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Abstract
We study special values of Carlitz’s q-Fibonacci and q-Lucas polynomials Fn(q, t)

and Ln(q, t). Brief algebraic and detailed combinatorial treatments are presented,
the latter based on the fact that these polynomials are bivariate generating func-
tions for a pair of statistics defined, respectively, on linear and circular domino
arrangements.

1 Introduction

In what follows, N and P denote, respectively, the nonnegative and the positive integers.

If q is an indeterminate, then nq := 1 + q + · · ·+ qn−1 if n ∈ P, 0!
q := 1, n!

q := 1q2q · · ·nq

if n ∈ P, and (
n

k

)
q

:=




n!q
k!q(n−k)!q

, if 0 6 k 6 n;

0, if k < 0 or 0 6 n < k.

(1.1)

A useful variation of (1.1) is the well known formula [10, p.29](
n

k

)
q

=
∑

d0+d1+···+dk=n−k
di∈N

q0d0+1d1+···+kdk =
∑
t>0

p(k, n− k, t)qt, (1.2)

where p(k, n− k, t) denotes the number of partitions of the integer t with at most n− k
parts, each no larger than k.

This paper elucidates certain features of the q-Fibonacci polynomials

Fn(q, t) :=
∑

06k6bn/2c
qk2

(
n− k

k

)
q

tk, n ∈ N, (1.3)
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and the q-Lucas polynomials

Ln(q, t) :=
∑

06k6bn/2c
qk2 nq

(n− k)q

(
n− k

k

)
q

tk, n ∈ P. (1.4)

Note that Fn(1, 1) = Fn, where F0 = F1 = 1 and Fn = Fn−1 + Fn−2, n > 2 (this
parameterization of the Fibonacci numbers, also employed by Wilf [12], results here in a
notation with mnemonic features superior to that of the classical parameterization), and
Ln(1, 1) = Ln, where L1 = 1, L2 = 3, and Ln = Ln−1 + Ln−2, n > 3. Our aim here is to
present both algebraic and combinatorial treatments of Fn(1,−1), Fn(−1, t), Ln(1,−1),
and Ln(−1, t).

Our algebraic proofs make frequent use of the identity [11, pp. 201–202]

∑
n>0

(
n

k

)
q

xn =
xk

(1− x)(1− qx) · · · (1− qkx)
, k ∈ N. (1.5)

Our combinatorial proofs use the fact that Fn(q, t) and Ln(q, t) are generating functions
for a pair of statistics defined, respectively, on linear and circular arrangements of nonover-
lapping dominos, and embody the following general strategy:

Let (Γn) be a sequence of finite discrete structures, with |Γn| = Gn. Each statistic
s :

⋃
Γn → N gives rise to a q-generalization of Gn, in the form of the generating function

Gn(q) :=
∑
γ∈Γn

qs(γ) =
∑

k

|{γ ∈ Γn : s(γ) = k}|qk.

Of course, Gn(1) = Gn. On the other hand,

Gn(−1) =
∣∣Γ(0)

n

∣∣− ∣∣Γ(1)
n

∣∣ ,

where Γ
(i)
n := {γ ∈ Γn : s(γ) ≡ i (mod 2)}. Thus a combinatorial proof that Gn(−1) = gn

may be had by (1) identifying a distinguished subset Γ∗
n of Γn (with Γ∗

n = ∅ if gn = 0

and, more generally, |Γ∗
n| = |gn|, with Γ∗

n being a subset of Γ
(0)
n or Γ

(1)
n , depending on

whether gn is positive or negative), and (2) constructing an involution γ 7→ γ ′ of Γn−Γ∗
n

for which s(γ) and s(γ ′) have opposite parity. (In what follows, we call the parity of s(γ)
the s-parity of γ, and the map γ 7→ γ ′ an s-parity changing involution of Γn − Γ∗

n). In
addition to conveying a visceral understanding of why Gn(−1) takes its particular value,
such an exercise furnishes a combinatorial proof of the congruence Gn ≡ gn (mod 2).
Shattuck [9] has, for example, given such a combinatorial proof of the congruence

S(n, k) ≡
(

n− bk/2c − 1

n− k

)
(mod 2)

for Stirling numbers of the second kind, answering a question posed by Stanley [10, p. 46,
Exercise 17b].
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The polynomials Fn(q, t) and Ln(q, t), or special cases thereof, have appeared previ-
ously in several guises. In a paper of Carlitz [1], Fn(q, 1) arises as the generating function
for the statistic a1+2a2 + · · ·+(n−1)an−1 on the set of binary words a1a2 · · ·an−1 with no
consecutive ones. In the same paper, Ln(q, 1) occurs (though not explicitly in the simple
form entailed by (1.4)) as the generating function for the statistic a1 + 2a2 + · · · + nan

on the set of binary words a1a2 · · ·an with no consecutive ones, and with a1 = an = 1
forbidden as well. Cigler [6] has shown that Fn(q, t) arises as the bivariate generating
function for a pair of statistics on the set of lattice paths from (0, 0) to (n, 0) involving
only horizontal moves, and northeast moves, followed immediately by southeast moves.
Finally, Carlitz [2] has studied the q-Fibonacci polynomial Φn(a, q) = an−1Fn−1(q, a

−2)
from a strictly algebraic point of view. See also the related paper of Cigler [3].

In § 2 below, we treat the q-Fibonacci polynomials Fn(q, t) and evaluate Fn(1,−1) and
Fn(−1, t). In § 3 we treat the q-Lucas polynomials Ln(q, t) and evaluate Ln(1,−1) and
Ln(−1, t). While the combinatorial proofs presented below could of course be reformulated
in terms of the aforementioned statistics on binary words or lattice paths, our approach,
based on statistics on domino arrangements, yields the most transparent constructions of
the relevant parity changing involutions.

2 Linear Domino Arrangements

A well known problem of elementary combinatorics asks for the number of ways to place k
indistinguishable non-overlapping dominos on the numbers 1, 2, . . . , n, arranged in a row,
where a domino is a rectangular piece capable of covering two numbers. It is useful to
place squares (pieces covering a single number) on each number not covered by a domino.
The original problem then becomes one of determining the cardinality of Rn,k, the set of
coverings of the row of numbers 1, 2, . . . , n by k dominos and n− 2k squares. Since each
such covering corresponds uniquely to a word in the alphabet {d, s} comprising k d’s and
n− 2k s’s, it follows that

|Rn,k| =
(

n− k

k

)
, 0 6 k 6 n/2, (2.1)

for all n ∈ P. (In what follows we will simply identify coverings with such words.) If we
set R0,0 = {∅}, the “empty covering,” then (2.1) holds for n = 0 as well. With

Rn :=
⋃

06k6bn/2c
Rn,k, n ∈ N, (2.2)

it follows that

|Rn| =
∑

06k6bn/2c

(
n− k

k

)
= Fn, (2.3)

where F0 = F1 = 1 and Fn = Fn−1 + Fn−2 for n > 2.
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Given c ∈ Rn, let ν(c) := the number of dominos in the covering c, let σ(c) := the
sum of the numbers covered by the left halves of each of those dominos, and let

Fn(q, t) :=
∑
c∈Rn

qσ(c)tν(c). (2.4)

Categorizing covers of 1, 2, . . . , n according as n is covered by a square or a domino yields
the recurrence relation

Fn(q, t) = Fn−1(q, t) + qn−1tFn−2(q, t), n > 2, (2.5)

with F0(q, t) = F1(q, t) = 1. The following theorem gives an explicit formula for Fn(q, t).

Theorem 2.1. For all n ∈ N,

Fn(q, t) =
∑

06k6bn/2c
qk2

(
n− k

k

)
q

tk. (2.6)

Proof. It clearly suffices to show that

∑
c∈Rn,k

qσ(c) = qk2

(
n− k

k

)
q

.

Each c ∈ Rn,k corresponds uniquely to a sequence (d0, d1, . . . , dk), where d0 is the number
of squares following the kth domino (counting from left to right) in the covering c, dk is
the number of squares preceding the first domino, and, for 0 < i < k, dk−i is the number
of squares between dominos i and i + 1. Here, σ(c) = (dk + 1) + (dk + dk−1 + 3) + · · ·+
(dk + dk−1 + · · ·+ d1 + (2k − 1)) = k2 + 0d0 + 1d1 + 2d2 + · · ·+ kdk. Hence,

∑
c∈Rn,k

qσ(c) = qk2
∑

d0+d1+···+dk=n−2k
di∈N

q0d0+1d1+···+kdk = qk2

(
n− k

k

)
q

,

by (1.2).

Corollary 2.1.1. The ordinary generating function of the sequence (Fn(q, t))n>0 is given
by ∑

n>0

Fn(q, t)xn =
∑
k>0

qk2
tkx2k

(1− x)(1− qx) · · · (1− qkx)
. (2.7)

Proof. The result follows from (2.6), summation interchange, and (1.5).

As noted earlier, Fn(1, 1) = Fn. Hence (2.7) generalizes the well known result,∑
n>0

Fnxn =
1

1− x− x2
. (2.8)

We now evaluate Fn(1,−1) and Fn(−1, t).
Substituting (q, t) = (1,−1) into (2.5) and solving the resulting recurrence yields
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Theorem 2.2. For all n ∈ N,

Fn(1,−1) =




0, if n ≡ 2 or 5 (mod 6);

1, if n ≡ 0 or 1 (mod 6);

−1, if n ≡ 3 or 4 (mod 6).

(2.9)

A slight variation on the strategy outlined in § 1 above yields a combinatorial proof of
(2.9). Let R∗

n consist of those c = x1x2 · · · in Rn satisfying the conditions x2i−1x2i = ds,
1 6 i 6 bn/3c. If n ≡ 0 or 1 (mod 6), then R∗

n is a singleton whose sole element has
even ν-parity. If n ≡ 3 or 4 (mod 6), then R∗

n is a singleton whose sole element has odd
ν-parity. If n ≡ 2 (mod 3), then R∗

n is a doubleton containing two members of opposite
ν-parity, which we pair. The foregoing observations establish (2.9) for 0 6 n 6 2 since
R∗

n = Rn for such n. Thus, it remains only to construct a ν-parity changing involution
of Rn −R∗

n for n > 3. Such an involution is furnished by the pairings

(ds)ksdv ↔ (ds)ksssv,

and

(ds)kddu↔ (ds)kssdu

where 0 6 k < bn/3c, (ds)0 denotes the empty word, and u and v are (possibly empty)
words in the alphabet {d, s}. Note that the above argument also furnishes a combinatorial
proof of the well known fact that Fn is even if and only if n ≡ 2 (mod 3).

Remark. Neither (2.9), nor its corollary (3.12) below, is new. Indeed, (2.9) is a special
case of the well known formula

∑
06k6bn/2c

(−1)kq(
k
2)

(
n− k

k

)
q

=

{
(−1)bn/3cqn(n−1)/6, if n ≡ 0, 1 (mod 3);

0, if n ≡ 2 (mod 3).

See, e.g., Ekhad and Zeilberger [7], Kupershmidt [8], and Cigler [4]. Our interest here,
and in Theorem 3.2 below, has been to furnish new proofs of (2.9) and (3.12) based on
parity changing involutions.

Theorem 2.3. For all m ∈ N,

F2m(−1, t) = Fm(1, t2)− tFm−1(1, t
2) (2.10)

and

F2m+1(−1, t) = Fm(1, t2), (2.11)

where F−1(q, t) := 0.
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Proof. Taking the even and odd parts of both sides of (2.7) and replacing x with x1/2

yields

∑
m>0

F2m(−1, t)xm = (1− tx)
∑
k>0

t2kx2k

(1− x)k+1

and

∑
m>0

F2m+1(−1, t)xm =
∑
k>0

t2kx2k

(1− x)k+1
,

from which (2.10) and (2.11) follow from (2.7).
For a combinatorial proof of (2.10) and (2.11), we first assign to each domino arrange-

ment c ∈ Rn the weight wc := (−1)σ(c)tv(c), where t is an indeterminate. Let R′
n consist of

those c = x1x2 · · ·xr in Rn satisfying the conditions x2i−1 = x2i, 1 6 i 6 br/2c. Suppose
c = x1x2 · · ·xr ∈ Rn−R′

n, with i0 being the smallest value of i for which x2i−1 6= x2i. Ex-
changing the positions of x2i0−1 and x2i0 within c produces a σ-parity changing involution
of Rn −R′

n which preserves v(c). Then

F2m+1(−1, t) =
∑

c∈R2m+1

wc =
∑

c∈R′
2m+1

wc =
∑

s∈Rm

w2
s = Fm(1, t2)

and

F2m(−1, t) =
∑

c∈R2m

wc =
∑

c∈R′
2m

wc =
∑

c∈R′
2m

σ(c) even

wc +
∑

c∈R′
2m

σ(c) odd

wc

=
∑

s∈Rm

w2
s − t

∑
s∈Rm−1

w2
s = Fm(1, t2)− tFm−1(1, t

2),

since members of R′
2m+1 end in a single s, while members of R′

2m end in a double letter
or in a single d, depending on whether σ(c) is even or odd.

When t = 1 in Theorem 2.3, we get for m ∈ N,

F2m(−1, 1) = Fm−2 and F2m+1(−1, 1) = Fm. (2.12)

The arguments given above then specialize when t = 1 to furnish combinatorial proofs of
the congruences F2m ≡ Fm−2 (mod 2) and F2m+1 ≡ Fm (mod 2).

3 Circular Domino Arrangements

If n ∈ P and 0 6 k 6 bn/2c, let Cn,k be the set of coverings by k dominos and n − 2k
squares of the numbers 1, 2, . . . , n arranged clockwise around a circle:
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.................

..................

..................

..................

.................

................
................

.................
..................

............................................................................................................................
.................

..............
..

............
....

............
.....

............
......

...........
.......

...........
.......

..........

.......

..........

.......

...........
.......

...........
.......

............
......

............
.....

............
....

..............
..

................. .................. .................. .................. ................. ................. .................. ..................
..................
.................
................
................

.................

..................

..................

..................

................. ·

2
1

n

·

·
·

·

By the initial half of a domino occurring in such a cover, we mean the half first encountered
as the circle is traversed clockwise. Classifying members of Cn,k according as (i) n is covered
by the initial half of some domino, (ii) 1 is covered by the initial half of some domino, or
(iii) 1 is covered by a square, and applying (2.1) to count these three classes yields the
well known result

|Cn,k| = 2

(
n− k − 1

k − 1

)
+

(
n− k − 1

k

)
=

n

n− k

(
n− k

k

)
, 0 6 k 6 bn/2c. (3.1)

Note that |C2,1| = 2, the relevant coverings being

(1)

. .............. .............. ............. .............. .............. ..............
.............
.............
..............
..............
..............
..............
..............
..............
.............

.............
...................................................................................

. .................. .................. .................. .................. .................. .................. .................. ..................
..................
.................
.................
..................
..................

..................

..................

..................

.................

..................

..................

..................
..................

..................
.................

.................
..................

................................................................................................................................................

�
�

T
T 1

2

and (2)

............................................................................................................................
..............
..............
..............
.............. .............. ............. ............. .............. .............. .............. ............. .............. ..............

...................
.................................................................................................................................................................

.................
................
..

...............
...

..............
....

..............
....

.............

.....

.............

....

.............

.....

.............
.....

..............
....

...............
...

................
..

................. ................. .................. .................. .................. .................. .................. .................. .................. ..................
..................

T
T

�
�1

2

In covering (1), the initial half of the domino covers 1, and in covering (2), the initial half
covers 2.

With
Cn :=

⋃
06k6bn/2c

Cn,k, n ∈ P, (3.2)

it follows that

|Cn| =
∑

06k6bn/2c

n

n− k

(
n− k

k

)
= Ln, (3.3)

where L1 = 1, L2 = 3, and Ln = Ln−1 + Ln−2 for n > 2, also a well known result.
Given c ∈ Cn, let ν(c) := the number of dominos in the covering c, let σ(c) := the sum

of the numbers covered by the initial halves of each of those dominos, and let

Ln(q, t) :=
∑
c∈Cn

qσ(c)tν(c). (3.4)
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Theorem 3.1. For all n ∈ P,

Ln(q, t) =
∑

06k6bn/2c
qk2 nq

(n− k)q

(
n− k

k

)
q

tk. (3.5)

Proof. It suffices to show that

∑
c∈Cn,k

qσ(c) = qk2 nq

(n− k)q

(
n− k

k

)
q

(3.6)

for 0 6 k 6 bn/2c. Partitioning Cn,k into the categories (i), (ii), and (iii) employed above
in deriving (3.1), and applying (2.6) yields

∑
c∈Cn,k

qσ(c) = qk2−k+n

(
n− k − 1

k − 1

)
q

+ qk2

(
n− k − 1

k − 1

)
q

+ qk2+k

(
n− k − 1

k

)
q

= qk2 nq

(n− k)q

(
n− k

k

)
q

.

Corollary 3.1.1. The ordinary generating function of the sequence (Ln(q, t))n>1 is given
by ∑

n>1

Ln(q, t)xn =
x

1− x
+

∑
k>1

qk2
tkx2k

(
1 + qk(1− x)

)
(1− x)(1− qx) · · · (1− qkx)

. (3.7)

Proof. This result follows from (3.5), using the identity

nq

(n− k)q

(
n− k

k

)
q

=

(
n− k

k

)
q

+ qn−k

(
n− k − 1

k − 1

)
q

, (3.8)

summation interchange, and (1.5).

As noted earlier, Ln(1, 1) = Ln. Hence (3.7) generalizes the well known result

∑
n>1

Lnxn =
x + 2x2

1− x− x2
. (3.9)

The Ln(q, t) are related to the Fn(q, t) by the formula

Ln(1, t) = Fn(1, t) + tFn−2(1, t), n > 1, (3.10)

which reduces to the familiar

Ln = Fn−1 + 2Fn−2, n > 1, (3.11)

when t = 1. We now evaluate Ln(1,−1) and Ln(−1, t).
Substituting t = −1 into (3.10) and applying (2.9) yields
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Theorem 3.2. For all n ∈ P,

Ln(1,−1) =




1, if n ≡ 1 or 5 (mod 6);

−1, if n ≡ 2 or 4 (mod 6);

2, if n ≡ 0 (mod 6);

−2, if n ≡ 3 (mod 6).

(3.12)

For a combinatorial proof of (3.12), write Cn =
−→C n∪←−C n, where c ∈ −→C n iff 1 is covered

by a square of c, or 1 and 2 by a single domino of c, and c ∈ ←−C n iff n and 1 are covered
by a single domino of c. Associate to each c ∈ Cn a word uc = v1v2 · · · in the alphabet
{d, s}, where

vi :=

{
s, if the “i-th piece” of c is a square;

d, if the “i-th piece” of c is a domino,

and one determines the “i-th piece” of c by starting at 1 and proceeding clockwise if

c ∈ −→C n, and counterclockwise if c ∈ ←−C n. Note that although distinct elements of Cn may

be associated with the same word, each c ∈ −→C n is associated with a unique word, and

each c ∈ ←−C n is associated with a unique word.
Let

C∗n :=
{
c ∈ −→C n : uc = (sd)bn/3c or (sd)bn/3cs

}
∪

{
c ∈ ←−C n : uc = (ds)bn/3c or (ds)bn/3cd

}
.

It is straightforward to check that |C∗n| = 1 if n ≡ 1 or 2 (mod 3) and |C∗n| = 2 if n ≡ 0
(mod 3). In the former case, the sole element of C∗n has even ν-parity if n ≡ 1 or 5
(mod 6), and odd ν-parity if n ≡ 2 or 4 (mod 6). In the latter case, both elements of C∗n
have even ν-parity if n ≡ 0 (mod 6), and odd ν-parity if n ≡ 3 (mod 6).

To complete the proof it suffices to identify a ν-parity changing involution of
−→C n−C∗n,

and of
←−C n − C∗n, whenever these sets are nonempty. In the former case, this occurs when

n > 2, and such an involution is furnished by the pairing

(sd)kdu↔ (sd)kssu,

where 0 6 k 6 b(n− 2)/3c, and u is a (possibly empty) word in {d, s}. In the latter case,
this occurs when n > 4, and such an involution is furnished by the pairing

d(sd)jdv ↔ d(sd)jssv,

where 0 6 j 6 b(n− 4)/3c, and v is a (possibly empty) word in {d, s}.
Theorem 3.3. For all m ∈ P,

L2m(−1, t) = Lm(1, t2) (3.13)
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and

L2m−1(−1, t) = Fm−1(1, t
2)− tFm−2(1, t

2), (3.14)

where F−1(q, t) := 0.

Proof. Taking the even and odd parts of both sides of (3.7) and replacing x with x1/2

yields

∑
m>1

L2m(−1, t)xm =
x

1− x
+ (2− x)

∑
k>1

t2kx2k

(1− x)k+1

and

∑
m>1

L2m−1(−1, t)xm = (1− tx)
∑
k>0

t2kx2k+1

(1− x)k+1
,

from which (3.13) and (3.14) follow from (3.7) and (2.7).
The following observation leads to a combinatorial proof of (3.13) and (3.14) for n > 2:

If c ∈ Cn, let c′ be the result of reflecting the arrangement of dominos and squares
constituting c in the diameter through the point 2 on the relevant circle. We illustrate
pairs c and c′ for n = 8 and n = 9 below.

c =
.......................

.......................

........................

.......................

.......................

......................

......................
.......................

.......................
...................................................................................................................................................................

.......................
...................
...

................
......

...............
........

..............
.........

..............
..........

.............
..........

.............

..........

.............

..........

.............
..........

..............
..........

..............
.........

................
.......

................
......

..................
....

....................... ....................... ........................ ....................... ....................... ....................... ....................... ........................
.......................

.......................
......................

......................

.......................

.......................

........................

.......................

.......................

..............
..............
..............
..............
..............

.............
.............

..............
......................................................................................................................................................................

..............
..............
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Note that c and c′ have opposite σ-parity in both cases. More generally, it may be verified
that if n is even, then c and c′ have opposite σ-parity iff ν(c) is odd, and if n is odd, then
c and c′ have opposite σ-parity iff 2 is covered by a domino in c.

In what follows we use the same encoding of covers as words in {d, s} that we employed
in the combinatorial proof of Theorem 3.2. We also assign to each c ∈ Cn the weight
wc = (−1)σ(c)tv(c).
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Suppose that n = 2m. Let C′2m :=
⋃

06k6m C2m,2k and let C∗2m consist of those c ∈ C′2m

for which uc = v1v2 · · · satisfies v2i−1 = v2i for all i. We extend the σ-parity changing,
v-preserving involution of C2m−C′2m defined in our initial observation to C2m−C∗2m. Since
C∗2m = C′2m for m 6 2, we may restrict attention to the case m > 3. Let c ∈ C′2m − C∗2m,
with uc = v1v2 · · · , and let i0 be the largest i for which v2i−1 6= v2i, whence i0 > 2.
Interchanging the (2i0 − 1)th and (2i0)

th pieces of c furnishes such an involution. Then

L2m(−1, t) =
∑

c∈C2m

wc =
∑

c∈C∗
2m

wc = Lm(1, t2).

Suppose now that n = 2m− 1, where m > 2. Let C′2m−1 consist of those c ∈ C2m−1 in
which 2 is covered by a square. There is an obvious v-preserving bijection b : C′2m−1 →
R2m−2 for which σ(c) ≡ σ(b(c)) (mod 2) for all c ∈ C′2m−1. In view of the involution of
C2m−1 − C′2m−1 defined in our initial observation, we have

L2m−1(−1, t) =
∑

c∈C2m−1

wc =
∑

c∈C′
2m−1

wc =
∑

c∈R2m−2

wc

= Fm−1(1, t
2)− tFm−2(1, t

2),

by (2.10).

When t = 1 in Theorem 3.3, we get for m ∈ P,

L2m(−1, 1) = Lm and L2m−1(−1, 1) = Fm−3. (3.15)

The arguments given above then specialize when t = 1 to furnish combinatorial proofs of
the congruences L2m ≡ Lm (mod 2) and L2m−1 ≡ Fm−3 (mod 2).

4 Some Concluding Remarks

Formulas such as (2.10), (2.11), (3.13), and (3.14) show that the q = −1 case differs in
many respects from the general q-case. The referee points out to us that the reason for
this behavior may lie in the fact that the Fibonacci and Lucas polynomials can be written
as a sum of q-binomial coefficients, which are known to reduce to the ordinary binomial
coefficients when q = −1. Similar reductions also occur in some cases when q is a root
of unity, and analogues to formulas such as (2.10) and (3.13) might be expected in these

cases. For example, when q = ρ = −1+i
√

3
2

, a third root of unity, we have the following
formulas:

F3m(ρ, t) = Fm(1, t3)− tFm−1(1, t
3), (4.1)

F3m+1(ρ, t) = Fm(1, t3) + ρt2Fm−1(1, t
3), (4.2)

F3m+2(ρ, t) = (1 + ρt)Fm(1, t3), (4.3)

L3m(ρ, t) = Lm(1, t3), (4.4)

L3m+1(ρ, t) = Fm(1, t3) + ρt(1− ρt)Fm−1(1, t
3), (4.5)
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and

L3m+2(ρ, t) = (1− t)Fm(1, t3)− t2Fm−1(1, t
3). (4.6)

The combinatorial arguments given when q = −1 can be extended to identities such
as these. For example, to prove (4.1)–(4.3), instead of pairing members of Rn with the
same number of dominos and opposite σ-parity, we partition Rn into tripletons whose
members each contain the same number of dominos but have different σ-values mod 3.
Assign to each member c of Rn the weight wc := ρσ(c)tv(c), where ρ = −1+i

√
3

2
and t is an

indeterminate. Then for a tripleton {c1, c2, c3} as described, we have wc1 + wc2 + wc3 = 0
since 1 + ρ + ρ2 = 0.

Let R′
n consist of those c = x1x2 · · ·xr in Rn satisfying

x3i−2 = x3i−1 = x3i, 1 6 i 6 br/3c. (4.7)

Suppose that c = x1x2 · · ·xr ∈ Rn − R′
n, with i0 being the smallest value of i for which

(4.7) fails to hold. Group the three members of Rn −R′
n gotten by circularly permuting

x3i0−2, x3i0−1, and x3i0 within c = x1x2 · · ·xr, leaving the rest of c undisturbed. Note
that these three members of Rn contain the same number of dominos but have different
σ-values mod 3.

If n = 3m, then

F3m(ρ, t) =
∑

c∈R3m

wc =
∑

c∈R′
3m

wc =
∑

s∈Rm

w3
s + (ρ + ρ2)t

∑
s∈Rm−1

w3
s = Fm(1, t3)

+ (ρ + ρ2)tFm−1(1, t
3) = Fm(1, t3)− tFm−1(1, t

3),

which proves (4.1), since members of R′
3m may end in a triple letter, in −ds, or in −sd.

Formulas (4.2) and (4.3) follow similarly, since members ofR′
3m+1 end in −s or −dd, while

members of R′
3m+2 end in −ss or −d.

We conclude by remarking that Cigler has studied the generalized q-Fibonacci poly-
nomials [5]

Fn(j, s, t, q) :=
∑

06kj6n−j+1

qj(k
2)

(
n− (j − 1)(k + 1)

k

)
q

tksn−(k+1)j+1. (4.8)

Note that a close variant of (4.8),

F (j)
n (q, t, s) := Fn+j−1(j, s, qt, q), n ∈ N, (4.9)

furnishes a natural generalization of Fn(q, t), reducing to the latter when j = 2 and s = 1.

Analogues of (2.10) and (2.11) can be obtained for F
(j)
n (q, t, 1) when j > 3; for example,

we have for m ∈ N,

F
(3)
2m(−1, t, 1) = F (3)

m (1,−t2, 1), (4.10)

F
(3)
2m+1(−1, t, 1) = F (3)

m (1,−t2, 1)− tF
(3)
m−1(1,−t2, 1), (4.11)

F
(4)
2m(−1, t, 1) = F (4)

m (1, t2, 1)− tF
(4)
m−2(1, t

2, 1), (4.12)
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and

F
(4)
2m+1(−1, t, 1) = F (4)

m (1, t2, 1). (4.13)

It would be interesting to have combinatorial proofs of (4.10)–(4.13).
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