (3.4)

that is, αQ := β|C0(Q). Note again that αQ does not depend on the particular choice of
sequence of tiles employed to obtain β from α.

The following lemma implies that we can recover β from the restricted mappings, so
information is not lost in this process.

Lemma 3.6 Let P , P ′, Q, Q′ be tiles of T , let α : Ck(P ) → Ck(P
′) and β : Ck(Q) →

Ck(Q
′) be isomorphisms of centered kth coronas, and let β be obtained as in Lemma 3.4

by extending α along a sequence of tiles connecting P and Q as in (3.2). If R is a tile
from Ck(Q) and αR the corresponding isomorphism on C0(R) obtained as in (3.4), then
αR and β agree on C0(R), that is, αR = β|C0(R).

Proof: As αR does not depend on the particular sequence of tiles chosen to link P to R,
we can take a suitable sequence passing through Q. First, since r := d(Q, R) ≤ k, there is
a sequence Q = Q0, Q1, . . . , Qr = R of tiles in Ck(Q) such that d(Qi−1, Qi) = 1 for i ≥ 1
and hence d(Q, Qi) = i for i ≥ 0. Now, if a pair of consecutive tiles Qi−1, Qi intersects in
a (d − 2)-face (but not a facet), then replace this pair in the sequence by a string of tiles

Qi−1 = Q0
i−1, Q

1
i−1, . . . , Q

ji−1
i−1 , Qji

i−1 = Qi, (3.5)

each containing this (d − 2)-face, such that Qj−1
i−1 ∩ Qj

i−1 is a common facet of Qj−1
i−1 and

Qj
i−1 for j = 1, . . . , ji. Finally, choose a sequence which connects P and Q as in (3.2),

and then concatenate it with the sequence of Qi’s and Qj
i ’s to produce a sequence of tiles

which joins P to R via Q. By construction, any two consecutive tiles in this sequence
meet along a facet.
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Now consider the corresponding sequence of isomorphisms of centered kth coronas
which extends α, via β, to an isomorphism of centered kth coronas γ : Ck(R) → Ck(R

′).
Let βi : Ck(Qi) → Ck(Q

′
i) denote the isomorphism corresponding to Qi, for i = 0, 1, . . . , r.

If the tiles Qi−1 and Qi share a facet (and thus no string of tiles was inserted between
them), then Lemma 3.3 directly implies that βi−1 and βi agree on Ck−1(Qi−1) and Ck−1(Qi).
On the other hand, if

βi−1 = β0
i−1, β

1
i−1, . . . , β

ji−1
i−1 , βji

j−1 = βi

(say) corresponds to a string of tiles as in (3.5), then the same argument as in (3.3) shows
that βi−1 and βi must agree on the 0th coronas C0(Qi−1) and C0(Qi) and hence also on the
(k − 1)st coronas Ck−1(Qi−1) and Ck−1(Qi). Hence, for each i ≥ 1, the isomorphisms βi−1

and βi agree on Ck−1(Qi−1) and Ck−1(Qi).
Now we are almost done. In fact, since d(Qi−1, Qi) = 1 for each i, a simple induction

on i shows that βi and β0 (= β) must agree on the (k − i)th centered corona Ck−i(Qi), for
i = 0, 1, . . . , r. Hence, since r ≤ k, the two isomorphisms γ (= βr) and β (= β0) certainly
coincide on C0(R) (= C0(Qr)). Now it is immediate that αR := γ|C0(R) = β|C0(R). 2

It remains to show that the local mappings of (3.4) fit together coherently to determine
a global automorphism of T which extends α. Consider ϕ : T → T defined by

ϕ|C0(Q) = αQ, (3.6)

where Q is a tile of T and αQ is as in (3.4).

Lemma 3.7 Let P, P ′ be tiles of T , let α : Ck(P ) → Ck(P
′) be an isomorphism of centered

kth coronas, and let ϕ : T → T be defined as in (3.6). Then ϕ is a (well-defined)
combinatorial automorphism of T . In particular, ϕ|Ck(P ) = α.

Proof: By construction, ϕ assigns to every tile Q of T a unique tile Q′, namely Q′ :=
ϕ(Q) = αQ(Q). Moreover, by Lemma 3.6, the restriction of ϕ to Ck(Q) is a (well-defined)
isomorphism of centered kth coronas between Ck(Q) and Ck(Q

′), and agrees with the
extension β of α along a sequence of tiles connecting P to Q. In particular, if two tiles Q
and R of T share a facet, then αQ(F ) = αR(F ) for every face F of this facet.

Now we can prove that ϕ is a well-defined mapping. Let F be any face of T , and let
Q and R be arbitrary tiles of T which contain F . By Lemma 2.3 there exists a sequence
of tiles

Q = Q0, Q1, . . . , Qn−1, Qn = Q,

each containing F , such that Qi−1 ∩ Qi is a facet of Qi−1 and Qi for each i ≥ 1. Then
the above arguments show that αQi−1

(F ) = αQi
(F ) for each i ≥ 1. Hence we also have

αQ(F ) = αR(F ). Thus ϕ is well-defined.
The mapping ϕ also preserves incidence of faces. In fact, if F is a face of another

face G of a tile Q, then ϕ(F ) = αQ(F ) and ϕ(G) = αQ(G). Hence, since αQ preserves
incidence, ϕ(F ) must also be a face of ϕ(G). Note that this property holds independent
of Q.

Moreover, ϕ is invertible. In fact, the mapping ϕ′ : T → T induced by α−1 : Ck(P
′) →

Ck(P ) (in the same way as ϕ by α) is the inverse of ϕ. Note here that ϕ and ϕ′ each
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preserve adjacency of tiles (along facets), and so does ϕ′ϕ. Hence, since ϕ′ϕ acts like the
identity mapping on Ck(P ), it must also act like the identity on Cj(P ) for each j > k and
hence on the whole tiling T . A similar argument applies for ϕϕ′.

It follows that ϕ is a combinatorial automorphism of T . By construction, ϕ|Ck(P ) = α.
2

The sufficiency proof of Theorem 3.1 is finally complete. In fact, now it is clear
that T is combinatorially tile-transitive. Each (local) isomorphism α : Ck(P ) → Ck(P

′)
between the centered kth coronas of any two tiles P and P ′ extends uniquely to a (global)
automorphism of T , namely ϕ, which maps P to P ′. When there is no possibility of
confusion, we will identify ϕ and α from now on.

It remains to prove the statement of Theorem 3.1 about the stabilizer of a tile P of
T . Note here that, if α ∈ Γ (Ck(P )), then our arguments (applied with P ′ = P ) show
that α extends uniquely to an automorphism ϕ of T which fixes P ; hence ϕ ∈ ΓP (T ), or
α ∈ ΓP (T ) if ϕ is identified with α. The other subgroup relationship follows from (2.2).
This concludes the proof of Theorem 3.1. 2

Call a convex d-polytope P in E
d combinatorially asymmetric if Γ (P ) is the trivial

group. In this case we must have d ≥ 3; in fact, Γ (P ) is the dihedral group of order 2n if
P is a convex n-gon in the plane. We now have the following corollary.

Corollary 3.8 Let T be a locally finite face-to-face tiling of E
d by combinatorially asym-

metric convex polytopes. Then T is combinatorially tile-transitive if and only if any two
centered 1st coronas of T are isomorphic (as centered coronas).

Remark 3.9 The coronas of tiles employed in Theorem 3.1 are defined in terms of the
distance function d(., .) of Definition 2.2 for the tiles of T . It is worth noting that the
statement of Theorem 3.1 remains true (with a similar proof) if the definition of coronas
is based instead on the distance function dl(., .), for each l ≤ d − 2. Altogether this gives
d − 2 variants of the theorem, with the case l = d − 2 being the original theorem itself.
Note that the kth coronas (with k fixed) get larger as l decreases, so the kth coronas are
smallest when l = d − 2. However, if l = d − 1, the analogous theorem fails.

We can already see in the plane why the analogous statement with l = d − 1 is not
true. If T is a plane tiling by triangles such that at least four triangles meet at each
vertex, then the two conditions of Theorem 3.1 for the corresponding coronas (defined
by dl with l = 1) are satisfied with k = 1. On the other hand, there are such tilings T
which are not combinatorially tile-transitive; for example, this occurs if the valencies at
the vertices of two distinct tiles do not match up. There are similar examples of tilings
by simplices in higher-dimensional spaces.

Remark 3.10 As we mentioned earlier, the convexity of the tiles is not really important.
In fact, Theorem 3.1 also extends (with essentially the same proof) to locally finite face-
to-face tilings of E

d in which the tiles are topological d-polytopes (homeomorphic images
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of convex d-polytopes). In particular this generalization applies to locally finite face-to-
face tilings of hyperbolic d-space H

d, this being topologically equivalent to E
d. Moreover,

Theorem 3.1 also holds (with essentially the same proof) for finite face-to-face tilings of
spherical d-space S

d by topological d-polytopes; in fact, S
d is simply-connected if d > 1,

and the case d = 1 is trivial.

4 The Local Theorem for Tilings

In the Local Theorem for (face-to-face) Tilings (see Theorem 4.1 below), the tilings T
are monohedral. On the surface, the conditions appearing in our Theorem 3.1 look quite
similar to those of Theorem 4.1. Both theorems are local (as their very names indicate),
meaning that their conditions involve only certain neighborhoods of tiles but not the whole
tiling. However, a closer inspection shows that there are also significant differences. In
fact, in Theorem 4.1 the two conditions on the kth coronas concern global isometries of the
ambient space, whereas in Theorem 3.1 they are expressed in terms of local mappings. So,
in a sense, the new theorem is “more local” than Theorem 4.1. Moreover, the conditions
in Theorem 4.1 only concern the tiles of a corona, whereas in Theorem 3.1 they involve a
corona as a whole (that is, as a complex).

Let T be a locally finite face-to-face tiling, let P be a tile of T , and let k ≥ 0 be an
integer. The kth tile corona of P in T , denoted by Ck(P ), is the set of tiles Q of T with
d(P, Q) ≤ k. Observe here that we are using the term “tile corona” to distinguish the
set of tiles Ck(P ) from the corona Ck(P ). The corona Ck(P ) is simply the complex of all
faces of tiles in the tile corona Ck(P ). (This differs from [8], where tile coronas are just
called coronas.)

As before, the centered kth tile corona of P is the pair (P, Ck(P )) consisting of P , the
center of the centered kth tile corona (usually dropped from the notation), and the kth

tile corona Ck(P ).
Theorems 3.1 and 4.1 employ concepts of coronas or tile coronas which are defined

in terms of the distance function d(., .) for the tiles of T . We mentioned earlier that
Theorem 3.1 remains true if, instead of d(., .), a distance function dl(., .) with l ≤ d− 2 is
used to define coronas. The same remark also extends to Theorem 4.1, but now l = d− 1
is permitted; that is, Theorem 4.1 remains true if the coronas are defined in terms of a
distance function dl(., .) with l ≤ d − 1. In the discussion that follows we always take
l = d − 2, that is, the distance function d(., .) of Definition 2.2.

Following [8] we say that the centered kth tile coronas Ck(P ) and Ck(P
′) of two tiles

P and P ′ of T are pairwise congruent if there exists a (global) isometry α of the ambient
space such that α(P ) = P ′ and

Ck(P
′) = α(Ck(P )) (= {α(Q) | Q ∈ Ck(P )}).

Let P be a tile of T , and let G(P ) be its geometric symmetry group. Let G0(P ) :=
G(P ), and for k ≥ 1 let

Gk(P ) := {σ ∈ G0(P ) | σ(Ck(P )) = Ck(P )}.
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Then Gk(P ) consists of those symmetries of P which map each tile in Ck(P ) to another
such tile. It is immediately clear from the definition that we have an infinite chain of
subgroups,

GP (T ) ⊆ . . . ⊆ Gk(P ) ⊆ Gk−1(P ) ⊆ . . . ⊆ G1(P ) ⊆ G0(P ) = G(P ), (4.1)

with the stabilizer GP (T ) of P in the geometric symmetry group G(T ) of T on the left
and the (finite) symmetry group G(P ) of P on the right.

Recall that a tiling is isohedral if its symmetry group is transitive on the tiles.

Theorem 4.1 A locally finite face-to-face tiling T of euclidean d-space E
d by convex

polytopes is isohedral if and only if there exists a positive integer k with the following
properties:

1. Any two centered kth tile coronas of T are pairwise congruent.

2. Gk(P ) = Gk−1(P ) for each tile P of T .

Moreover, in this case, if P is a tile of T , then Gk(P ) = GP (T ).

The Local Theorem for Tilings is related to the Extension Theorem for Tilings, and
both have remarkable consequences and applications. For a detailed discussion see [1, 5,
6, 7, 8, 9, 19]. The Extension Theorem as well as our Theorem 3.1 rely heavily on the
simply-connectedness of the underlying space, but the Local Theorem for Tilings does
not (see [6]).

As with Theorem 3.1, convexity of the tiles is not really important in Theorem 4.1
(and, as before, there are also generalizations to tilings in S

d and H
d). However, if T

actually is a locally finite face-to-face tiling of E
d by convex polytopes, then the integer

k in Theorem 4.1 is bounded by a constant kd depending only on d (see [8]); that is, T
is isohedral if and only if the two conditions are met for some k with k ≤ kd. In fact, if
T is an isohedral face-to-face tiling of E

d by convex polytopes congruent to a d-polytope
P , then the number fd−1 of facets of P is bounded (as described below), and hence the
order of G(P ) is also bounded, each by a constant depending only on d. On the other
hand, since G(P ) is finite, the number of proper ascents in the subgroup chain of (4.1)
is bounded by the number mP of prime divisors of |G(P )| (counted with multiplicities),
so k = mP + 1 will always work for P . Hence the upper bound for |G(P )| yields an
upper bound for k. However, in practice, this bound for k is never attained and seems
unnecessarily high. In particular, it does not take into consideration the possibility that
there are rich point groups which stabilize at an early stage.

If P is a convex d-polytope which admits an isohedral face-to-face tiling T of E
d, then

fd−1 ≤ 2d(h − 1
2
) − 2,

where h is the index of the translation subgroup in G(T ). This bound, due to Tarasov [23],
slightly improves the earlier bound of 2d(1 + h) − 2 obtained by Delone (see [4]). Since
G(T ) is among the finitely many crystallographic groups in E

d (up to conjugacy), h
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is uniformly bounded by a constant depending only on d. In particular, this yields an
upper bound for fd−1 depending only on d. For example, if d = 3, the maximum index
is 48 and the bound for the number of facets is 378 (Delone’s bound yields 390); it is
likely that the true bound is considerably lower. The problem of finding space-fillers
with the maximum number of facets seems hopelessly difficult. Engel [10] describes some
spectacular 3-dimensional space-fillers with 38 facets; however, it is not known if 38 is
close to the maximum number possible.

For small dimensions, more is known about the possible values of k in Theorem 4.1.
If T is a tiling of the euclidean plane E

2 with polygonal tiles and any two centered 1st tile
coronas of T are pairwise congruent, then T is isohedral (see [19]); that is, isohedrality
is already implied by the first condition of Theorem 4.1 with k = 1 (the second is not
needed). Moreover, the second condition then holds with k = 2. In euclidean 3-space E

3

there are examples of monohedral tilings by convex polyhedra in which any two centered
1st coronas are pairwise congruent but the tilings are not isohedral (see [11, 12]). For
E

3 we have the estimate 2 ≤ k3 ≤ 5 obtained by Shtogrin and Dolbilin (in unpublished
work). On the other hand, for the hyperbolic plane H

2 there are examples of monohedral
tilings by convex pentagons in which any two centered 1st coronas are pairwise congruent
but the tilings are not isohedral (see [2, 8]).

It is not known if the number of facets of an arbitrary convex space-filler of E
d (with

d ≥ 3) is bounded by a constant depending only on d. In theory, this leaves the possibility
that there are space-fillers with arbitrarily large symmetry groups. Clearly, a face-to-face
tiling T by congruent copies of such a space-filler P cannot be isohedral. In particular, for
such tilings T , no integer k will satisfy both properties of Theorem 4.1 simultaneously. In
theory, then, there may exist sequences of tilings (Tj)j≥1 and corresponding space-fillers
(Pj)j≥1, as well as an increasing sequence of integers (kj)j≥1, such that the first condition
of Theorem 4.1 holds with k = kj while the second holds not for kj but only for an
integer larger than kj . Therefore, at present we cannot determine if there also exists an
upper bound k′

d for the integers k with the property that a tiling with pairwise congruent
centered kth tile coronas is necessarily isohedral.

It is an interesting question to what extent the above remains true for our Theorem 3.1.
Now, if lP denotes the number of prime divisors of |Γ (P )| (counted with multiplicities),
then the number of proper ascents in the subgroup chain of (2.2) is bounded by lP , and
hence we can always take k = lP + 1 in Theorem 3.1. However, for a combinatorially tile-
transitive face-to-face tiling of E

d by convex polytopes, the order of the automorphism
group Γ (P ) of a tile P need not be bounded by a constant depending only on d. In fact,
for each p ≥ 3, the prism P over a convex p-gon (with group order |Γ (P )| = 4p) admits
a combinatorially tile-transitive tiling T of E

3 obtained from layers of plane tilings by
convex p-gons, where a fixed number q of p-gons meet at each vertex, provided 1

p
+ 1

q
≤ 1

2
;

these plane tilings are isomorphic copies of the regular tessellations {p, q} of the euclidean
or hyperbolic plane (see [16, 21]). However, if p > 6, such a tiling T constructed from
layers of {p, q} must necessarily be non-normal; recall that a tiling is normal if its tiles
are uniformly bounded, meaning that there are positive parameters r, R such that each
tile contains a ball of radius r and is contained in a ball of radius R (see [15]).
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In this context we mention the following interesting open problem. Suppose a convex
d-polytope P , with d > 2, admits a combinatorially tile-transitive face-to-face tiling of
E

d which is normal. Is it true, then, that the order of the automorphism group Γ (P ) is
bounded by a constant depending only on d?

For p ≥ 3, normal monotypic face-to-face tilings of E
3 by prisms P over convex p-gons

can be obtained by the projection technique described in [20, Thm.3]. These tilings T are
not combinatorially tile-transitive; however, G(T ) contains an infinite discrete reflection
group as a subgroup, so T has only finitely many transitivity classes of tiles under G(T )
and hence Γ (T ). The tilings are produced by projection from the boundary complex of
a convex 4-polytope with prisms as facets, namely the rectangular product of a pair of
regular p-gons contained in orthogonal 2-planes in E

4.
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