Distinguishing Cartesian Powers of Graphs

Michael O. Albertson
Department of Mathematics
Smith College, Northampton, MA 01063 USA
albertson@math.smith.edu

Submitted: Feb 26, 2005; Accepted: Sep 1, 2005; Published: Sep 19, 2005
Mathematics Subject Classifications: 05C25, 05C78

Abstract

Given a graph G, a labeling $c: V(G) \rightarrow\{1,2, \ldots, d\}$ is said to be d-distinguishing if the only element in $\operatorname{Aut}(G)$ that preserves the labels is the identity. The distinguishing number of G, denoted by $D(G)$, is the minimum d such that G has a d-distinguishing labeling. If $G \square H$ denotes the Cartesian product of G and H, let $G^{2}=G \square G$ and $G^{r}=G \square G^{r-1}$. A graph G is said to be prime with respect to the Cartesian product if whenever $G \cong G_{1} \square G_{2}$, then either G_{1} or G_{2} is a singleton vertex. This paper proves that if G is a connected, prime graph, then $D\left(G^{r}\right)=2$ whenever $r \geq 4$.

1 Introduction

Given a graph G, a labeling $c: V(G) \rightarrow\{1,2, \ldots, d\}$ is d-distinguishing if the only element in $\operatorname{Aut}(G)$ that preserves the labels is the identity. The idea is that the labeling together with the structure of G uniquely identifies every vertex. Formally, c is said to be d-distinguishing if $\phi \in \operatorname{Aut}(G)$ and $c(\phi(x))=c(x)$ for all $x \in V(G)$ implies that $\phi=i d$. The distinguishing number of G, denoted by $D(G)$, is the minimum d such that G has a d-distinguishing labeling. It is a measure of the relative symmetry of G.

It is immediate that $D\left(K_{n}\right)=n$ and when $q>p, D\left(K_{p, q}\right)=q$. It is straightforward to see that $D\left(K_{n, n}\right)=n+1$. The original paper on distinguishing [1] was inspired by a recreational puzzle [5]. The solution requires showing that if $n \geq 6$, then $D\left(C_{n}\right)=2$. The attraction of this puzzle is the contrast with smaller cycles where $D\left(C_{n}\right)=3$ when $3 \leq n \leq 5$.

The inspiration for this paper is the solution to the problem of distinguishing the generalized cubes. Let Q_{r} denote the r-dimensional hypercube: $V\left(Q_{r}\right)=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{r}\right)\right.$: $\left.x_{i} \in \mathbb{Z}_{2}\right\}$ and $\mathbf{x y} \in E\left(Q_{r}\right)$ if \mathbf{x} and \mathbf{y} differ in exactly one coordinate. Note that $Q_{2}=C_{4}$, Q_{3} is the standard cube, and $D\left(Q_{2}\right)=D\left(Q_{3}\right)=3$.

The Cartesian (or box) product of two graphs G and H, denoted by $G \square H$, is the graph whose vertex set $V(G \square H)=\{(u, v): u \in V(G), v \in V(H)\}$. The vertex (u, v) is adjacent to the vertex (w, z) if either $u=w$ and $v z \in E(H)$ or $v=z$ and $u w \in E(G)$. The box notation illustrates the Cartesian product of two edges. Here we let G^{2} denote $G \square G$ and recursively let $G^{r}=G \square G^{r-1}$. The connection between hypercubes and Cartesian products is that $Q_{r}=K_{2}^{r}$. For more on Cartesian products see [4].

Recently Bogstead and Cowen showed that if $r \geq 4$, then $D\left(Q_{r}\right)=2$ [2]. Their proof idea is elegant: find H, an induced subgraph of G, such that any nontrivial automorphism of G maps some vertex in H to a vertex not in H. In such a circumstance the natural labeling $\{c(x)=2$ if $x \in V(H)$ and $c(x)=1$ otherwise $\}$ is 2-distinguishing. Using this technique it is straightforward to prove that $D\left(K_{3}^{3}\right)=D\left(P_{3}^{2}\right)=2$, and it is natural to think that larger powers of these graphs will also be 2-distinguishable. All of this suggests the following conjecture.

Conjecture 1. If G is connected, then there exists $R=R(G)$ such that if $r \geq R$, then $D\left(G^{r}\right)=2$.

The connectivity is necessary since if G is two independent vertices, then $D\left(G^{r}\right)=2^{r}$.
This purpose of this note is to prove Theorem 2, a significant strengthening of the above conjecture for a slightly smaller class of graphs. In its full generality Conjecture 1 remains open.

2 Cartesian Products

A graph H is said to be prime with respect to the Cartesian product if whenever $H \cong$ $H_{1} \square H_{2}$, then either H_{1} or H_{2} is a singleton vertex. It is well known that if G is connected, then G has a unique prime factorization i.e. $G \cong H_{1} \square H_{2} \square \cdots \square H_{t}$ such that for $1 \leq i \leq$ t, H_{i} is prime. About thirty-five years ago Imrich and Miller independently showed the following theorem.

Theorem 1. [4] If G is connected and $G=H_{1} \square H_{2} \square \cdots \square H_{r}$ is its prime decomposition, then every automorphism of G is generated by the automorphisms of the factors and the transpositions of isomorphic factors.

Corollary 1.1. If G is a connected prime graph with $|V(G)|=n$, then $\operatorname{Aut}\left(G^{r}\right) \leq$ $\operatorname{Aut}\left(K_{n}^{r}\right)$

Proof. Since every automorphism of G is an automorphism of K_{n}, it follows that every automorphism of G^{r} is an automorphism of K_{n}^{r}.

Corollary 1.2. If G is a connected prime graph with $|V(G)|=n$, then $D\left(G^{r}\right) \leq D\left(K_{n}^{r}\right)$.
Proof. Any labeling that destroys every automorphism of K_{n}^{r} must also destroy every automorphism of G^{r}.

We now state our main result, though its proof will be postponed until the end of the next section.

Theorem 2. If G is a connected graph that is prime with respect to the Cartesian product, then $D\left(G^{r}\right)=2$ whenever $r \geq 4$. Futhermore, if in addition, $|V(G)| \geq 5$, then $D\left(G^{r}\right)=2$ whenever $r \geq 3$.

It is well known that almost all graphs are connected. Graham [3] has shown that almost all graphs are irreducible with respect to the Θ^{*} equivalence class; see [4]. Since every such irreducible graph is prime, almost all graphs satisfy the hypotheses of Theorem 2.

It seems that it should be possible to prove Theorem 2 using the Bogstead Cowen strategy. Whether there is such a proof remains open.

3 The Motion Lemma and Its Consequences

For $\sigma \in \operatorname{Aut}(G)$ let $m(\sigma)=|\{x \in V(G): \sigma(x) \neq x\}|$ and let $m(G)=\min \{m(\sigma)$: $\sigma \neq i d\}$. Call $m(\sigma)$ the motion of σ and $m(G)$ the motion of G. Using an appealing probabilistic argument Russell and Sundaram showed that if the motion of G is large, then the distinguishing number of G is small. Specifically they proved the motion lemma, Theorem 3.
Theorem 3. [6] If $d^{\frac{m(G)}{2}}>|\operatorname{Aut}(G)|$, then $D(G) \leq d$.
To apply the motion lemma we need determine $\left|\operatorname{Aut}\left(K_{n}^{r}\right)\right|$ and $m\left(K_{n}^{r}\right)$.
Theorem 4. $\left|\operatorname{Aut}\left(K_{n}^{r}\right)\right|=r!(n!)^{r}$.
Proof. K_{n}^{r} is vertex transitive and has n^{r} vertices. Each vertex, say x, is contained in exactly r cliques of size n and the vertices in these cliques are disjoint except for x. An automorphism might take x to any of the n^{r} vertices. Once the image of x is chosen, then a clique that contains x can be mapped to a clique that contains the image of x in any of $r(n-1)$! ways. A second clique containing x can be mapped in any of $(r-1)(n-1)$! ways. The $j^{\text {th }}$ clique containing x can be mapped in any of $(r-j+1)(n-1)$! ways. Once all cliques containing x are mapped, the entire automorphism is fixed. Alternatively, one can recognize $\operatorname{Aut}\left(K_{n}^{r}\right)$ as an appropriate wreath product and arrive at the count that way.
Theorem 5. If $n \geq 3$, then $m\left(K_{n}^{r}\right)=2 n^{r-1}$.
Proof. For every x_{2}, \ldots, x_{r}, let σ_{0} be the automorphism of K_{n}^{r} in which $\sigma_{0}\left(1, x_{2}, \ldots, x_{r}\right)=$ $\left(2, x_{2}, \ldots, x_{r}\right) ; \sigma_{0}\left(2, x_{2}, \ldots, x_{r}\right)=\left(1, x_{2}, \ldots, x_{r}\right)$; and σ_{0} fixes everything else. Clearly $m\left(\sigma_{0}\right)=2 n^{r-1}$. It remains to show that no non-trivial automorphism has smaller motion.

The proof that $m\left(K_{n}^{r}\right) \geq 2 n^{r-1}$ will use a combination of induction and contradiction. The base case holds since when $r=1$, any non-identity automorphism must move at least two vertices.

Let $F_{j_{1}, j_{2}, \ldots, j_{t}}=\left\{\left(x_{1}, \ldots, x_{r}\right) \in V\left(K_{n}^{r}\right): x_{1}=j_{1}, x_{2}=j_{2}, \ldots, x_{t}=j_{t}\right\}$. The notation is chosen to emphasize that we are looking at vertices in K_{n}^{r} whose first coordinates are fixed. Let $L_{k}=\left\{\left(x_{1}, \ldots x_{r}\right) \in V\left(K_{n}^{r}\right): x_{r}=k\right\}$. The notation is chosen to emphasize that we are looking at vertices in K_{n}^{r} whose last coordinate is fixed. Note that $\left|F_{j_{1}, j_{2}, \ldots, j_{t}}\right|=n^{r-t}$ and that $\left|L_{k}\right|=n^{r-1}$.

If $\sigma \in \operatorname{Aut}\left(K_{n}^{r}\right)$ is such that $0<m(\sigma)<2 n^{r-1}$, then σ fixes more than $(n-2) n^{r-1}$ vertices. By the pigeonhole principle and appropriate reindexing there exists $j_{1}, j_{2}, \ldots, j_{r-1}$ such that σ fixes more than $(n-2) n^{r-2}$ vertices in $F_{j_{1}} ; \sigma$ fixes more than $(n-2) n^{r-3}$ vertices in $F_{j_{1}, j_{2}} ; \sigma$ fixes more than $(n-2) n^{r-s-1}$ vertices in $F_{j_{1}, j_{2}, \ldots, j_{s}}$; and σ fixes more than $n-2$ vertices in $F_{j_{1}, \ldots, j_{r-1}}$. Alternatively σ moves at most one vertex in this clique. Since $n \geq 3, \sigma$ fixes the entire clique $F_{j_{1}, \ldots, j_{r-1}}$.

For $1 \leq k \leq n, L_{k} \cap F_{j_{1}, \ldots, j_{r-1}}=\left\{\left(j_{1}, j_{2}, \ldots, j_{r-1}, k\right)\right\}$. This vertex is fixed by σ. Now any vertex in K_{n}^{r} that is adjacent to $\left(j_{1}, j_{2}, \ldots, j_{r-1}, k\right)$ is either in $F_{j_{1}, \ldots, j_{r-1}}$ or in L_{k}. In the former case it is fixed by σ. In the latter case in order to preserve adjacency, it must be mapped to a vertex in L_{k}. Now all the vertices in L_{k} that are at distance two from $\left(j_{1}, j_{2}, \ldots j_{r-1} k\right.$ must also be mapped to L_{k}. Continuing we see that σ maps L_{k} to itself.

Next, for the moment suppose that for a particular value of k, L_{k} is fixed by σ. Since every vertex in $K_{n}^{r}-L_{k}$ is adjacent to exactly one vertex in L_{k}, σ must map $L_{1}, L_{2}, \ldots L_{n}$ onto $L_{1}, L_{2}, \ldots, L_{n}$. Since σ is the identity on $F_{j_{1}, \ldots, j_{r-1}}, \sigma$ is the identity on all of K_{n}^{r}.

Thus we may assume that for every k with $1 \leq k \leq n, \sigma$ maps L_{k} to L_{k} moving some of the vertices in L_{k}. Since $\left.\sigma\right|_{L_{k}}$ is an automorphism on K_{n}^{r-1} we can inductively assume that σ moves at least $2 n^{r-2}$ vertices. Since this is true for each $k, m(\sigma) \geq 2 n^{r-1}$.

We now turn to the proof of Theorem 2.
Proof. First we note that when $r>1, G^{r}$ is not rigid. Thus $D\left(K_{n}^{r}\right)>1$. If $n=2$, then Theorem 2 is just the result of Bogstead and Cowen. When $n \geq 3$ we can substitute the results of Theorems 3 and 4 into the Motion Lemma. Thus if $r!(n!)^{r}<2^{n^{(r-1)}}$, then $D\left(K_{n}^{r}\right) \leq 2$.

Case (i): Suppose $n \geq r \geq 4$. It is straightforward to check the following inequalities. The logarithms are base 2 .

$$
\log (r!)+r \log (n!)<n \log (n)+n^{2} \log (n)<n^{3} \leq n^{r-1}
$$

Exponentiating the extremes gives $r!(n!)^{r}<2^{n^{(r-1)}}$.
Case (ii): Suppose $r>n \geq 3$ and $r \geq 5$. It is straightforward to check the following inequalities. The logarithms are base 2 .

$$
\log (r!)+r \log (n!)<r \log (r)+r^{2} \log (r)<3^{r-1} \leq n^{r-1}
$$

Again exponentiating the extremes gives $r!(n!)^{r}<2^{n^{(r-1)}}$.
Case (iii): Suppose $r=4$ and $n=3$. A direct calculation shows that $r!(n!)^{r}<2^{n^{(r-1)}}$.
Finally it is straightforward to check that if $r=3$ and $n \geq 5,6(n!)^{3}<2^{n^{2}}$.

Acknowledgments: Thanks to Tom Tucker and Mark Watkins for helpful discussions. This research began while the author was the Neil R. Grabois Visiting Chair in Mathematics at Colgate University.

References

[1] Michael O. Albertson and Karen L. Collins, Symmetry breaking in graphs. Electronic J. Combinatorics 3 (1996) \#R18.
[2] Bill Bogstad and Lenore J. Cowen The distinguishing number of the hypercube. Discrete Math. 283 (2004), no. 1-3, 29-35.
[3] Ronald Graham, Isometric embeddings of graphs, in Selected Topics in Graph Theory 3, Academic Press, San Diego CA, 1988, 133-150.
[4] Wilfried Imrich and Sandi Klavžar, Product Graphs, John Wiley \& Sons, Inc. New York, 2000.
[5] Frank Rubin, Problem 729: the blind man's keys, Journal of Recreational Mathematics, 11(2) (1979), 128, solution in 12(2) (1980).
[6] Alexander Russell and Ravi Sundaram, A note on the asymptotics and computational complexity of graph distinguishability. Electronic Journal of Combinatorics, 5 (1998) \#R2.

