The intersection structure of t-intersecting families

John Talbot

Department of Mathematics University College London, London, UK talbot@math.ucl.ac.uk

Submitted: Jun 30, 2004; Accepted: Sep 24, 2005; Published: Oct 13, 2005 Mathematics Subject Classifications: 05D05, 05C65

Abstract

A family of sets is *t*-intersecting if any two sets from the family contain at least t common elements. Given a *t*-intersecting family of *r*-sets from an *n*-set, how many distinct sets of size k can occur as pairwise intersections of its members? We prove an asymptotic upper bound on this number that can always be achieved. This result can be seen as a generalization of the Erdős-Ko-Rado theorem.

1 Introduction

For integers $1 \le r \le n$ we define $[n] := \{1, 2, ..., n\}$ and $[n]^{(r)} = \{A \subseteq [n] : |A| = r\}$. In this short note we give an asymptotically sharp answer to the following extremal question: if $\mathcal{A} \subseteq [n]^{(r)}$ is t-intersecting and $t \le k \le r$ then how many distinct sets of size k can occur as pairwise intersections of members of \mathcal{A} ?

For example if $\mathcal{A} \subseteq [n]^{(6)}$ is 2-intersecting then how many 4-sets can occur as pairwise intersections of members of \mathcal{A} ? (The answer in this case is at most $21\binom{n}{2} + O(n)$ and this can achieved.)

Let $\mathcal{A} \subseteq [n]^{(r)}$ be t-intersecting and $t \leq k \leq r$. The family of k-intersections of \mathcal{A} is

$$\mathcal{A}\langle k \rangle = \{ C \in [n]^{(k)} : \exists A, B \in \mathcal{A} \text{ such that } A \cap B = C \}.$$

If \mathcal{A} is t-intersecting then trivially the smallest pairwise intersections of members of \mathcal{A} have size t. These play an important role when trying to bound the size of $|\mathcal{A}\langle k\rangle|$ in general. In particular it is useful to define the following quantity for $1 \leq t \leq r$

$$\alpha_t^{(r)} = \max_{n \ge r} \{ |\mathcal{A}\langle t \rangle | : \mathcal{A} \subseteq [n]^{(r)} \text{ is } t \text{-intersecting} \}.$$

The fact that $\alpha_t^{(r)}$ is well-defined follows from a result of Lovász [2] which implies that $\alpha_1^{(m)}$ exists for all $m \ge 1$. It is easy to then check that $\alpha_t^{(r)} \le \alpha_1^m$, for $m = \binom{r}{t}$, and so $\alpha_t^{(r)}$ exists for all $1 \le t \le r$. The following general upper bound for $\alpha_t^{(r)}$ was given in [3].

Theorem 1 If $1 \le t < r$ then

$$\alpha_t^{(r)} \le \frac{1}{2} \binom{2r-t}{r-t} \binom{r}{t}$$

2 Result

Theorem 2 If $1 \le t \le k \le r \le n$ and $\mathcal{A} \subseteq [n]^{(r)}$ is t-intersecting then

$$|\mathcal{A}\langle k\rangle| \le \alpha_t^{(r-k+t)} \binom{n}{k-t} + O(n^{k-t-1}).$$
(1)

Moreover this bound can always be achieved.

Proof. We first prove the upper bound using induction on k. The result holds trivially for k = t so suppose $k \ge t + 1$. For $i \in [n]$ define

$$\mathcal{A}'_i = \{A \setminus \{i\} : i \in A \text{ and } A \in \mathcal{A}\}.$$

If $V = \bigcup_{A \in \mathcal{A}\langle t \rangle} A$, then $|V| \leq t\alpha_t^{(r)} = O(1)$ by Theorem 1 (as *n* tends to infinity). Note that if $i \in [n] \setminus V$ then \mathcal{A}'_i is a *t*-intersecting family of (r-1)-sets and hence by our inductive hypothesis for k-1

$$\sum_{i \in [n] \setminus V} |\mathcal{A}'_i \langle k - 1 \rangle| \le \alpha_t^{(r-k+t)} \binom{n}{k-t-1} (n-|V|).$$
⁽²⁾

We now consider how often a set $A \in \mathcal{A}\langle k \rangle$ is counted in the left-hand side of (2). Partition $\mathcal{A}\langle k \rangle$ as $\mathcal{A}\langle k \rangle = \mathcal{B} \dot{\cup} \mathcal{C}$, where

$$\mathcal{B} = \{ A \in \mathcal{A} \langle k \rangle : |A \cap V| \le t \} \quad \text{and} \quad \mathcal{C} = \{ A \in \mathcal{A} \langle k \rangle : |A \cap V| \ge t+1 \}.$$

If $A \in \mathcal{B}$ then A is counted at least k - t times in the left-hand side of (2) while

$$|\mathcal{C}| \le \binom{|V|}{k} \binom{n-|V|}{k-t-1} = O(n^{k-t-1}).$$

Hence we have

$$|\mathcal{A}\langle k\rangle| \le \alpha_t^{(r-k+t)} \binom{n}{k-t} + O(n^{k-t-1}).$$

The upper bound then follows by induction on k.

The following simple construction shows that the upper bound (1) can always be achieved. Let \mathcal{B} be a *t*-intersecting family of (r-k+t)-sets satisfying $|\mathcal{B}\langle t\rangle| = \alpha_t^{(r-k+t)}$. If $m = |\cup_{B \in \mathcal{B}} B|$ then we may suppose that $\mathcal{B} \subseteq [m]^{(r-k+t)}$. Let $n \ge m+k-t$ and consider the family

$$\mathcal{A} = \{ A \in [n]^{(r)} : \exists B \in \mathcal{B} \text{ such that } B \subseteq A \}.$$
(3)

The electronic journal of combinatorics $\mathbf{12}$ (2005), #N18

Since \mathcal{B} is *t*-intersecting so \mathcal{A} is also *t*-intersecting.

To see that the family \mathcal{A} gives equality in (1) consider any k-set $C = D \cup E$, where $D \in \mathcal{B}\langle t \rangle$ and $E \in \{m+1, m+2, \ldots, n\}^{(k-t)}$. By definition of $\mathcal{B}\langle t \rangle$ there exist $B_1, B_2 \in \mathcal{B}$ such that $B_1 \cap B_2 = D$. Moreover $B_1 \cup E, B_2 \cup E \in \mathcal{A}$ and hence $C = D \cup E = (B_1 \cup E) \cap (B_2 \cup E) \in \mathcal{A}\langle k \rangle$. Hence for each $D \in \mathcal{B}\langle t \rangle$ and each $E \in \{m+1, \ldots, n\}^{(k-t)}$ we obtain a unique set $C = D \cup E \in \mathcal{A}\langle k \rangle$. Thus

$$\begin{aligned} |\mathcal{A}\langle k\rangle| &\geq \alpha_t^{(r-k+t)} \binom{n-m}{k-t} \\ &= \alpha_t^{(r-k+t)} \binom{n}{k-t} + O(n^{k-t-1}). \end{aligned}$$

The first part of this theorem then implies that equality holds in (1) for \mathcal{A} .

 \Box

3 Remarks

The case r = k of Theorem 2 says that if $\mathcal{A} \subseteq [n]^{(r)}$ is t-intersecting then

$$|\mathcal{A}| \le \binom{n}{r-t} + O(n^{r-t-1}).$$

This is essentially a version of the Erdős-Ko-Rado theorem [1].

For t = 1 we can prove a stronger result (see [4]). Namely, if $\mathcal{A} \subseteq [n]^{(r)}$ is intersecting then either \mathcal{A} is constructed as in the example (3) given above, or \mathcal{A} has far fewer kintersections than this example.

For the bound in Theorem 2 to be explicitly calculated we need to know the value of $\alpha_t^{(r-k+t)}$. This is an important problem in its own right. The values that are currently known are: $\alpha_t^{(t)} = 1$, $\alpha_t^{(t+1)} = {t+2 \choose 2}$, $\alpha_1^{(3)} = 7$, $\alpha_1^{(4)} = 16$ and $\alpha_2^{(4)} = 21$. An upper bound for $\alpha_t^{(r)}$ is given by Theorem 1 while the best known bounds for $\alpha_1^{(r)}$ are due to Tuza [5].

Theorem 3 (Tuza [5]) If $r \ge 4$ then

$$2\binom{2r-4}{r-2} + 2r-4 \le \alpha_1^{(r)} \le \binom{2r-1}{r-1} + \binom{2r-4}{r-1}.$$

References

- P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 12 (1961), 313-320.
- [2] L. Lovász, "Combinatorial Problems and Exercises", North Holland, Amsterdam, New York, Oxford, 1979.
- [3] J. Talbot, A new Bollobás-type inequality and applications to t-intersecting families of sets, Discrete Math. 285, 1-3, (2004), 349-353.

- [4] J. Talbot, The number of k-intersections of an intersecting family of r-sets, J. Combin. Theory Ser. A, 106 2 (2004), 277-286.
- [5] Zs. Tuza, Critical hypergraphs and intersecting set-pair systems, J. Combin. Theory Ser. B, 39 (1985), 134-145.