
The intersection structure of t-intersecting families

John Talbot
Department of Mathematics

University College London, London, UK
talbot@math.ucl.ac.uk

Submitted: Jun 30, 2004; Accepted: Sep 24, 2005; Published: Oct 13, 2005
Mathematics Subject Classifications: 05D05, 05C65

Abstract

A family of sets is t-intersecting if any two sets from the family contain at least
t common elements. Given a t-intersecting family of r-sets from an n-set, how many
distinct sets of size k can occur as pairwise intersections of its members? We prove
an asymptotic upper bound on this number that can always be achieved. This result
can be seen as a generalization of the Erdős-Ko-Rado theorem.

1 Introduction

For integers 1 ≤ r ≤ n we define [n] := {1, 2, . . . , n} and [n](r) = {A ⊆ [n] : |A| = r}. In
this short note we give an asymptotically sharp answer to the following extremal question:
if A ⊆ [n](r) is t-intersecting and t ≤ k ≤ r then how many distinct sets of size k can
occur as pairwise intersections of members of A?

For example if A ⊆ [n](6) is 2-intersecting then how many 4-sets can occur as pairwise
intersections of members of A? (The answer in this case is at most 21

(
n
2

)
+O(n) and this

can achieved.)
Let A ⊆ [n](r) be t-intersecting and t ≤ k ≤ r. The family of k-intersections of A is

A〈k〉 = {C ∈ [n](k) : ∃A, B ∈ A such that A ∩ B = C}.
If A is t-intersecting then trivially the smallest pairwise intersections of members of

A have size t. These play an important role when trying to bound the size of |A〈k〉| in
general. In particular it is useful to define the following quantity for 1 ≤ t ≤ r

α
(r)
t = max

n≥r
{|A〈t〉| : A ⊆ [n](r) is t-intersecting}.

The fact that α
(r)
t is well-defined follows from a result of Lovász [2] which implies that

α
(m)
1 exists for all m ≥ 1. It is easy to then check that α

(r)
t ≤ αm

1 , for m =
(

r
t

)
, and so

α
(r)
t exists for all 1 ≤ t ≤ r. The following general upper bound for α

(r)
t was given in [3].
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Theorem 1 If 1 ≤ t < r then

α
(r)
t ≤ 1

2

(
2r − t

r − t

)(
r

t

)
.

2 Result

Theorem 2 If 1 ≤ t ≤ k ≤ r ≤ n and A ⊆ [n](r) is t-intersecting then

|A〈k〉| ≤ α
(r−k+t)
t

(
n

k − t

)
+ O(nk−t−1). (1)

Moreover this bound can always be achieved.

Proof. We first prove the upper bound using induction on k. The result holds trivially
for k = t so suppose k ≥ t + 1. For i ∈ [n] define

A′
i = {A\{i} : i ∈ A and A ∈ A}.

If V =
⋃

A∈A〈t〉 A, then |V | ≤ tα
(r)
t = O(1) by Theorem 1 (as n tends to infinity). Note

that if i ∈ [n]\V then A′
i is a t-intersecting family of (r−1)-sets and hence by our inductive

hypothesis for k − 1

∑
i∈[n]\V

|A′
i〈k − 1〉| ≤ α

(r−k+t)
t

(
n

k − t − 1

)
(n − |V |). (2)

We now consider how often a set A ∈ A〈k〉 is counted in the left-hand side of (2). Partition
A〈k〉 as A〈k〉 = B∪̇C, where

B = {A ∈ A〈k〉 : |A ∩ V | ≤ t} and C = {A ∈ A〈k〉 : |A ∩ V | ≥ t + 1}.

If A ∈ B then A is counted at least k − t times in the left-hand side of (2) while

|C| ≤
(|V |

k

)(
n − |V |

k − t − 1

)
= O(nk−t−1).

Hence we have

|A〈k〉| ≤ α
(r−k+t)
t

(
n

k − t

)
+ O(nk−t−1).

The upper bound then follows by induction on k.
The following simple construction shows that the upper bound (1) can always be

achieved. Let B be a t-intersecting family of (r−k+ t)-sets satisfying |B〈t〉| = α
(r−k+t)
t . If

m = | ∪B∈B B| then we may suppose that B ⊆ [m](r−k+t). Let n ≥ m + k− t and consider
the family

A = {A ∈ [n](r) : ∃B ∈ B such that B ⊆ A}. (3)
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Since B is t-intersecting so A is also t-intersecting.
To see that the family A gives equality in (1) consider any k-set C = D ∪ E, where

D ∈ B〈t〉 and E ∈ {m+1, m+2, . . . , n}(k−t). By definition of B〈t〉 there exist B1, B2 ∈ B
such that B1 ∩ B2 = D. Moreover B1 ∪ E, B2 ∪ E ∈ A and hence C = D ∪ E =
(B1 ∪ E) ∩ (B2 ∪ E) ∈ A〈k〉. Hence for each D ∈ B〈t〉 and each E ∈ {m + 1, . . . , n}(k−t)

we obtain a unique set C = D ∪ E ∈ A〈k〉. Thus

|A〈k〉| ≥ α
(r−k+t)
t

(
n − m

k − t

)

= α
(r−k+t)
t

(
n

k − t

)
+ O(nk−t−1).

The first part of this theorem then implies that equality holds in (1) for A.

3 Remarks

The case r = k of Theorem 2 says that if A ⊆ [n](r) is t-intersecting then

|A| ≤
(

n

r − t

)
+ O(nr−t−1).

This is essentially a version of the Erdős-Ko-Rado theorem [1].
For t = 1 we can prove a stronger result (see [4]). Namely, if A ⊆ [n](r) is intersecting

then either A is constructed as in the example (3) given above, or A has far fewer k-
intersections than this example.

For the bound in Theorem 2 to be explicitly calculated we need to know the value of
α

(r−k+t)
t . This is an important problem in its own right. The values that are currently

known are: α
(t)
t = 1, α

(t+1)
t =

(
t+2
2

)
, α

(3)
1 = 7, α

(4)
1 = 16 and α

(4)
2 = 21. An upper bound

for α
(r)
t is given by Theorem 1 while the best known bounds for α

(r)
1 are due to Tuza [5].

Theorem 3 (Tuza [5]) If r ≥ 4 then

2

(
2r − 4

r − 2

)
+ 2r − 4 ≤ α

(r)
1 ≤

(
2r − 1

r − 1

)
+

(
2r − 4

r − 1

)
.
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