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Abstract

The Hajós Conjecture was disproved in 1979 by Catlin. Recently, Thomassen
showed that there are many ways that Hajós conjecture can go wrong. On the other
hand, he observed that locally planar graphs and triangulations of the projective
plane and the torus satisfy Hajós Conjecture, and he conjectured that the same
holds for arbitrary triangulations of closed surfaces. In this note we disprove the
conjecture and show that there are different reasons why the Hajós Conjecture fails
also for triangulations.

1 Introduction

Hajós conjecture claims that every graph whose chromatic number is at least k contains
a subdivision of Kk, the complete graph of order k. The conjecture has been proved for
k ≤ 4 by Dirac [3], while for k = 5, it yields a strengthening of the Four Color Theorem,
which is still open. The conjecture was disproved for all k ≥ 7 by Catlin [2]. Soon after
that, Erdős and Fajtlowicz [4] proved that the conjecture is false for almost all graphs.

Recently, Thomassen [11] revived the interest in Hajós conjecture by showing that
there is a great variety of reasons why Hajós conjecture can be wrong. At the end
of this interesting work, Thomassen observed that the Hajós conjecture could be true
to some limited extent. Maybe it holds in the setting under whose influence it was
originally formulated (related to the Four Color Conjecture). For instance, it holds for
graphs embedded in any fixed surface with sufficiently large edge-width (i.e., when all
noncontractible cycles are long). Therefore, it seems plausible to propose:
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Conjecture 1.1 (Thomassen [11]) Every graph that triangulates some surface satisfies
Hajós conjecture.

Every n-vertex triangulation of a nonplanar surface has at least 3n− 3 edges. There-
fore, it contains a subdivision of K5 by a theorem of Mader [6]. In particular, possible
counterexamples to Conjecture 1.1 must have chromatic number at least 6. Thomassen
[11] used a known list of 6- and 7-critical graphs on the projective plane and the torus
[10] to prove that Conjecture 1.1 holds for triangulations on these two surfaces.

In this note we provide counterexamples to Conjecture 1.1. Additionally, we give
some reasons showing that, in certain sense, almost all graphs should be close to some
counterexamples.

2 A small counterexample

Let H̃ be the graph with vertex set

V = {vi,j | 0 ≤ i ≤ 4, 0 ≤ j ≤ 2} ∪ {wi | 0 ≤ i ≤ 4}

in which distinct vertices vi,j and vk,l are adjacent if and only if k ∈ {i−1, i, i+1} (where
i − 1 and i + 1 are taken modulo 5), and wi is adjacent to all vertices vi,j and vi+1,j ,
0 ≤ j ≤ 2. In other words, H̃ is composed of 5 copies Qi (0 ≤ i ≤ 4) of the graph K7

with vertices C−
i = {vi,0, vi,1, vi,2}, C+

i = {vi+1,0, vi+1,1, vi+1,2}, and wi, and C+
i ⊂ Qi is

identified with C−
i+1 ⊂ Qi+1 for 0 ≤ i ≤ 4 (indices modulo 5).

The graph H̃ is a counterexample to Conjecture 1.1:

Theorem 2.1 The graph H̃ triangulates the orientable surface of genus 6 and the nonori-
entable surface of genus 12. Its chromatic number is 8 and it does not contain a subdivision
of K8.
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Figure 1: K7 on the torus

Proof. The graph K7 triangulates the torus. See Figure 1, where the edge on the
left is identified with the rightmost one, and the two cycles of the resulting cylinder are
then identified as shown by the labels. Consider 5 such triangulations using Q0, . . . , Q4.
We may assume that the triangles C+

i and C−
i of each Qi are facial; suppose that they

correspond to the triangles that are labeled 023 and 156 in Figure 1. By identifying C+
i
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with C−
i+1 for i = 0, 1, 2, 3, we obtain the connected sum of five tori. Finally, by identifying

C+
4 with C−

0 , the orientable surface of genus 6 is obtained. Clearly, the resulting graph
is isomorphic to H̃ and triangulates the surface. Instead of the orientable surface we can
get a nonorientable surface of the same Euler characteristic by taking for C−

0 in Q0 the
triangle 165 instead of 156.

Let H be the subgraph of H̃ obtained by removing vertices w0, . . . , w4. Clearly, no
three vertices of H are independent. Thus, χ(H) ≥ d|V (H)|/2e = 8. Also, it is easy
to find an 8-coloring of H , and any such coloring extends to H̃ since the degrees of the
removed vertices wi are equal to 6. Consequently, χ(H̃) = χ(H) = 8.

Let us now prove that H̃ does not contain a subdivision of K8. Assume, by reductio ad
absurdum, that L ⊆ H̃ is such a subgraph. Vertices of degree 7 in L are branch vertices;
vertices of degree 2 subdivide edges of K8. Since degH̃(wi) = 6, no wi is a branch vertex.
Since the neighbors of wi form a complete subgraph, we may also assume that wi does
not subdivide an edge in L for i = 0, . . . , 4. In particular, we conclude that L ⊆ H .

Let B ⊆ V (L) be the set of branch vertices and let s be the number of vertices of
degree 2 in L. Clearly, |B| = 8 and s ≤ |V (H) \ B| = 7. Let Bi = B ∩ C+

i and bi = |Bi|
for 0 ≤ i ≤ 4. We may assume that b0 = maxi bi and that, subject to this assumption,
b0 + b1 is maximum. Then it is easy to see that (b0, b1) ∈ {(3, 3), (3, 2), (3, 1), (2, 2)}. We
let b = b0 + b1.

There are 8− b branch vertices that need to be joined to b branch vertices in B0 ∪B1.
Each such vertex x ∈ B2 ∪ B3 ∪ B4 is linked to all vertices in B0 ∪ B1; some of the
subdivided edges must contain two or three vertices of degree 2. It is easy to see that for
every such x, at least four vertices of degree 2 are needed, with two possible exceptions
in the cases when b0 = b1 = 2 or b0 = 3, b1 = 1. In any case, we conclude that s ≥ 8, and
this contradiction completes the proof.

3 Paley graphs

Let q = pr be a prime power, where p ≡ 1 (mod 4). The Paley graph Pq is the Cayley
graph of the additive group of the finite field GF (q) generated by all squares, i.e., V (Pq) =
GF (q) and two distinct vertices x, y are adjacent if and only if x − y = z2 for some
z ∈ GF (q). Since p ≡ 1 (mod 4), x − y is a square if and only if y − x is a square, and
this assures that Pq is a graph and not a digraph.

Paley graphs have a number of intriguing properties. First of all, they are highly
symmetric. Secondly, they are self-complementary. On the other hand, they resemble
random graphs a lot. One of their properties which makes them similar to random graphs
is the following result of Thomason [9]; see also [1, p. 363].

Theorem 3.1 Let A be a set of vertices of the Paley graph Pq. Let a = |A|, and let e(A)
be the number of edges in the induced subgraph Pq(A). Then∣∣∣∣e(A) − 1

2

(
a

2

)∣∣∣∣ ≤ a(q − a)

4
√

q
.
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This theorem implies that the maximum clique in Pq has at most
√

q vertices. Equality
is attained if q is an even power of a prime. But if q is a prime, it seems that the
maximum cliques in Pq have far smaller orders. It is believed that their orders are at
most polylogarithmic, possibly o(log2 q) or even smaller. See [1] for some discussion on
this problem.

Let z be a generator of the multiplicative group GF (q)∗. It is known that this group
is cyclic, so z0, z2, z4, . . . , zq−3 are precisely all squares. For each vertex x ∈ V (Pq), its
neighbors are x + z0, x + z2, x + z4, . . . , x + zq−3. This (cyclic) sequence defines a local
rotation around x, i.e., a clockwise cyclic order of edges incident with x. The collection
of all such local rotations defines an orientable embedding Πq of Pq which is known as the
Paley map. It has the following properties (see [12]):

Theorem 3.2 Suppose that q = pr, where p ≡ 1 (mod 8) is a prime. Then the Paley
map Πq is self-dual – the geometric dual graph P∗

q is isomorphic to Pq. Its genus is equal
to (q2 − 9q + 8)/8. It has q faces, each of which has length (q − 1)/2 and is bounded by a
cycle of Pq.

We refer to [12] for more details concerning this interesting map.
From now on we assume that q ≡ 1 (mod 8). Let Tq be the triangulation of the

orientable surface of genus (q2 − 9q + 8)/8 obtained from the Paley map Πq by adding a
new vertex into each face and joining it to all vertices on the boundary of that face. Let
Vq = V (Pq) and let V ∗

q be the added vertices. Then |Vq| = |V ∗
q | = q.

Theorem 3.3 Suppose that q = pr, where p ≡ 1 (mod 8) is a prime. The triangulation
Tq contains no subdivision of the complete graph of order ≥ λ

√
q, where λ = 1

4
(2+

√
198) <

4.0178.

Proof. Let s =
√

q and k = dλse. Suppose that Tq contains a subdivision K of Kk.
Let B0 ⊆ V (K) be the set of branch vertices, and let b = |B0 ∩ Vq| and b∗ = |B0 ∩ V ∗

q |.
Clearly, b + b∗ = k.

Let us count the number of subdivided edges in K. Since no two vertices in V ∗
q are

adjacent, B0∩V ∗
q gives rise to

(
b∗
2

)
subdivided edges. Concerning the set B0∩Vq, Theorem

3.1 shows that this set gives rise to at least 1
2

(
b
2

)− b(q−b)
4s

subdivided edges. Since the total
number of vertices of Tq is equal to 2q, we see that:

k +

(
b∗

2

)
+

1

2

(
b

2

)
− b(q − b)

4s
≤ 2q. (1)

Let b∗ = α∗s and b = αs. Then (1) expands to the following condition

s(2α∗2 + α2 − α − 8) + 2α∗ + 3α + α2 ≤ 0. (2)

Let Λ = α∗ + α. Then (2) implies that

2(Λ − α)2 + α2 − α − 8 < 0. (3)
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By considering (3) as a quadratic inequality in α, its discriminant is 97 + 8Λ − 8Λ2.
Therefore, (3) has no solutions if

8Λ2 − 8Λ − 97 ≥ 0. (4)

Since Λs = k = dλse ≥ λs, we have Λ ≥ λ = 1
4
(2 +

√
198). This implies (4) and proves

that (3) has no solution. This contradiction completes the proof.

Theorem 3.3 now implies:

Theorem 3.4 Suppose that q = pr, where p ≡ 1 (mod 8) is a prime. If the chromatic
number of Pq is at least λ

√
q, where λ = 1

4
(2 +

√
198), then the triangulation Tq fails to

satisfy the Hajós Conjecture.

In the above theorem, it suffices to assume that χ(Tq) ≥ λ
√

q. But since the vertex
set V ∗

q is independent in Tq, χ(Tq) ≤ χ(Pq)+1. Therefore, we find it more pleasing to use
the natural value χ(Pq).

The independence numbers α(Pq) of Paley graphs of prime order q less than 7000 were
computed by Shearer [8]. Using these calculations and estimate the chromatic number
by χ(Pq) ≥ dq/α(Pq)e, one finds out that Theorem 3.4 can be applied for many values of
q (and when q gets large, almost all of them are good). All such primes q ≤ 7000 with
q ≡ 1 (mod 8) are collected in Table 1.

As stated after Theorem 3.1, it is believed that for every prime q, ω(Pq) = o(
√

q). If
true, this yields infinitely many cases where Theorem 3.4 can be applied.

4 Conclusions

We have proved that there is a variety of reasons why a triangulation of some surface may
fail to satisfy the Hajós Conjecture. In this sense, this note can be viewed as an echo to
the stimulating work of Thomassen [11]. As noted in that paper, graphs embedded in
a surface Σ with sufficiently large edge-width satisfy the Hajós Conjecture. Recall that
the edge-width of a graph embedded in a nonplanar surface is the length of a shortest
noncontractible cycle. In the above observation of Thomassen, the required width depends
on Σ. However, the following strengthening may be true:

Conjecture 4.1 There is an absolute constant w0 such that every graph which can be
embedded in some surface with edge-width at least w0 satisfies the Hajós Conjecture.

Kühn and Osthus [5] proved that graphs whose girth is at least 186 satisfy the Hajós
conjecture. This excludes the most obvious possibility of counterexamples to Conjecture
4.1. (Note that the edge-width of a graph of girth g is at least g.)

We do not dare to estimate what the best possible value for w0 may be. However, if
we restrict ourselves to triangulations, no counterexamples of edge-width 4 are known.
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q α(Pq) dq/α(Pq)e dλ√qe
3697 15 247 245
4217 15 282 261
4441 15 297 268
4457 15 298 269
4649 17 274 274
4673 17 275 275
4721 17 278 277
4729 17 279 277
4793 16 300 279
4817 17 284 279
4937 17 291 283
4969 17 293 284
4993 17 294 284
5081 17 299 287
5153 17 304 289
5233 17 308 291
5281 17 311 292
5297 17 312 293
5393 17 318 296
5441 17 321 297
5449 17 321 297
5569 18 310 300
5657 18 315 303
5737 17 338 305
5801 17 342 307
5849 17 345 308
5857 17 345 308
5881 19 310 309
5897 17 347 309

q α(Pq) dq/α(Pq)e dλ√qe
5953 17 351 310
6073 19 320 314
6089 17 359 314
6113 19 322 315
6121 18 341 315
6217 19 328 317
6257 19 330 318
6329 19 334 320
6337 17 373 320
6353 17 374 321
6361 18 354 321
6449 19 340 323
6473 19 341 324
6481 17 382 324
6529 17 385 325
6553 19 345 326
6569 19 346 326
6577 19 347 326
6673 19 352 329
6689 19 353 329
6737 18 375 330
6761 20 339 331
6793 19 358 332
6833 19 360 333
6841 17 403 333
6857 17 404 333
6961 19 367 336
6977 18 388 336

Table 1: Some good values of q

Problem 4.2 Does every triangulation without noncontractible triangles satisfy the Hajós
Conjecture?

For a graph H and a positive integer t, let H̃t be the graph obtained from the union
of H and the clique Kt by adding all edges between them. Clearly, the Hajós Conjecture
holds for H if and only if it holds for H̃t.

Let v and e (ṽ and ẽ) be the number of vertices and edges of H (and H̃t), respectively.
Clearly, ṽ = v + t and ẽ = e +

(
t
2

)
+ vt. If H̃t triangulates some surface, then Euler’s

formula implies that ẽ is divisible by 3. This holds if and only if one of the following
holds:
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(A) e ≡ 0 (mod 3) and t ≡ 0 (mod 3),

(B) v + e ≡ 0 (mod 3) and t ≡ 1 (mod 3), or

(C) e − v ≡ 2 (mod 3) and t ≡ 2 (mod 3).

Conjecture 4.3 For every graph H, there exists a constant t0 such that for every t ≥ t0
for which one of (A)–(C) is satisfied, the graph H̃t triangulates some surface.

Conjecture 4.3 would imply that for every counterexample H to the Hajós Conjecture
for which either e ≡ 0 (mod 3), v + e ≡ 0 (mod 3), or e − v ≡ 2 (mod 3), there are
infinitely many triangulations of the form H̃t which violate the Hajós Conjecture.

Conjecture 4.3 would follow from a solution of a more general open problem which
has been raised in [7, Problem 4.4.10]:

Problem 4.4 Is there an ε > 0 such that every graph of order n, with e edges, where e
is divisible by 3, and with minimum degree at least (1 − ε)n triangulates some surface?

A positive answer to Problem 4.4 would imply that almost one third of random graphs
in G(n, p), where p > 1−ε, would be graphs of some triangulations. As shown by Erdős and
Fajtlowicz [4], almost all of these graphs would also be counterexamples to Conjecture 1.1.
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