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Abstract

We define an algorithm k£ which takes a connected graph G on a totally ordered
vertex set and returns an increasing tree R (which is not necessarily a subtree of
G). We characterize the set of graphs G such that k(G) = R. Because this set has a
simple structure (it is isomorphic to a product of non-empty power sets), it is easy
to evaluate certain graph invariants in terms of increasing trees. In particular, we
prove that, up to sign, the coefficient of ¢ in the chromatic polynomial yg(z) is
the number of increasing forests with ¢ components that satisfy a condition that
we call G-connectedness. We also find a bijection between increasing G-connected
trees and broken circuit free subtrees of G.

We will work with finite labeled simple graphs. Usually we will identify a graph G
with its edge set; this should not cause any serious ambiguities. If the vertex set is V'
then we say that G is a graph on V. A (spanning) subgraph @ of G is a graph with the
same vertex set as GG and a subset of the edges of G. The notation () C G means (@ is a
subgraph of G. A rooted graph is a graph with a distinguished vertex called the root.

Define link(v, S) to be the set of all possible edges joining v to an element of S (so
if v ¢ S, link(v,S) has |S| elements). If G is a graph on V and S C V, we define the
restriction of G to S, G|s, to be the graph on S whose edge set consists of all edges of G
with both ends in S.

We will use the symbols 7 and ¢ to denote set partitions. The notation 7 S means
7 is a set partition of the set S. The length (number of blocks) of 7 is denoted by ¢(m).
A set partition o is called a refinement of a set partition 7 if every block of o is contained
in some block of .

To each graph G on V' there corresponds a set partition s(G) such that two vertices
v,w € V are in the same block of s(G) if and only if there is a path in G from v to w.
Equivalently, s(G) is the maximal set partition of V' whose blocks are connected. The
restriction of G to a block of s(G) is called a component of G.

If G is a rooted connected graph on V with root r, we will call the set partition
m = 5(Gly_gry) of V—{r} the depth-first partition of G. To obtain a connected subgraph
of a rooted connected graph G on V', we can choose, for each block 7; of 7, a connected
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subgraph of G|, and a nonempty set of edges (in G) connecting r to m;. In fact, every
connected subgraph of G can be obtained in this way. Our Theorem 1 may be regarded
as an iteration of this correspondence. The depth-first partition and this correspondence
have been studied by Gessel [3].

A forest is a graph with no circuits. A tree is a connected forest. A basic property
of trees is that there is a unique path (a sequence of distinct, adjacent vertices) between
any two vertices. The distance between two vertices is defined to be the length of this
path. In a rooted tree, the height of a vertex is defined to be its distance from the root.
A vertex w is called a descendant of a vertex v (or v is called an ancestor of w) if the
heights of the vertices on the unique path from v to w are increasing (so in particular v is
always a descendant of itself). We define the join of v and w to be their unique common
ancestor on the unique path between them.

Let R be a rooted tree on the vertex set V', and let v € V. We define des(v, R) C V
to be the set of descendants of v (including v). If v is not the root of R, we define
parent(v, R) € V to be the closest vertex to v in R which is not a descendant of v.
A rooted tree is increasing (according to a total order on V) if for each v € V and
w € des(v, R) we have v < w. Consequently, the root of an increasing tree must be the
smallest element of V.

Definition 1 Let R be a rooted tree on the totally ordered vertex set V with root r, and
letveV —{r}. Define J(v, R) = link(parent(v, R), des(v, R)). If G is a graph onV and
if for each v € V. — {r} we have J(v, R) NG # () then we say that R is G-connected.

Note that the sets J(v, R) (as v ranges over V — {r}) are disjoint. Also note that a
G-connected tree need not be a subgraph of G and that G must be connected for any
rooted tree to be G-connected.

Definition 2 For each connected graph G on a totally ordered vertex set V', define an
increasing G-connected tree k(G) by the following algorithm:

1. Let H be an empty graph on'V, and set S = V.

2. Let w be the depth-first partition of G|g rooted at r=the smallest vertex in S. Add
edges to H connecting r to the smallest vertex in each block of .

3. For each block m; of ™ with more than one element, return to step 2 with S = 7;.

4. Return k(G) = H.

Example 1 The 6 increasing trees on V- = {1,2,3,4} are listed vertically. To the right
of each increasing tree R are listed the subtrees T of the complete graph on V' such that
k(T) = R (we have omitted the 22 connected subgraphs which are not trees). The breaks
are indicated by dotted lines (see Theorem 3).
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There is a different algorithm, called depth-first search, which produces subforests of
(G. Some enumerative applications of this algorithm have been studied by Gessel and
Sagan [4]. A distinguishing difference between depth-first search and our algorithm is
that depth-first search only follows the edges of GG, whereas here we add edges connecting
to the smallest vertex in each block of 7 regardless of whether these are edges of G. The
algorithms are related in that if G is a connected graph and R is a depth-first search
subtree of G then parts 2 and 3 of the next theorem hold (although the converse is not
true).

Theorem 1 Let G be a connected graph on a totally ordered vertex set V', and let R be
an increasing G-connected tree on V. Then the following are equivalent:

1. k(G)=R

2. For each vertexv € V, G|deS(U,R) rooted at v is connected and has the same depth-first
partition as R\des(vﬂ) rooted at v.

3. For each non-root vertex v € V. — {r} there is a nonempty set E(v) C J(v, R) such
that G - U’UEV—{T} E(U)
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Proof. 1 < 2 This follows easily from Definition 2.

2 = 3 Let E(v) = J(v,R) N G. We need to show that every edge of G lies in some
E(v). Let e € G and let v < w be the vertices of e. We will show that w is a descendant
of v. Suppose this is false, and let u be their join. Then e € Glqesu,r), S0 v and w
are in the same block of the depth first partition of G |des(u7 r)- This is a contradiction
because they are in different blocks of the depth first partition of R|qesu,r). Now, since
w is a descendant of v, there is a unique vertex z € V' (possibly equal to w) such that
parent(z) = v and w € des(z). Hence e € J(z, R) N G.

3 = 2 This is certainly true if v (in part 2) is a leaf of R (its only descendant is itself).
Let v € V and suppose it is true for all w € des(v, R) — {v}. Let m be the depth-first
partition of R|des (,r)- Then G |z, is connected by the inductive hypothesis. Furthermore,
G contains an edge connecting v to 7; because 7; contains a vertex w whose parent in R is
v and Jg(w, R) consists of edges connecting v to m;. Hence G|ges(v, i) is connected. Clearly
7 is a refinement of the depth-first partition of G|gesw,r) (because G|, is connected), so
to show that they are equal we have only to show that if x and y are in different blocks of
7 then they are in different blocks of the depth-first partition of G. Let x <y € V be in
different blocks of 7, and suppose G has an edge between x and y. Then y is a descendant
of z in R because every edge of Jg(w, R) (for any w € V') connects a vertex to one of its
descendants. This contradicts the fact that they are in different blocks of the depth-first
partition of R|ges(v,r). O

Remark 1 Actually the condition in Theorem 1 that R be G-connected is not necessary
because if R is not G-connected then parts 1, 2 and 3 will be false.

Some algebraic invariants of graphs can be simply expressed in terms of connected
subgraphs. We can use the algorithm £ to express such invariants in terms increasing trees.
Moreover, Theorem 1 shows that the set k7'(R) has a simple structure, as illustrated by
the next theorem.

Definition 3 Let G be a connected graph on V. Define
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where |Q| denotes the number of edges in Q.
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Theorem 2

Proof. We have
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Now, the generating function for the cardinality of nonempty subsets of a set .S is

fo@)= > al"=(1+2)5 -1

0ATCS

Hence from Theorem 1 part 3,
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from which the result follows. [J
The chromatic polynomial xg(z) of a graph G is a polynomial which evaluates to the
number of proper colorings of G with x colors. The subgraph expansion of () is

xa(z) = Z (—1)Qlze@

QCG

where ¢(@) is the number of components of (). See [1] for background on the chromatic
polynomial.

We define an increasing G-connected forest R to be a forest where each component
R|s(r), is an increasing G|yg),-connected tree. For a graph G, let ¢(G) be the (integer)
partition whose parts are the sizes of the blocks of s(G). For background on the chromatic
symmetric function X¢ = Xg(21,29,...) of a graph G, see [5] and [6]. For background
on the chromatic symmetric function in non-commuting variables Yo = Yo (21, 29, .. .),
see [2].

Corollary 1 Let G be a graph on a totally ordered vertex set V' with |V| = n.

1. The coefficient of (—=1)""'x in the chromatic polynomial xc(x) is the number of
increasing G-connected trees.

2. The coefficient of (—1)""92% in the chromatic polynomial x¢(x) is the number of
increasing G-connected forests with g components (or, equivalently, with n—q edges).

3. The coefficient of (—1)""*Np, in the chromatic symmetric function X is the num-
ber of increasing G-connected forests R such that t(R) = A.

4. The coefficient of(—l)”_é(”)p,r in the chromatic symmetric function in non-commuting
variables Y¢ is the number of increasing G-connected forests R such that s(R) = .

Proof. 1. Let a“ be the coefficient of x in xg(z). From the subgraph expansion we

have
oC — Z (—D)@l = pC(=1) = Z H (—1)

QCG . . veV—{r}
connected increasing
G'—connected
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We don’t need to worry about 0° because the G-connectedness of R implies that
J(v, R) NG is never empty.

4. We will prove part 4, the others being simple specializations. Let HY be the number
of increasing G-connected forests R such that s(R) = 7, and let H® be the number of
increasing GG-connected trees. Then using part 1 we have

i(if[HGﬂ— — " £ ﬁ Z \Q\ (1)
i=1 QCGlxr,

connected

The subgraph expansion of Y is

Yo => (1)

QCG
Hence
£(m)
TE WD SSICES 3/ | DS
=V QCG =V i=1 QCG|n,
s(Q)=m connected

Substituting (1), we obtain the desired result. [J

If G is a graph on a totally ordered vertex set V', we extend the ordering of the vertices
to an ordering of the edges lexicographically. A broken circuit of H C G is a set of edges
B C H such that there is some edge e € G, smaller than every edge of B, such that
B Ue is a circuit. Note that B being a broken circuit of H depends both on H and G.
If H C @G contains no broken circuits then it is called broken circuit free. Note that if H
contains a circuit then it also contains a broken circuit. Consequently, a broken circuit
free subgraph is always a forest. If T C G is a subtree of G and the edge e € G, e ¢ T is
the smallest edge in the unique circuit in 7'U {e} then we will call e a break in 7. Hence
the set of breaks in a subtree T is in bijection with the set of broken circuits of T

Whitney’s Broken Circuit Theorem [7] shows that if G is a connected graph with n
vertices, the coefficient of (—1)" "'z in x¢(z) is the number of broken circuit free subtrees
of G. Hence there should be a bijection between broken circuit free subtrees and increasing
G-connected trees.

Theorem 3 Let V' be a totally ordered vertex set with smallest element r, and let G be
a connected graph on V. Let T C G be a subtree of G, and let R = k(T'). Let E(v)
forv eV —{r} be as in Theorem 1 part 3. Then E(v) contains only one element e(v)
(otherwise T would have more than |V |—1 edges so it could not be a tree). Forv € V—{r},
let d(v) be the set of elements of J(v, R) N G which are smaller than e(v). Then the set
of breaks in T is

U d

veV—{r}
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Proof. Let J = ,cy_gy J(v, R) NG. Since k(G) may be different from R, J may be
different from G. We will first show that if e € G but e ¢ J then e is not a break. Let
v < w € V be the vertices of e. Then w is not a descendant of v because otherwise we
would have e € J. Let u € V' be the join of v and w in R. Then Theorem 1 part 2 implies
that u is also the join of v and w in T'|qes(u,r) (rooted at u). Therefore, the cycle created
by adding e to T" contains an edge connected to u. Since u < v < w, e cannot be a break.

Now suppose e € J(v, R) N G is smaller than e(v). We will show that e is a break.
Let H = T |des(v, R)Uparent (v,r)- Lhen parent(v, R) is the smallest vertex in the vertex set of
H. Therefore, e is smaller than any other edge in H. Since H is a tree, adding e would
create a unique circuit in H. Hence e is a break.

Now suppose e € J(v, R) N G is larger than e(v). Then, letting H be as before, we
see that e(v) must belong to the circuit which e creates. But e(v) is smaller than e, so e
cannot be a break. [J

Corollary 2 The function

f(R) = U min(J(v, R) N Q)

veV—{r}

1 a bijection between increasing G-connected trees and broken circuit free subtrees, and
fUT) = k(T).

Of course, this bijection generalizes to a bijection between increasing G-connected
forests with ¢ components and broken circuit free subforests of G with ¢ components.
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