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Abstract

We obtain a general bound on the Turán density of a hypergraph in terms of
the number of edges that it contains. If F is an r-uniform hypergraph with f edges
we show that π(F) < f−2

f−1 − (1 + o(1))(2r!2/rf3−2/r)−1, for fixed r ≥ 3 and f → ∞.

Given an r-uniform hypergraph F , the Turán number of F is the maximum number
of edges in an r-uniform hypergraph on n vertices that does not contain a copy of F .
We denote this number by ex(n,F). It is not hard to show that the limit π(F) =
limn→∞ ex(n,F)/

(
n
r

)
exists. It is usually called the Turán density of F . There are very

few hypergraphs with r > 2 for which the Turán density is known, and even fewer for the
exact Turán number. We refer the reader to [10, 11, 12, 13, 14, 15, 16] for recent results
on these problems.

A general upper bound on Turán densities was obtained by de Caen [3], who showed

π(K
(r)
s ) ≤ 1 −

(
s−1
r−1

)−1
, where K

(r)
s denotes the complete r-uniform hypergraph on s

vertices. A construction showing π(K
(r)
s ) ≥ 1−

(
r−1
s−1

)r−1
was given by Sidorenko [17] (see

also [18]); better bounds are known for large r. We refer the reader to Sidorenko [18] for a
full discussion of this problem. For a general hypergraph F Sidorenko [19] (see also [20])
obtained a bound for the Turán density in terms of the number of edges, showing that if
F has f edges then π(F) ≤ f−2

f−1
. In this note we improve this as follows.

Theorem 1 Suppose F is an r-uniform hypergraph with f edges.
(i) If r = 3 and f ≥ 4 then π(F) ≤ 1

2
(
√

f 2 − 2f − 3 − f + 3).

(ii) For a fixed r ≥ 3 and f → ∞ we have π(F) < f−2
f−1

− (1 + o(1))(2r!2/rf 3−2/r)−1.

We start by describing our main tool, which is Sidorenko’s analytic approach. See [20]
for a survey of this method. Consider an r-uniform hypergraph H on n vertices. It is
convenient to regard the vertex set V as a finite measure space, in which each vertex v has
µ({v}) = 1/n, so that µ(V ) = 1. We write h : V r → {0, 1} for the symmetric function
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h(x1, · · · , xr) which takes the value 1 if {x1, · · · , xr} is an edge of H and 0 otherwise.

Then
∫

h dµr = r!e(H)n−r = d + O(1/n), where d =
(

n
r

)−1
e(H) is the density of H.

Now consider a fixed forbidden r-uniform hypergraph F with f edges on the vertex
set {1, · · · , m}. We associate to vertex i the variable xi, and to an edge e = {i1, · · · , ir}
the function he(x) = h(xi1 , · · · , xir), where x denotes the vector (x1, · · · , xm). The con-
figuration product of F with respect to h is the function hF (x) =

∏
e∈F he(x). Then∫

hFdµm = n−mhom(F ,H) = n−mmon(F ,H)+O(n−1) = n−maut(F)sub(F ,H)+O(n−1),

where hom(F ,H) is the number of homomorphisms (edge-preserving maps) from F to H,
mon(F ,H) is the number of these that are monomorphisms (injective homomorphisms),
aut(F) is the number of automorphisms of F and sub(F ,H) is the number of F -subgraphs
of H. Also, Erdős-Simonovits supersaturation [6] implies that for any δ > 0 there is ε > 0
and an integer n0 so that for any r-uniform hypergraph H on n ≥ n0 vertices with(

n
r

)−1
e(H) > π(F) + δ we have n−msub(F ,H) > ε. It follows that

π(F) = inf
ε>0

lim inf
|V |→∞

max
h:V r→{0,1},

R
hF dµm<ε

∫
h dµr. (1)

We say that F is a forest if we can order its edges as e1, · · · , ef so that for every
2 ≤ i ≤ f there is some 1 ≤ j ≤ i − 1 so that ei ∩

(
∪i−1

t=1et

)
⊂ ej . Sidorenko [20] showed

that if F is a forest with f edges then

∫
hF dµm ≥

(∫
h dµr

)f

. (2)

Now we need a lemma on when a hypergraph contains a forest of given size.

Lemma 2 (i) An r-uniform hypergraph with at least r!(t − 1)r edges contains a forest
with t edges.
(ii) Let F be a 3-uniform hypergraph. Then either (a) F contains a forest with 3 edges,

or (b) π(F) = 0, or (c) F ⊂ K
(3)
4 , or (d) F = F5 = {abc, abd, cde}.

Proof. (i) This is immediate from the result of Erdős and Rado [5] that such a hyper-
graph contains a sunflower with t petals, i.e. edges e1, · · · , et for which all the pairwise
intersections ei ∩ ej are equal. A sunflower is in particular a forest.

(ii) Consider a 3-uniform hypergraph F that does not contain a forest with 3 edges.
We can assume that F is not 3-partite (Erdős [4] showed that this implies π(F) = 0) so
F has at least 3 edges. Clearly F cannot have two disjoint edges, as then adding any
other edge gives a forest.

Suppose there is a pair of edges that share two points, say e1 = abc and e2 = abd. Any
other edge must contain c and d, or together with e1 and e2 we have a forest. Consider
another edge e3 = cde. If there are no other edges then either F = F5 or F ⊂ K

(3)
4 (if e
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equals a or b). If there is another edge e4 = cdf then the same argument shows that e1

and e2 both contain e and f , i.e. F = K
(3)
4 and there can be no more edges.

The other possibility is that every pair of edges intersect in exactly one point. Then
there are at most 2 edges containing any point, or we would have a forest with 3 edges.
Consider three edges, which must have the form e1 = abc, e2 = cde, e3 = efa. There can
be at most one more edge e4 = bdf . But this forms a 3-partite hypergraph (with parts
ad, be, cf), a case we have already excluded. This proves the lemma. �
Proof of Theorem. Let F be an r-uniform hypergraph with f edges that contains a
forest T with t edges. Label the edges e1, · · · , ef , where e1, · · · , et are the edges of T .
Suppose that H is an r-uniform hypergraph on a vertex set V of size n. Define the
measure µ and the function h : V r → {0, 1} as before. Observe the inequality

hF(x) ≥ hT (x) +

f∑
i=t+1

he1(x)(hei
(x) − 1).

This holds, as the second term is non-positive (since he(x) ∈ {0, 1}), so it could only fail
for some x if hF(x) = 0 and hT (x) = 1. But then we have he1(x) = · · · = het(x) = 1 and
hei

(x) = 0 for some i > t, and the term he1(x)(hei
(x) − 1) = −1 cancels hT (x), so the

inequality holds for all x. Integrating gives

∫
hF (x) dµm ≥

∫
hT (x) dµm +

f∑
i=t+1

∫
he1(x)hei

(x)− he1(x) dµm ≥ pt + (f − t)(p2 − p),

where we write p =
∫

h dµr and apply the inequality (2) for the forests T and {e1, ei},
t + 1 ≤ i ≤ f . By equation (1) we deduce that the Turán density π = π(F) satisfies
πt + (f − t)(π2 − π) ≤ 0.

Writing g(x) = xt−1 + (f − t)(x − 1) we either have π = 0 or g(π) ≤ 0. Now
g(0) = −(f − t) ≤ 0, g(1) = 1 and dg

dx
= (t − 1)xt−2 + f − t ≥ 0 for 0 < x < 1 so g has

exactly one root α in [0, 1], and π ≤ α.
First we consider the case r = 3. If f ≥ 5 then by the lemma we can take t = 3. Solving

the quadratic g(x) = x2 +(f −3)(x−1) = 0 gives π ≤ α = 1
2
(
√

f 2 − 2f − 3−f +3). This

also holds when f = 4, as then by the lemma we may suppose that F = K
(3)
4 . Chung and

Lu [2] showed that π(K
(3)
4 ) ≤ 3+

√
17

12
which is less than 1

2
(
√

5 − 1).
Now consider the case when r ≥ 3 is fixed and f → ∞. By the lemma we can take t =

(f/r!)1/r. Write α = 1−ε. Since g(α) = 0 we have (f−t)ε = (1−ε)t−1 < 1, so ε < 1/(f−t).
From the Taylor expansion of (1− ε)t−1 we have (f − t)ε > 1− (t−1)ε+

(
t−1
2

)
ε2 −

(
t−1
3

)
ε3.

Also
(

t−1
3

)
ε3 < 1

6

(
t−1
f−t

)3

< 1
6
(t/f)3 (since f > t2) so

(
t−1
2

)
ε2 − (f − 1)ε + 1 − 1

6
(t/f)3 < 0.
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Writing ∆ = (f − 1)2 − 4
(

t−1
2

)
(1− 1

6
(t/f)3) for the discriminant of this quadratic we have

ε >
f − 1 − ∆1/2

(t − 1)(t − 2)
=

2(1 − 1
6
(t/f)3)

f − 1 + ∆1/2

=
2

f − 1

(
1 +

(
1 − 2(t − 1)(t − 2)(1 − 1

6
(t/f)3)(f − 1)−2

)1/2
)−1

+ O(t3/f 4)

=
2

f − 1

(
1 + 1 − (t − 1)(t − 2)(f − 1)−2 + O(t4/f 4)

)−1
+ O(t3/f 4)

=
1

f − 1
(1 +

1

2
(t − 1)(t − 2)(f − 1)−2 + O(t4/f 4)) + O(t3/f 4)

=
1

f − 1
+

(t − 1)(t − 2)

2(f − 1)3
+ O(t3/f 4).

Since α = 1 − ε and t = (f/r!)1/r we have

π ≤ α <
f − 2

f − 1
− (1 + o(1))(2r!2/rf 3−2/r)−1.

This proves the theorem. �
Remarks. (1) For a graph G we have e(G) ≥

(
χ(G)

2

)
with equality if and only if G is

complete. The Erdős-Stone theorem [7] implies that π(G) = χ(G)−2
χ(G)−1

< 1 − 1+o(1)√
2e(G)

. It is

natural to think that complete hypergraphs should also have the highest Turán density
among all hypergraphs with the same number of edges. Were this true de Caen’s bound
would give π(F) < 1 − Ω(f−(r−1)/r) for an r-uniform hypergraph F with f edges.

(2) If F has 3 edges then Sidorenko’s bound π(F) ≤ 1/2 is tight when F = K
(2)
3

is a triangle, or more generally when F is the 2k-uniform hypergraph with edges {P1 ∪
P2, P2 ∪ P3, P3 ∪ P1}, where P1, P2, P3 are disjoint sets of size k (see [8, 14]). If F is
3-uniform and has 3 edges then the lemma shows that π(F) ≤ max{π(F4), π(F5)}, where

F4 denotes the 3-edge subgraph of K
(3)
4 and F5 = {abc, abd, cde}. Frankl and Füredi

[9] showed that π(F5) = 2/9 and Mubayi [15] showed π(F4) < 1/3 − 10−6, so we see
that π(F) < 1/3 − 10−6, and Sidorenko’s bound is not tight. It would be interesting to
determine if it is ever tight for a hypergraph with edges of odd size.

(3) How many edges in an r-uniform hypergraph guarantee a forest with t edges? An
answer to this question may lead to an improvement in our theorem, and it also seems
interesting in its own right. Erdős and Rado [5] conjectured that for any t there is a
constant C so that any r-uniform hypergraph with Cr edges contains a sunflower with t
edges. We can obtain a bound of this form for forests, indeed, we claim that any r-uniform
hypergraph F with (2t)r edges contains a forest with t edges. For if we fix any edge e,
then the other edges have 2r possible intersections with it, so we can find a hypergraph
F ′ ⊂ F\e with (2t−1)r edges, all of which have the same intersection with e. By induction
we can find a forest with t − 1 edges in F ′, and adding e gives a forest of size t in F .

the electronic journal of combinatorics 12 (2005), #N11 4



Actually, it is not hard to improve this bound to 2
(

r
r/2

)t−2
. For we only need the

intersections {e∩e′ : e′ ∈ F} to form a chain, and the subsets of e can be partitioned into(
r

r/2

)
chains (see, for example, [1] page 10). Thus we need only lose a factor

(
r

r/2

)
at each

induction step, and after t − 2 steps we get down to a 2-edge forest.
However, this bound does not help in our application, as we are interested in the case

when r is fixed and t is large. We have an upper bound of r!tr from Erdős and Rado, and
and noting that K

(r)
r+t−2 does not contain a forest with t edges we obtain a lower bound

of
(

r+t−2
r

)
∼ tr/r!, so we have a constant r!2 factor of uncertainty.
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