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Abstract

A family of sets is t-intersecting if any two sets from the family contain at least
t common elements. Given a t-intersecting family of r-sets from an n-set, how many
distinct sets of size k can occur as pairwise intersections of its members? We prove
an asymptotic upper bound on this number that can always be achieved. This result
can be seen as a generalization of the Erdés-Ko-Rado theorem.

1 Introduction

For integers 1 < 7 < n we define [n] := {1,2,...,n} and [n]") = {A C [n]: |A| =r}. In
this short note we give an asymptotically sharp answer to the following extremal question:
if A C [n]( is t-intersecting and ¢ < k < r then how many distinct sets of size k can
occur as pairwise intersections of members of A?

For example if A C [n]©® is 2-intersecting then how many 4-sets can occur as pairwise
intersections of members of A? (The answer in this case is at most 21(}) + O(n) and this
can achieved.)

Let A C [n]™ be t-intersecting and ¢ < k < r. The family of k-intersections of A is

A(k) ={C € [n]® : 34, B € A such that AN B = C}.

If A is t-intersecting then trivially the smallest pairwise intersections of members of
A have size t. These play an important role when trying to bound the size of |A(k)| in
general. In particular it is useful to define the following quantity for 1 <¢ <r

ozy) = max{|A({t)| : A C [n] (") is t-intersecting}.

n>r

The fact that &Er) is well-defined follows from a result of Lovasz [2] which implies that

agm) exists for all m > 1. It is easy to then check that ay) < o, for m = (r

t
&,@ exists for all 1 < ¢ < r. The following general upper bound for ay) was given in [3].

), and so
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Theorem 1 If1 <t <r then

ol < % (2:_—;) (Z)
2 Result

Theorem 2 If1 <t<k<r<nand AC [n](r) is t-intersecting then

[AGK)| < af = (k i t) +O0(m ). (1)

Moreover this bound can always be achieved.

Proof. We first prove the upper bound using induction on k. The result holds trivially
for k =t so suppose k >t + 1. For i € [n] define

A, ={A\{i}:i€ Aand A € A}.

IV =Ujeaq A then [V] < tal” = O(1) by Theorem 1 (as n tends to infinity). Note
that if i € [n]\V then A is a t-intersecting family of (r—1)-sets and hence by our inductive
hypothesis for £ — 1

> el < el o= )
i€n]\V

We now consider how often a set A € A(k) is counted in the left-hand side of (2). Partition
A(k) as A(k) = BUC, where

B={Ac AK):|[ANV|<t} and C={Ac Ak):|ANV|>t+1}).

If A€ B then A is counted at least k& — t times in the left-hand side of (2) while

c| < (\‘2\) (kn_—t\f\l) _ O,

n

o t) +O(n*71).

The upper bound then follows by induction on k.

The following simple construction shows that the upper bound (1) can always be
(r—k+t)
oy I

Hence we have

AR < aﬁ“““)(

achieved. Let B be a t-intersecting family of (r — k4 t)-sets satisfying |B(t)| =
m = |Upep B| then we may suppose that B C [m]" %), Let n > m +k —t and consider

the family
A={A¢€ [n]"):3B € B such that B C A}. (3)

THE ELECTRONIC JOURNAL OF COMBINATORICS 12 (2005), #N18 2



Since B is t-intersecting so A is also t-intersecting.

To see that the family A gives equality in (1) consider any k-set C' = D U E, where
DeB{tyand E € {m+1,m+2,...,n}* By definition of B(t) there exist By, By € B
such that By N By = D. Moreover By UFE, By UE € A and hence C = DUFE =
(BiUE)N (B, UE) € A(k). Hence for each D € B(t) and each E € {m +1,...,n}*?
we obtain a unique set C' = DU E € A(k). Thus

AR = o T (7;__?)

al T (k i t) + O(nF~17h).

The first part of this theorem then implies that equality holds in (1) for A. a

3 Remarks

The case r = k of Theorem 2 says that if A C [n]") is t-intersecting then

4] < <T " t) + O,

This is essentially a version of the Erdds-Ko-Rado theorem [1].

For t = 1 we can prove a stronger result (see [4]). Namely, if A C [n]™ is intersecting
then either A is constructed as in the example (3) given above, or A has far fewer k-
intersections than this example.

For the bound in Theorem 2 to be explicitly calculated we need to know the value of
oz,ET_Ht). This is an important problem in its own right. The values that are currently
known are: ozgt) =1, oz,gtﬂ) = (%2), af’) =17, oz§4) = 16 and 04;4) = 21. An upper bound
for aﬁ” is given by Theorem 1 while the best known bounds for aY) are due to Tuza [5].

Theorem 3 (Tuza [5]) Ifr > 4 then
2r —4 ) 2r —1 2r—4
2 2r —4 < < .
i () R ey
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