Distinguishing Cartesian Powers of Graphs

Michael O. Albertson

Department of Mathematics
Smith College, Northampton, MA 01063 USA
albertson@math.smith.edu

Submitted: Feb 26, 2005; Accepted: Sep 1, 2005; Published: Sep 19, 2005
Mathematics Subject Classifications: 05C25, 05C78

Abstract

Given a graph G, alabeling ¢ : V(G) — {1,2,...,d} is said to be d-distinguishing
if the only element in Aut(G) that preserves the labels is the identity. The distin-
guishing number of G, denoted by D(G), is the minimum d such that G has a
d-distinguishing labeling. If GOH denotes the Cartesian product of G and H, let
G’ = GOG and G" = GOG ™. A graph G is said to be prime with respect to
the Cartesian product if whenever G = G10G5, then either G1 or Gy is a singleton
vertex. This paper proves that if G is a connected, prime graph, then D(G") = 2
whenever r > 4.

1 Introduction

Given a graph G, a labeling ¢ : V(G) — {1,2,...,d} is d-distinguishing if the only
element in Aut(G) that preserves the labels is the identity. The idea is that the labeling
together with the structure of GG uniquely identifies every vertex. Formally, c is said to be
d-distinguishing if ¢ € Aut(G) and c(¢p(x)) = c(z) for all x € V(G) implies that ¢ = id.
The distinguishing number of G, denoted by D(G), is the minimum d such that G has a
d-distinguishing labeling. It is a measure of the relative symmetry of G.

It is immediate that D(K,) = n and when ¢ > p, D(K,,,) = ¢. It is straightforward
to see that D(K,,) = n + 1. The original paper on distinguishing [1] was inspired by
a recreational puzzle [5]. The solution requires showing that if n > 6, then D(C,) = 2.
The attraction of this puzzle is the contrast with smaller cycles where D(C,,) = 3 when
3<n<5.

The inspiration for this paper is the solution to the problem of distinguishing the gen-
eralized cubes. Let @, denote the r-dimensional hypercube: V(Q,) = {x = (z1,...,2,) :
x; € Zo} and xy € E(Q,) if x and y differ in exactly one coordinate. Note that Q2 = Cy,
Q3 is the standard cube, and D(Q2) = D(Q3) = 3.
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The Cartesian (or box) product of two graphs G and H, denoted by GOH, is the
graph whose vertex set V(GOH) = {(u,v) : u € V(G),v € V(H)}. The vertex (u,v) is
adjacent to the vertex (w), z) if either u = w and vz € E(H) or v = z and vw € E(G). The
box notation illustrates the Cartesian product of two edges. Here we let G* denote GOG
and recursively let G© = GOG . The connection between hypercubes and Cartesian
products is that @, = K,. For more on Cartesian products see [4].

Recently Bogstead and Cowen showed that if » > 4, then D(Q,) = 2 [2]. Their proof
idea is elegant: find H, an induced subgraph of G, such that any nontrivial automorphism
of G maps some vertex in H to a vertex not in H. In such a circumstance the natural
labeling {c¢(z) = 2 if x € V(H) and ¢(z) = 1 otherwise} is 2-distinguishing. Using this
technique it is straightforward to prove that D(K3) = D(P;) = 2, and it is natural to
think that larger powers of these graphs will also be 2-distinguishable. All of this suggests

the following conjecture.

Conjecture 1. If G is connected, then there exists R = R(G) such that if r > R, then
D(G") = 2.

The connectivity is necessary since if G is two independent vertices, then D(G") = 2".

This purpose of this note is to prove Theorem 2, a significant strengthening of the
above conjecture for a slightly smaller class of graphs. In its full generality Conjecture 1
remains open.

2 Cartesian Products

A graph H is said to be prime with respect to the Cartesian product if whenever H =
H,0OH,, then either H; or H, is a singleton vertex. It is well known that if GG is connected,
then G has a unique prime factorization i.e. G = H10OH,0---0OH, such that for 1 <i <
t, H; is prime. About thirty-five years ago Imrich and Miller independently showed the
following theorem.

Theorem 1. [4] If G is connected and G = H,OH,0---OH, is its prime decomposition,
then every automorphism of GG is generated by the automorphisms of the factors and the
transpositions of isomorphic factors.

Corollary 1.1. If G is a connected prime graph with |V (G)| = n, then Aut(G") <
Aut(K))

Proof. Since every automorphism of G is an automorphism of K, it follows that every
automorphism of G is an automorphism of K. O

Corollary 1.2. If G is a connected prime graph with |V (G)| = n, then D(G") < D(K,,).
Proof. Any labeling that destroys every automorphism of K, must also destroy every

automorphism of G . O
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We now state our main result, though its proof will be postponed until the end of the
next section.

Theorem 2. If G is a connected graph that is prime with respect to the Cartesian
product, then D(G") = 2 whenever r > 4. Futhermore, if in addition, |V (G)| > 5, then
D(G") = 2 whenever r > 3.

It is well known that almost all graphs are connected. Graham [3] has shown that
almost all graphs are irreducible with respect to the ©* equivalence class; see [4]. Since
every such irreducible graph is prime, almost all graphs satisfy the hypotheses of Theorem
2.

It seems that it should be possible to prove Theorem 2 using the Bogstead Cowen
strategy. Whether there is such a proof remains open.

3 The Motion Lemma and Its Consequences

For ¢ € Aut(G) let m(o) = |{x € V(G) : o(x) # z}| and let m(G) = min{m(o) :
o # id}. Call m(o) the motion of 0 and m(G) the motion of G. Using an appealing
probabilistic argument Russell and Sundaram showed that if the motion of G is large,
then the distinguishing number of GG is small. Specifically they proved the motion lemma,
Theorem 3.

m(G)

Theorem 3. [6] If d * > |Aut(G)|, then D(G) < d.

To apply the motion lemma we need determine [Aut(K),)| and m(K,).

Theorem 4. |[Aut(K))| =r!(n!)".

Proof. K, is vertex transitive and has n" vertices. Each vertex, say x, is contained in
exactly r cliques of size n and the vertices in these cliques are disjoint except for . An
automorphism might take x to any of the n” vertices. Once the image of z is chosen, then
a clique that contains x can be mapped to a clique that contains the image of x in any
of r(n — 1)! ways. A second clique containing = can be mapped in any of (r — 1)(n — 1)!
ways. The j* clique containing z can be mapped in any of (r —j+ 1)(n — 1)! ways. Once
all cliques containing = are mapped, the entire automorphism is fixed. Alternatively, one
can recognize Aut(K,) as an appropriate wreath product and arrive at the count that
way. U

Theorem 5. If n > 3, then m(K)) = 2n" .

Proof. For every xy,...,,, let oy be the automorphism of K|, in which oo(1, 2o, ..., 2,) =
(2,29, ...,2.);00(2,29,...,2.) = (1,29,...,2,); and oy fixes everything else. Clearly
m(og) = 2n” " It remains to show that no non-trivial automorphism has smaller motion.

The proof that m(K) > 2n" will use a combination of induction and contradiction.
The base case holds since when r = 1, any non-identity automorphism must move at least
two vertices.

THE ELECTRONIC JOURNAL OF COMBINATORICS 12 (2005), #N17 3



Let Fj, j,...o = {(x1,...,2,) € V(K,) : ©1 = j1,Ta = jJo, ..., 2 = j;}. The notation is
chosen to emphasize that we are looking at vertices in K whose first coordinates are fixed.
Let Ly = {(z1,...7,) € V(K)) : z, = k}. The notation is chosen to emphasize that we
are looking at vertices in K, whose last coordinate is fixed. Note that |Fj al=n""
and that |Ly| =n'"

If o € Aut(K) is such that 0 < m(c) < 2n" ', then ¢ fixes more than (n—2)n" " ver-
tices. By the pigeonhole principle and appropriate reindexing there exists ji, jo, ..., Jr_1
such that o fixes more than (n — 2)n" ~ vertices in Fj,; o fixes more than (n — 2)n"
vertices in Fj, j,; o fixes more than (n — 2)n’ " vertices in F}, ;,. ;.; and o fixes more
than n — 2 vertices in F}, _; . Alternatively o moves at most one vertex in this clique.
Since n > 3, o fixes the entire clique F)

1502505

1seesJr—1"

For 1 <k<n, LyNFj ., =1{01J2---,Jr—1,k)}. This vertex is fixed by 0. Now
any vertex in K, that is adjacent to (ji,ja, ..., jr—1, k) is either in Fj, _; , orin Ly. In
the former case it is fixed by o. In the latter case in order to preserve adjacency, it must
be mapped to a vertex in L,. Now all the vertices in L, that are at distance two from
(71,72, - - - Jr—1k must also be mapped to L;. Continuing we see that o maps Ly to itself.

Next, for the moment suppose that for a particular value of k, L; is fixed by ¢. Since
every vertex in K; — Ly, is adjacent to exactly one vertex in L, o0 must map Ly, Lo, ... L,
onto Ly, Ly, ..., L,. Since o is the identity on Fj, _; ,, o is the identity on all of K;.

Thus we may assume that for every k with 1 < k < n, ¢ maps L; to L, moving some
of the vertices in Ly. Since o, is an automorphism on K;_l we can inductively assume
that o moves at least 2n" ~ vertices. Since this is true for each k, m(s) > 2n" . O

We now turn to the proof of Theorem 2.

Proof. First we note that when r > 1, G is not rigid. Thus D(K]) > 1. If n = 2, then
Theorem 2 is just the result of Bogstead and Cowen. When n > 3 we can substitute
the results of Theorems 3 and 4 into the Motion Lemma. Thus if r!(n!)” < 2" then
D(K,) < 2.
Case (i): Suppose n > r > 4. It is straightforward to check the following inequalities.
The logarithms are base 2.

log(r!) + rlog(n!) < nlog(n) +n’log(n) <n’ <n'

Exponentiating the extremes gives r!(n!)" < onr=H.

Case (ii): Suppose 7 > n > 3 and r > 5. It is straightforward to check the following
inequalities. The logarithms are base 2.

r—1

log(r!) + rlog(n!) < rlog(r) + rQIOg(T) <3 <n
Again exponentiating the extremes gives r!(n!)" < o™=
Case (iii): Suppose 7 =4 and n = 3. A direct calculation shows that rl(n!)” < 22" ™"

Finally it is straightforward to check that if r = 3 and n > 5,6(n!)’ < 27°. O
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